A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes...

27
UNIVERSIDADE CANDIDO MENDES PRÓ-REITORIA DE PLANEJAMENTO E DESENVOLVIMENTO DIRETORIA DE PROJETOS ESPECIAIS PROJETO A VEZ DO MESTRE A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL VERIANO CATININ DE SOUZA ORIENDADOR: PROFª. YASMIM RIO DE JANEIRO, RJ, AGOSTO/2001

Transcript of A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes...

Page 1: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

UNIVERSIDADE CANDIDO MENDES

PRÓ-REITORIA DE PLANEJAMENTO E DESENVOLVIMENTO

DIRETORIA DE PROJETOS ESPECIAIS

PROJETO A VEZ DO MESTRE

A ORIGEM DO CÁLCULO DIFERENCIAL

E INTEGRAL

VERIANO CATININ DE SOUZA

ORIENDADOR: PROFª. YASMIM

RIO DE JANEIRO, RJ, AGOSTO/2001

Page 2: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

UNIVERSIDADE CANDIDO MENDES

PRÓ-REITORIA DE PLANEJAMENTO E DESENVOLVIMENTO

DIRETORIA DE PROJETOS ESPECIAIS

PROJETO A VEZ DO MESTRE

A ORIGEM DO CÁLCULO DIFERENCIAL

E INTEGRAL

Veriano Catinin de Souza

Trabalho Monográfico apresentado como requisito parcial para obtenção do Grau de Especialista em Orientação Educacional.

Rio de Janeiro, RJ, Agosto/2001

Page 3: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Agradecimento

A professora Yasmim, pelo seu total

apoio e incentivos, na execução deste

trabalho.

Page 4: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Dedicatória

Dedico este trabalho de pesquisa aos

pais: José Catinin Sobrinho (in

memoram) e Ana Pereira Catinin, que

com seus conselhos me ajudaram a

continuar estudando.

Page 5: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Epígrafe

"As práticas educativas se fundam na cultura, em estilos de aprendizagem e nas tradições, e a história compreende o registro desses fundamento. Portanto, é praticamente impossível discutir educação sem recorrer a esses registros e a interpretações dos mesmos "

Ubiratan D’Ambrósio

Page 6: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

SUMÁRIO

RESUMO

Capítulo I: A IMPORTÂNCIA DO CÁLCULO DIFERENCIAL E

INTEGRAL

A Matemática na História 7

O Cálculo Diferencial e Integral 10

Capítulo II: O CÁLCULO NA ANTIGUIDADE E IDADE MÉDIA

2.1. O CÁLCULO NAS PRIMEIRAS CIVILIZAÇÕES 13

2.2. O CÁLCULO NA CIVILIZAÇÃO GREGA 16

Capítulo III: O CÁLCULO NO SÉCULO XVII

3.1. O CÁLCULO NO INÍCIO DO SÉCULO XVII 17

3.2. AS CONTRIBUIÇÕES DE NEWTON E LEIBNIZ 18

CONCLUSÃO 23

BIBLIOGRAFIA 25

Page 7: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

RESUMO

O Cálculo Diferencial e Integral “é a matemática da

variação”(LARSON, 1998, p.85). É uma das disciplinas mais

tradicionais no ensino de ciências exatas na universidade, e que mais

tem preservado sua estrutura original. É importante, e motivo de

reflexão o fato de que, mesmo hoje, com o advento e a difusão de

calculadoras, microcomputadores, modelagem, etc, a espinha dorsal

do Cálculo é essencialmente a mesma desde a época do seu

surgimento como método eficaz, para tratar de problemas de variação

e de área no final do século 17.

No presente trabalho, temos por objetivo mostrar a origem e o

desenvolvimento desta disciplina tão importante no contexto da

educação matemática contemporânea. Através de uma pesquisa

bibliográfica e do método dedutivo, mostraremos que o sua origem

data da antigüidade e o seu desenvolvimento se dá até o século

XVII, e sua formalização no século dezenove.

Page 8: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Capítulo 1

A IMPORTÂNCIA DO CÁLCULO DIFERENCIAL E INTEGRAL

1.1. A MATEMÁTICA NA HISTÓRIA

A Ciência surge como resposta aos desafios gerados na realidade

circundante ao ambiente que o homem vive. Ao longo da história o homem vem

se apropriando de processos mentais eficazes na análise e soluções desses

desafios. A Matemática foi um dos primeiros campos do saber humano que se

encontram vestígios nos mais remotos tempos da história da humanidade.

