PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao...

80
PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO HORIZONTAL Ruan Arthur Mascarenhas Sousa Teixeira RIO DE JANEIRO, RJ - BRASIL ABRIL DE 2016 Projeto de Graduação apresentado ao Curso de Engenharia Mecânica da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro. Orientador: Prof. Flávio de Marco Filho; DSc

Transcript of PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao...

Page 1: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO HORIZONTAL

Ruan Arthur Mascarenhas Sousa Teixeira

RIO DE JANEIRO, RJ - BRASIL

ABRIL DE 2016

Projeto de Graduação apresentado ao Curso de

Engenharia Mecânica da Escola Politécnica,

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Engenheiro.

Orientador: Prof. Flávio de Marco Filho; DSc

Page 2: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador
Page 3: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

i

Teixeira, Ruan Arthur Mascarenhas Sousa Teixeira

Projeto de Protótipo de Turbina Eólica de Eixo Horizontal /

Ruan Arthur Mascarenhas Sousa Teixeira – Rio de Janeiro: UFRJ

/ Escola Politécnica, 2016.

73 p.: il.; 29,7 cm

Orientador: Flávio de Marco Filho, D. Sc.

Projeto de Graduação – UFRJ / Escola Politécnica / Curso de

Engenharia Mecânica, 2016

Referências Bibliográficas: p. 52

1. Aerogerador. 2. Turbina Eólica. 3. Energia. 4. Protótipo.

I. Filho, Flávio de Marco. II. Universidade Federal do Rio de

Janeiro, Escola Politécnica, Curso de Engenharia Mecânica. III.

Projeto de Protótipo de Turbina Eólica de Eixo Horizontal.

Page 4: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

ii

Resumo do Projeto de Graduação apresentado à Escola Politécnica/ UFRJ como parte

dos requisitos básicos necessários para a obtenção do grau de Engenheiro Mecânico.

Projeto de Protótipo de Turbina Eólica de Eixo Horizontal

Ruan Arthur Mascarenhas Sousa Teixeira

Abril 2016

Orientador: Flávio de Marco Filho

Curso: Engenharia Mecânica

À medida que crescem a demanda por energia elétrica e a preocupação com o meio

ambiente, torna-se cada vez mais comum a procura por maneiras de geração sustentável

e limpa de energia elétrica. A fonte de energia eólica possui um grande atrativo em seu

uso, pois se enquadra nos padrões descritos além de ser economicamente viável. Este

trabalho tem o objetivo de apresentar o projeto de um protótipo de aerogerador de

pequeno porte de eixo horizontal tratando dos detalhes de dimensionamento e seleção de

seus principais componentes.

Palavras-chave: Aerogerador, Turbina Eólica, Energia, Protótipo.

Page 5: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

iii

Abstract of Undergraduate Project presented to POLI/UFRJ as a partial fulfillment of the

requirements for the degree of Engineer.

DESIGN OF A HORIZONTAL-AXIS WIND TURBINE PROTOTYPE

Ruan Arthur Mascarenhas Sousa Teixeira

April/2016

Advisor: Flávio de Marco Filho

Course: Mechanical Engineering

As the demand for enegy and concern for the environment grow, it becomes increasingly

common to search for ways to generate sustainable and clean energy. Wind power has a

great value in its use, as it fits the described standards in addition to being economically

viable. This work aims to present the project of a horizontal axis wind turbine prototype

regarding the details of designing and selecting of its main components.

Page 6: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

iv

1. Introdução ............................................................................................................... 1

2. Energia Eólica ......................................................................................................... 2

2.1. Formação dos Ventos ......................................................................................... 2

2.2. Histórico do Aproveitamento da Energia Eólica ............................................... 5

2.3. Cenário Nacional ............................................................................................... 7

3. Aerogeradores ....................................................................................................... 10

3.1. Turbinas Eólicas de Eixo Vertical ................................................................... 10

3.2. Turbinas eólicas de Eixo Horizontal ................................................................ 11

3.3. Turbinas Eólicas de Pequeno Porte.................................................................. 13

4. Fundamentos teóricos .......................................................................................... 15

4.1. Potência disponível .......................................................................................... 15

4.2. Potência Aproveitável – Constante de Betz ..................................................... 17

5. Projeto.................................................................................................................... 21

5.1. Principais componentes ................................................................................... 21

5.2. Dados de Projeto .............................................................................................. 22

5.3. Pás .................................................................................................................... 23