Na Tchecoslováquia foi achado um osso de lobo com

profundas incisões, em número de cinqüenta e cinco; estavam

dispostos em duas séries, com vinte e cinco numa e trinta na

outra, com os riscos em cada série , dispostos em grupos de

cinco. Tais descobertas arqueológicas fornecem provas de que

a idéia de número é muito mais antiga do que progressos

tecnológicos como o uso de metais ou de veículo com rodas.

(BOYER, 1978: 3).

Nesse período do tempo, também são comuns os objetos de forma

definidas, o que mostra que a Geometria também teve o seu início nos

primórdios da humanidade.

A partir das marcas em osso, também em pedra, madeira e outros objetos,

o homem criou a linguagem simbólica, representações das idéias e objetos. A

partir desse momento o conhecimento passa a fazer parte da sobrevivência do

Page 9: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

homem. O homem se transforma num ser que ultrapassa os limites impostos pela

natureza, passa a construir idéias, sistemas, que o ajuda a superar-se.

Na história da Matemática, o uso de símbolos e representações de objetos

bem como a metodologia de construção do conhecimento matemático, pode ser

entendida, em cinco períodos:

1 – O período empírico: que se confunde com os primórdios das civilizações. A

matemática está exclusivamente ligada à cultura e à sociedade da época. Um

exemplo clássico é a Geometria no Egito Antigo. Lá a Geometria estava

associada a medição dos campos depois das cheias do rio Nilo e construção de

Pirâmides.

2 – O período dedutivo: Inicia-se com o nascimento da filosofia grega no século

VI a.C, no momento em que ocorre a ruptura entre o prático e o teórico, entre o

concreto e o abstrato. A força de uma idéia passa a estar na sua forma , na

Lógica. Um exemplo marcante desse período foi Euclides de Alexandria, em

300a.C., que escreveu sua obra, os Elementos, a partir de definições, axiomas e

postulados, sem necessidade de recorrer a situações concretas.

3 – O período racional: se inicia com o advento da Ciência Moderna, no século

XVII. O conhecimento matemático, incluído o procedimento dedutivista, passou a

explicar e a justificar os fenômenos observados. Newton(1642-1727) cria o

cálculo diferencial e integral, para dar explicações aos fenômenos que estão

sendo estudados em sua época.

4 – O período simbólico: inicia-se no século XIX, com os trabalhos de Frege e

depois Russell. Esta fase do desenvolvimento do conhecimento matemática

apresenta três tendências: Logiscismo (a matemática depende da lógica),

Page 10: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Intuicionismo (a matemática deve ser aceita pela sua evidência e o princípio do

terceiro excluído) e o formalismo(estuda as estrutura matemáticas, e a partir de

uma desenvolve-se outras, por semelhança).

5 - O período simulatório: com o advento do computador, a matemática tem

mostrado sua ampla aplicabilidade, através da criação de modelos aplicados as

diferentes áreas do conhecimento, desde a lingüística até a teoria do caos.

Não se pode mais conceber a pesquisa científica sem uma

aparelhagem complexa que redistribui as antigas divisões entre

experiência e teoria. Emerge, neste final do século XX, um

conhecimento por simulação que os epistemologistas ainda

não inventaram.” (LÉVY, 1999: 7)

O computador nasceu graças a matemática e ciências afins, e ele “não é senão

um instrumento matematizador de informações” (ALMEIDA, 1988: 59).

Muito do que hoje é desenvolvido e ensinado no campo da Ciência e

Tecnologia, depende do uso do computador. Este tornou-se uma ferramenta

indispensável para alunos, professores e pesquisadores.

Problemas que estavam desesperadamente além das

capacidades dos matemáticos de eras anteriores recentemente

foram resolvidos com a ajuda dos computadores de alta

velocidade. Se, como Kepler disse, a invenção dos logaritmos

duplicou a vida de um astrônomo, quanto mais o computador

eletrônico expandiu as carreiras de cientistas e matemáticos!”

(BOYER 1978: 456).

A educação matemática tem se preocupado com o desenvolvimento das

idéias e teorias matemáticas.

Page 11: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

1.2. O CÁLCULO DIFERENCIAL E INTEGRAL

As aplicações do Cálculo diferencial e integral se fazem presentes na

maioria dos fenômenos mensuráveis. Isto implica que seu uso se estende desde

a Física até a economia e administração.

A palavras cálculo é de origem latina, “calculus, e na Roma Antiga era uma

pequena pedra ou seixo usado para contagem e jogo, e o verbo latino calculare

passou a significar ‘figurar’, ‘computar’, ‘calcular’ ” (SIMMONS, 1987, p.70).

Atualmente, a palavra Cálculo indica um método ou sistema de métodos para

resolver certos tipo de problemas quantitativos, como: o cálculo das

probabilidades, cálculo lógico, cálculo das diferenças finitas, cálculo vetorial,

cálculo dos resíduas, e assim por diante.

A expressão Cálculo Diferencial e Integral, ou abreviadamente Cálculo,

designa basicamente dois processos: a derivação e a Integração. A derivação

“está relacionada com a descrição e mensuração da maneira como as coisas

variam, se movem e crescem” (BARON, 1985, p.1). Já a integração constitui uma

ferramenta básica nos processos de soma.

Assim como outras áreas da Matemática, o Cálculo Diferencial e Integral,

surgiu e se desenvolveu a partir de uma combinação entre problemas e

formulações de conceitos e teorias adequados para resolve-los. E, por sua vez,

estas teorias suscitaram novos problemas e novas teorias e assim tivemos a

formulação de um conjunto compreensivo de regras operacionais para a solução

de diversos problemas.

Page 12: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Muitos dos problemas que alimentaram o desenvolvimento do Cálculo

Diferencial e Integral, são de origem geométrico ou podem assim ser reduzidos.

Segundo Baron, historicamente o modelo geométrico exerceu um papel central no

seu desenvolvimento.

Uma das formas mais usuais de interpretação e entendimento do processo

de derivação é concebe-lo como a inclinação (declive) da reta tangente (Do latim

tangere, que significa tocar) ao gráfico de uma função, conforme a figura 1.

A partir desta idéia outros problemas podem ser estudados. É o caso dos

pontos de máximo e mínimos de uma função. Nestes pontos, as retas tangentes

são horizontais, ou seja, com inclinação zero. Esta aplicação do conceito de

derivada de uma função mostrou-se de grande utilidade em diversos campos da

Ciência.

Quanto ao processo de integração, teve o seu ponto de partida nos

problemas de quadratura de curvas, ou seja, a área limitada por uma curva, como

podemos observar na figura 1.

Fonte: SIMMENS, 1987, p.69

Page 13: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Inicialmente os processos de derivação e integração eram estudados

separadamente. Só depois de século XVII, foi possível associa-los, através do

chamamos de Teorema Fundamental do Cálculo. Assim os problemas das

quadraturas e das tangentes ficaram unificados por este teorema. Segundo

Baron, tornou-se um instrumento importante e poderoso no estudo de problemas

mais gerais pela introdução, também no século XVII, de uma notação especial e

de algoritmos (ou regras de cálculos).

Já em 1700, grande parte do cálculo que se estuda hoje nos cursos de

graduação já estava estabelecido. “O primeiro texto de cálculo foi publicado em

1696; o seu autor, o marquês de L´Hospital(1661-1704), por um acordo singular,

publicou as lições que recebera de seu professor particular Johann Bernoulli.”

(EVES, 1995, p.444)

Page 14: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Capítulo 2

O CÁLCULO NA ANTIGUIDADE E IDADE MÉDIA

2.1. O CÁLCULO NAS PRIMEIRAS CIVILIZAÇÕES

Muitas vezes é dito que o Cálculo foi inventado pelo dois grandes

matemáticos do século XVII, Newton e Leibniz. “Na realidade, o cálculo é produto

de uma longa evolução que não foi iniciada nem concluída por Newton e Leibniz;”

(COURANT, 2000, P.481) . Mas os seus primórdios data do século XVII antes de

Cristo. Desta época tem-se papiros egípcios e tábuas cuneiformes babilônicas

que nos informa como aquelas civilizações tratavam certos problemas de

mensuração.

Um dos documentos mais antigo da história da matemática é o papiro

Rhind. É um papiro egípcio de 1600 a.C., ele foi copilado pelo escriba Ahmes,

neste documento encontramos alguns resultados matemáticos usados no Egito

Antigo:

• O volume de uma pirâmide quadrada era calculada como 1/3 do volume do

prisma retangular;

• A área de um círculo era obtida por um quadrado cujo lado é 8/9 do diâmetro

do círculo.