5.3.1. Escolha do perfil ....................................................................................... 23

5.3.2. Comprimento da Corda ............................................................................ 28

5.3.3. Torção da pá ............................................................................................. 30

5.3.4. Haste da Pá ............................................................................................... 32

5.4. Bosso ................................................................................................................ 35

5.5. Freio ................................................................................................................. 36

5.6. Multiplicador ................................................................................................... 37

5.7. Gerador ............................................................................................................ 38

5.8. Eixo .................................................................................................................. 38

5.9. Chavetas ........................................................................................................... 44

5.10. Rolamentos ................................................................................................... 45

5.11. Acoplamento ................................................................................................ 47

5.12. Torre ............................................................................................................. 47

5.13. Cilindro Hidráulico ...................................................................................... 54

6. Conclusão .............................................................................................................. 56

7. Referências Bibliográficas ................................................................................... 57

Anexo I – Porca de Segurança KMFE 6 ..................................................................... 58

Anexo II – Freio Mayr ROBA-STOP 100/891 ........................................................... 59

Anexo III – Multiplicador WEG C51217 ................................................................... 61

Anexo IV – Gerador WEG Premium ......................................................................... 62

Anexo V – Inversor ....................................................................................................... 63

Page 7: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

v

Anexo VI – Rolamento SKF 22208 EK ....................................................................... 64

Anexo VII – Mancal SKF SE 508 ................................................................................ 65

Anexo VIII – Acoplamento ROBA-ES 28/940 ........................................................... 66

Anexo IX – Dimensões padrão de tubos de aço ......................................................... 67

Anexo X – Padrão de Flanges ...................................................................................... 68

Anexo XI – Cilindro Hidráulico – Camisa 100 Eurohidraulics ............................... 69

Page 8: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

1

1. Introdução

Atualmente, é notório o impacto ambiental causado pela utilização em grande

escala de combustíveis fósseis para geração de energia. Dessa maneira, em todo o mundo,

a procura por fontes alternativas de energia e economicamente competitivas tem

aumentado significativamente.

O momento em que vivemos apresenta, de forma cada vez mais crescente, a grande

procura por fontes alternativas de energia. Analisando-se o cenário brasileiro, é possível

observar que o tipo de energia alternativa que vem mostrando maior crescimento é a

eólica.

Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a

elaboração de um projeto de aerogerador de eixo horizontal de pequeno porte, a ser

utilizado como alternativa para a microgeração de energia elétrica, contribuindo para o

desenvolvimento sustentável.

O capítulo 2 deste trabalho oferece uma explanação geral a respeito da energia

eólica, explicando os inúmeros processos de formação do vento em nosso planeta; um

breve resumo histórico do aproveitamento da energia eólica até as condições atuais e

como se encontra o cenário nacional.

O capítulo 3 oferece uma breve explicação e descrição dos tipos de aerogeradores

existentes e utilizados atualmente.

O capítulo 4 fornece conceitos teóricos a respeito de como é aproveitado a energia

dos ventos pelos aerogeradores de eixo horizontal e suas limitações.

O capítulo 5 lista os componentes do aerogerador e descreve detalhadamente como

cada um deles foi projetado ou selecionado.

O capítulo 6 é reservado para conclusões e considerações finais deste projeto.

Page 9: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

2

2. Energia Eólica

2.1. Formação dos Ventos

A energia eólica, assim como diversas outras, é, muitas vezes, considerada, uma

forma indireta de aproveitamento da energia solar. Tal argumento se justifica, pois os

ventos são causados pelo aquecimento diferenciado da atmosfera terrestre.

Esse aquecimento não uniforme da atmosfera acarreta em regiões da atmosfera com

densidade diferenciada, gerando gradientes de pressão e assim formando o que

conhecemos como vento. Algumas causas para o aquecimento diferenciado da atmosfera

terrestre se dá, principalmente, pela orientação dos raios solares e pelos próprios

movimentos da Terra. Em escala global, o vento possui comportamento geral bem

definido e seu movimento forma áreas de circulação denominadas células.

A Figura 1 ilustra a localização e comportamento de cada célula.

Figura 1 – Células de Hadley, Ferrel e Polar

Page 10: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

3

A primeira célula é chamada de Hadley, a qual ocorre nas regiões próximas do

Equador. Pelo fato de receber muito calor emitido pelo Sol, o ar aumenta de temperatura

e, por tornar-se menos denso, adquire um movimento de ascensão. Como consequência,

em virtude da diferença de pressão ocasionada pela subida de ar quente, o ar frio de

regiões próximas desloca-se paralelamente à superfície para ocupar o espaço aberto. Esse

movimento forma a camada inferior das células de Hadley.