Page 15: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Tais regras eram aceitas mas sem uma prova rigorosa para os mesmas,

como hoje. No caso do volume da pirâmide o resultado está correto, mas sem

demonstração. Para se chegar a tal resultado seria necessário o uso de

infinitésimo que conhecemos hoje. Já a área do círculo, não é exatamente o que

conhecemos hoje, mas uma boa aproximação da fórmula atual, Ac = π.r2 , onde pi

(π) assumia o valor 3,16.

Na Mesopotâmia a matemática era superior a do Egito. Eles já tinham

desenvolvido a álgebra , conheciam o teorema de Pitágoras e calculara a

diagonal de um quadrado até a sexta casa decimal. ”Tomavam a área do círculo

geralmente como o triplo da área do quadrado sobre o raio, mas em pelo menos

uma ocasião usaram para pi(π) uma aproximação melhor, 25/8”. (BOYER, 1992,

p.2).

Uma significativa descoberta dos Mesopotâmicos foi o algoritmo iterativo

para achar raiz quadrada. Para o caso da raiz quadrada de 2 o algoritmo era:

Forma geral Cálculo Comentário

a ≅ a1

2 ≅ 1

1ª aproximação da raiz. Chute um número qualquer.

11 a

ab = 2

12

b1 == Correção da 1ª aproximação da raiz.

2b a

a 112

+= 5,1

22 1

a 2 =+

= 2ª aproximação da raiz, através da média aritmética entre a1 e b1.

22 a

ab = ...3333,1

1,52

b2 == Correção da 2ª aproximação da raiz.

2b a

a 223

+= ...4166,1

21,33... 1,5

a3 =+

= 3ª aproximação da raiz, através da média aritmética entre a2 e b2.

33 a

ab = ...41176,1

1,4166...2

b3 == Correção da 3ª aproximação da raiz.

2b a

a 334

+= ...4142,1

21,41176...1,4166...

a3 =+

= 4ª aproximação da raiz, através da média aritmética entre a3 e b3.

... ... ...

Page 16: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

De acordo com o algoritmo acima, podemos afirmar que o valor

aproximado da raiz quadrada de 2 é 1,41. Comparando este resultado com o

valor ....414213562,12 ≅ , podemos atestar que este algoritmo interativo é

um bom processo para achar raiz quadrada aproximada de um número real

positivo.

Page 17: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

2.2. O CÁLCULO NA CIVILIZAÇÃO GREGA

Uma significativa contribuição grega para o Cálculo veio de Eudoxo,

matemático e astrônomo, que viveu no IV século antes de Cristo. Foi ele que

desenvolveu o método da exaustão, que articula os conceitos de infinitésimos.

Se de uma grandeza qualquer subtrai-se uma parte não menor que sua metade, do restante subtrai-se também uma parte não menor que sua metade, e assim por diante, se chegará por fim a uma grandeza menor que qualquer outra predeterminada da mesma espécie.(EVES, 1995, p.419)

Uma das aplicações desse método é para calcular a área do círculo. Para

isto temos de inscrever e circunscrever polígonos regulares no círculo. A medida

que o número de lados aumentam, temos uma convergência para a área real do

círculo.

Para aplicar o método da exaustão é necessário conhecer a fórmula e a

partir daí prova-la, “por si só, não se presta para a descoberta inicial do resultado.

Quanto a esse aspecto, o método de exaustão assemelha-se muito ao princípio

de indução matemática.” (EVES, 1995, p.422).

Em 1906, foi encontrado em Constantinopla um pergaminho contendo uma

cópia de O Método de Arquimedes, uma espécie de carta que o autor escrevera

a Eratóstenes e que se encontrava perdido desde o início de nossa era.

A idéia fundamental do método de Arquimendes, o método de equilíbrio,

para resolver problemas de área ou volume era:

Corte a região correspondente num número muito grande de tiras planas ou de fatias paralelas finas e(mentalmente) pendure esses pedaços numa das extremidades de uma alavanca dada, de tal

Page 18: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

maneira a estabelecer o equilíbrio com uma figura de área ou volume e centróide conhecidos.(EVES, 1995, p.422)

Capítulo 3

O CÁLCULO NO SÉCULO XVII

3.1. O CÁLCULO NO INÍCIO DO SÉCULO XVII

Os pioneiros na formulação de métodos para cálculo de área e volume

foram Eudoxo e Arquimedes. Suas contribuições só foram superadas já próximo

do início do século XVII. Nesse período nomes como o do engenheiro flamengo

Simom Stevin(1548-1620) e o do matemático italiano Luca Valerio(c. 1552-1618)

tentaram evitar a dupla reductio ad absurdum do método de exaustão.

Kepler1 (1571-1630), por sua vez, também desenvolveu idéias relativas a

infinitésimos para calcular a área envolvidas em sua Segunda lei do movimento

planetário que diz que as áreas percorridas pelo raio vetor que une o centro

do planeta ao centro do Sol são iguais em períodos iguais (Figura 2).

1 Johannes Kepler, astrônomo e filósofo alemão, famoso por formular e comprovar as

três leis do movimento planetário, conhecidas como Leis de Kepler.

Figura 2: Trajetória de um planeta

Fonte : COLLETE, 1986, p. 310

Page 19: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Em conseqüência, quanto mais perto o planeta está do Sol, mais rapidamente ele

se move. Para obter tal resultado ele usou procedimentos de integração.

Para Kepler uma circunferência era um polígono regular de um número

infinito de lados. Uma esfera é considerada como formada por uma infinidade de

pirâmides delgadas de vértices no centro da esfera. Como decorrência dessas

considerações, a área da círculo corresponde a uma infinidade de triângulos

delgados, todos de altura igual ao raio do círculo. Portanto, a área do círculo é

igual ao semiproduto da circunferência pelo raio. Do mesmo modo, o volume da

esfera é uma infinidade de pirâmides delgadas de volume iguais a um terço da

área da base pela altura. Logo, o volume da esfera é um terço do produto de sua

superfície pelo raio. Este método ‘atômico’ de resolver problema, “embora

passível de objeções, sob o ponto de vista do rigor matemático, produzem

resultados corretos de maneira bem simples” (EVES, 1995, p.425)

3.2. As contribuições de Newton e Leibniz

Newton e Leibniz não inventaram sozinhos o Cálculo, mas

desempenharam, juntamente com outros matemáticos de sua época, um papel

decisivo nesta área. No meado do século XVII dois grandes problemas

chamavam atenção dos estudiosos:

“em primeiro lugar, o problema das tangentes: determinar as retas tangentes a uma curva dada, o problema fundamental do cálculo diferencial. Em segundo lugar, o problema da quadratura: determinar a área dentro de uma curva dada, o problema fundamental do cálculo integral. “(COURANT, 2000, p.481)

Page 20: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Newton e Leibniz, merecem um destaque especial na história do Cálculo,

pois foram os pioneiros em estabelecer a estreita ligação entre estes dois

problemas. Unificando os novos métodos que se tornaram instrumentos

poderosos da Ciência. Isto foi possível, em parte, graças a nova simbologia e a

geometria analítica de Descarte

Newton, nascido prematuramente em 25 de dezembro de 1642. Foi

educado pelo avó e a conselho do tio foi estudar em Cambridge, em 1661.

“No início do seu primeiro ano ele comprou e estudou um exemplar de Euclides e logo depois leu a Clavis de Oughtred, a Geometria a Renato Des Cartes de Schooten, a Óptica de Kepler, as obras de Viète, e o que talvez tenha sido o amis importante de todas para ele, Arithmetica infinitorum de Wallis. Além disso, a esse estudo devemos acrecentar as aulas que Barrow deu como ‘lucasian professor’, e que Newton assistiu , depois de 1663.” (BOYER, 1979, p.287)

Pelas suas leituras e estudos, deduzimos que muito ele aproveitou de seus

antecessores. Na Inglaterra, ele contou com as influências de John Wallis(1616 –

1703) e Isaac Barrow(1630 - 1677). Durante os anos de 1665 e 1666, devido a

peste, Newton voltou para casa. Este foi um período rico em descobertas, entre

elas destacamos:

• teorema binomial;

• o cálculo;

• a lei da gravidade;

• a natureza das cores.

Em 1669, dois anos após ter retornado a Cambridge para obter o grau de

mestre, sucede o seu professor Isaac Barrow no Trinity Colege, por indicação do

Page 21: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

próprio Barrow, que deixava a cátedra para ser capelão do rei Carlos II, em 1669.

Newton permaneceu nesta função até 1796, quando passou a exerce funções

públicas.