O ar presente na alta atmosfera inicia seu percurso em direção aos pólos, até que a

combinação entre baixa temperatura e alta densidade seja suficiente para provocar um

movimento de descida de volta à superfície terrestre.

De volta ao nível superficial, a porção de ar que segue em direção ao Equador fecha

o ciclo da célula de Hadley.

A segunda célula é a Polar, a qual, de forma análoga, apresenta uma tendência de

movimento de ar frio descendente presente na alta atmosfera dos pólos, com posterior

trajetória paralela à superfície terrestre em direção ao Equador.

Esta trajetória, por sua vez, é interrompida pelo aumento da temperatura e redução

da densidade do ar, ocasionando um movimento ascendente, até que parte dele volte a se

dirigir aos pólos, finalizando o ciclo da célula Polar.

A terceira e última célula é chamada de Ferrel, ou Meridional Média, a qual possui

circulação termodinamicamente indireta, uma vez que representa transporte de ar de uma

região mais fria para uma mais quente.

Essa célula é um subproduto do transporte de ar das demais células, formada pela

porção de ar que vai em direção aos pólos por meio da célula Hadley e pela porção de ar

que vai em direção ao Equador por meio da célula Polar. Assim, de forma grosseira, a

célula de Ferrel é, muitas vezes, comparada a uma engrenagem acoplada às outras duas

células, garantindo equilíbrio ao fluxo do vento.

Page 11: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

4

De forma a completar a descrição dos mecanismos de formação dos ventos, é

preciso levar em consideração o próprio movimento de rotação da Terra. Este modifica o

sentido dos ventos no interior das células e acrescenta componentes leste-oeste ao

movimento, formando os ventos Alísios, Orientais e Polares Ocidentais.

A Figura 2 ilustra o comportamento descrito.

Figura 2 – Circulação Global

Somados a esses efeitos, que ocasionam fluxos de vento em escala planetária,

existem também outros fatores que dão origem aos ventos que sopram em escalas mais

localizadas. Entre tais fatores, podem ser destacados os seguintes:

� Aquecimento heterogêneo do solo e da água, provocando:

• Brisas diurnas, que sopram da terra para as massas de água;

• Brisas noturnas, que sopram das massas de água para a terra.

� Presença de variações significativas de relevo suficientes para resultar em

redirecionamento de fluxos de ar.

Page 12: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

5

2.2. Histórico do Aproveitamento da Energia Eólica

Acredita-se que o início da utilização da energia proveniente do vento deu-se por

volta do ano de 2800 a.C., quando os egípcios teriam começado a fazer uso de velas para

ajudar a força dos remos a conduzir seus barcos. Os primeiros registros do aproveitamento

da energia do vento por meio de cata-ventos remetem à Pérsia, em torno de 200 a.C., onde

eram utilizados na moagem de grãos e eram constituídos de eixo ver tical. Após as

Cruzadas, a partir do Século XI, os cata-ventos foram inseridos na Europa, momento em

que se deu início ao processo evolutivo da energia eólico como recurso.

Foram desenvolvidos os moinhos dotados de eixo horizontal com hélices, bastante

comuns nos campos ingleses e holandeses, espalhando-se posteriormente para outros

pontos do continente.

Os moinhos começaram a ter suas funções diversificadas a partir do século XVI,

como acionamento de ferramentas de serraria, produção de óleo vegetais, entre outras.

De fato, na Holanda, entre os séculos XVII e XIX, a utilização de moinhos em grande

escala estava amplamente relacionada com a drenagem de terras. A utilização mais

empregada dos moinhos de vento foi, sem dúvida, para bombeamento de água, sobretudo

em lugares mais ermos.

Em 1888, com o desenvolvimento de geradores elétricos no século XIX, foi

utilizado pela primeira vez um cata-vento para geração de energia elétrica. O primeiro

aerogerador foi construído por Charles F. Brush e consistiu na adaptação a partir de um

moinho. Posicionado sobre uma torre com 18 metros de altura e dotado de 144 pás, seu

rotor possuía 17 metros de diâmetro e fornecia 12 kW de potência.[1] A Figura 3 mostra

uma foto do aerogerador de Brush.