Numa monografia de 1669, que circulou entre amigos e alunos, Newton expôs

suas primeiras idéias sobre o cálculo. Mostrou que a área sob a curva z = paxp-1

(para p∈Q) é y = axp. Este resultado aponta para a integral como o inverso da

derivada.

A grande contribuição de Newton para a Matemática foi o método dos fluxos, o

seu trabalho de Cálculo usando métodos infinitesimais. Segundo Newton, a taxa

de variação de um fluente x é o fluxo de x, e indicou por •

x . Nesta idéia de taxa

de variação, estava a essência da fundamentação do cálculo, a teoria dos

limites, que será desenvolvida quase dois séculos mais tarde.

Gottfrid Wilhelm Leibniz nasceu em Leipzig, filho de um jurista, professor da

universidade local. Graduou-se em Direito em Leipzig e em 1667 obteve o grau de

doutor em Filosofia na Universidade de Altdorf , com uma tese Ars Cominatoria (A

arte das combinações), tentativa ce criar um método universal de raciocínio,

através de uma espécie de cálculo. A sua formação em Matemática ainda era

precária no início de sua carreira como professor de Direito em Altdorf.

Mais tarde, Leibniz veio a exercer, por cerca quarenta anos, a carreira de

diplomata junto a corte de Hanover. A sua primeira missão diplomática foi em

paris, de 1672 a 1676. Foi nesse período que Huygens, que na época morava em

Paris, tornou-se seu orientador em Matemática. Em 1663, fez uma viagem a

Londres, na qual tomou conhecimento da obra de Barrow (professor de Newton)

Page 22: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

e, talvez, da primeira versão do cálculo de Newton. Foi este fato que originou a

controvérsia sobre que foi o inventor do cálculo diferencial e integral. Ele voltou a

Londres em 1676, já nessa época com o desenvolvimento dos principais aspectos

e notação do seu cálculo.

Se para Newton a idéia central cálculo era a de taxa de variação, para Leibniz

era a diferencial. Embora sem dar uma definição precisa, diferencial para Leibniz

era uma diferença entre dois valores infinitamente próximos de uma variável.

Muito mais preocupado do que Newton com a simbologia, fórmulas e regras, ele

criou as notações: dx, dy, ... para as diferencias de x, y, ..., respectivamente. E

num artigo de 1682 estabeleceu regras como :

• da = 0, diferencial de uma constante é zero;

• d(u + v) = du + dv, diferencial da soma;

• d(u . v) = u.dv + v.du, diferencial da soma;

Criou também o símbolo ∫ , um S alongado, para indica a soma de todas as

áreas infinitesimais. Mostrou que ∫ y dx corresponde a uma área e que d ∫ y dx

= y dx, apresentando d com inverso de ∫ .

Newton e Leibniz seguiram linhas diferentes na criação do cálculo. Apesar da

polêmica que perdura ao longo da história, o uso de caminhos diferentes para

obtenção de uma mesma teoria, indica que foi dois desenvolvimentos

independes.

O século seguinte (sec. XVIII) as descobertas de Newton e Leibniz, os

esforços dos matemáticos se concentraram no desenvolvimento e nas aplicações

do cálculo. Os matemáticos mais importantes desse período foram:

os membros da família Bernoulli, em especial Jonhann Bernoulli(1667 – 1748).

Page 23: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Euler (1707 – 1783)

Lagrange (1736 –1813)

Laplace (1749 –1827)

A atividade científica do século XVIII “centrava-se geralmente nas academias,

das quais se destacavam as de Paris, Berlim e Sampeterburgo. O ensino

universitário desempenhava um papel menor ou mesmo nulo” (STRUIK, 1989,

p.191). Politicamente, é a era do déspotas esclarecidos: Frederico-o-Grande;

Catarina-a-grande; Luis XV e Luis XVI, que governava os principais estados

europeus. Alguns destes déspotas, rodeavam-se de homens cultos.

“Este prazer era uma espécie de snobismo intelectual, temperado por uma certa compreensão do papel importante que as ciências naturais e as matemáticas aplicadas desempenhavam na modernização das manufaturas e no aumento de eficácia da força militar.” (STRUIK, 1989, P.192)

Muitos trabalhos dessa época são ricos em aplicações da matemática a

questões do exército e a marinha, por exemplo, os de Euler.

Os 150 anos seguintes a época de Newton e Leibniz, progrediu-se muito

pouco na fundamentação do Cálculo, na busca do rigor. A confiança no Cálculo

derivava da sua eficácia para resolver problemas. Somente no século XIX, graças

aos esforços de Augustin–Louis Cauchy (1789–1857) e Karl Weierstrass (1815–

1897), que o assunto seria fundamentado com rigor.

Page 24: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

CONCLUSÃO

Nada no universo escapa à mudança. As plantas e os animais crescem

com o passar do tempo. A água dos rios e dos mares estão em constante

movimento. A Lua gira em torno da Terra, a Terra gira em torno do Sol

juntamente com os demais planetas e o Sol movimenta-se levando consigo os

planetas e seus respectivos satélites. Até as rochas, sobre o efeito da variação de

temperatura, dilatam-se ou se contrai. Tudo aumenta ou diminui, esquenta ou

esfria, muda de posição, de cor, de composição. Nada é permanente.

O processo de mudança é inerente as leis da natureza. É por isso, a

sobrevivência do homem depende da compreensão das variações que ocorre no

meio ambiente. Matematicamente, esta compreensão só ocorreu a partir do

século XVII, com a invenção do Cálculo Diferencial e Integral.

O cálculo, historicamente aqui apresentado, pode ser entendido como o

ramo da matemática que trata de variação. Esta característica o tornou uma

disciplina aplicada a diferentes área do conhecimento. Com a sua invenção foi

possível a analisar minuciosa e quantitativa os movimentos e mudanças, elaborar

as leis fundamentais das Ciências. As grandes invenções, que desfrutamos

atualmente, tem um débito com o calculo: seja ela uma espaçonave; uma ponte;

um avião; um míssil ou um aparelho de televisão.

Page 25: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

Acompanhado a história da Matemática, constatamos que o Cálculo

Diferencial e Integral não surgiu já pronto e acabado e da cabeça de um só

homem. O cálculo, assim como outras teorias matemáticas, teve uma história e

um longo desenvolvimento, que iniciou-se na antigüidade e estendeu-se até os

tempos modernos. No entanto, dois nomes se destacam ao longo dessa história:

Newton e Leibniz.

As aplicações, tornaram o cálculo uma disciplina indispensável para a

formação do científica do homem contemporâneo. Os conhecimentos adquiridos

num curso de Cálculo Diferencial e Integral, capacita-nos a analisar e resolver

uma diversidade de problemas. Conhecer a sua história e seu desenvolvimento é

participar da sua reconstrução, enquanto conhecimento científico e conhecer o

seu valor para a Educação Matemática do nossos dias.

Page 26: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

BIBLIOGRAFIA

ALMEIDA, Fernando José de. Educação e Informática: os computadores na

escola. São Paulo: Cortez, 1988, 103 p.

BARON, Margareth E. Curso de história da Matemática: origens e

desenvolvimento do cálculo. Brasília: UNB, 1985. 5 v. 298 p.

BICUDO, Maria A. V. Pesquisa em Educação Matemática: concepções &

perspectivas. São Paulo: UNESP, 1999. 313 p.

BOYER, Carl B. História da matemática. São Paulo: Edgard Blücher, 1978.

488 p.

COLLETTE, Jean-Paul. História de las Matemáticas. México: Siglo XXI, 3ª

edição, 1986. 347 p.

COURANT, Richard. O que é matemática?. Rio de Janeiro: Ciência Moderna,

2000. 621 p.

EVES, Howard. Introdução à história da matemática. São Paulo, Campinas:

UNICAMP, 1995. 845 p.

LARSON, Roland E. Cálculo com aplicações. Rio de Janeiro: LTC, 1998. 711 p.

LEVY, P. As tecnologias da inteligência: o futuro do pensamento na era da

informática. São Paulo: Editora 34, 1999. 203 p.

Page 27: A ORIGEM DO CÁLCULO DIFERENCIAL E INTEGRAL CATININ DE SOUZA.pdf · universidade candido mendes prÓ-reitoria de planejamento e desenvolvimento diretoria de projetos especiais projeto

MACHADO, Nilson J. Matemática e educação: alegorias, tecnologias e temas

afins, São Paulo: Cortez, 1992, 120p.

______________.Epistemologia e didática: as concepções de conhecimento

e inteligência e a prática docente. São Paulo: Cortez, 1995. 320 p.

SIMMENS, George F. Cálculo com geometria analítica. São Paulo: McGraw-

Hill, 1987. 829 p.

STRUIK, Dirk J. História concisa da Matemática. Lisboa: Gradiva, 1989. 360p.