Page 13: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

6

Figura 3 - Aerogerador de Charles F. Brush

A primeira turbina eólica a gerar energia eólica ligada à rede elétrica foi

desenvolvida na Rússia. Em 1931, o aerogerador Balaclava, como veio a ser denominado,

constituiu a primeira tentativa bem sucedida de conexão, por meio de uma linha de

transmissão de 6,3 kV de 30 km, entre um aerogerador de corrente alternada com uma

usina termelétrica.[2]

O modelo contava com uma potência nominal de 100 kW e apresentou um Fator

de Capacidade médio de 32%.

Na década de 1970, com a escassez de reservas de combustíveis fósseis e/ou

carência de tecnologia apropriada e economicamente viável para sua exploração,

percebeu-se a necessidade de busca de fontes alternativas de energia e o interesse

comercial por aerogeradores de grande porte se intensificou.

Page 14: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

7

2.3. Cenário Nacional

No Brasil, o aproveitamento da energia eólica teve seu início em 1992, quando

seu primeiro aerogerador começou a operar comercialmente. Durante toda a década

seguinte, no entanto, os avanços na exploração da componente eólica de energia foram

modestos e sem sinal de sua consolidação como alternativa para geração de energia do

país.[3]

Foi apenas em 2002, com a criação do PROINFA – Programa de Incentivo às

Fontes Alternativas –, que evidenciou-se um desenvolvimento real da indústria eólica no

Brasil. Surgindo com o objetivo de diversificar a matriz energética brasileira, o programa

garantiu a compra, mesmo a preços elevados, de energia proveniente de fontes

alternativas.

Além de incentivar o desenvolvimento das fontes renováveis em geral na matriz

energética, o programa, com a contratação de mais de 1400 MW de energia eólica no

Brasil, também contribuiu para a fixação da indústria de turbinas eólicas e seus

componentes em território nacional

No final de 2009, ocorreu o Segundo LER – Leilão de Energia de Reserva –,

primeiro leilão de comercialização de energia direcionado à fonte eólica de maneira

exclusiva. A energia contratada no LER, conforme sua nomenclatura sugere, é destinada

para utilização como reserva de Garantia Física ao sistema elétrico. Por este motivo, o

LER contrata um volume de energia além do estimado para suprir a demanda do país.

Os bons resultados do referido leilão, com a contratação de quase 2,0 GW de

potência instalada em projetos eólicos, permitiram a realização de novos leilões nos anos

subsequentes, tais como o LFA – Leilão de Fontes Alternativas – em 2010 e o Terceiro

LER em 2011. [4]

Page 15: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

8

Juntamente com o interesse em exploração do recurso eólico brasileiro, cresce

também o desenvolvimento da indústria de turbinas eólicas e seus componentes. Isso

provocou a redução no custo de implantação, permitindo a comercialização da energia

eólica a preços mais competitivos.

De fato, o crescimento da importância da energia eólica no Brasil presente até os

dias de hoje, pode ser demonstrado pela evolução da potência instalada. A Figura 4 mostra

essa evolução, levando em consideração também, energia já comercializada em leilões,

com previsão de entrega até 2019, bem como energia comercializada no ACL – Ambiente

de Contratação Livre.

Figura 4 - Evolução da Capacidade Instalada em projetos eólicos no Brasil.[3]

A Tabela 1 apresenta o tipo de contratação referente ao disposto no gráfico anterior.

Page 16: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

9

Tabela 1 - Detalhamento do tipo de Contratação da energia eólica.[3]

Leilão Potência Instalada [MW] Número de Parques PROINFA 1303,7 53 LER 2009 1904,8 71 LER 2010 545,2 20 LFA 2010 1525,3 50 LER 2011 861,4 34 A-3 2011 1055,1 44 A-5 2011 1024,8 41 A-5 2012 249,6 9 LER 2013 1503,5 66 A-3 2013 867,6 39 A-5 2013 2337,8 97 A-3 2014 551,0 21 LER 2014 769,1 31 A-5 2014 926,0 36 LFA 2015 90,0 3 A-3 2015 538,8 19 LER 2015 548,2 20

ACL 815,0 40

Hoje, o Brasil conta com uma capacidade instalada de quase de 9,0 GW

distribuídos em 360 projetos eólicos ao redor do país com a qual se estima um total de

emissão de CO2 evitado superior a 15,5 milhões de toneladas por ano. [3]

Page 17: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

10

3. Aerogeradores

3.1. Turbinas Eólicas de Eixo Vertical

Caracterizam-se pela disposição do eixo de rotação. Neste tipo de aerogerador, o

eixo se encontra disposto na vertical, isto é, perpendicular à direção do vento de

incidência.

Podendo ser acionada por forças de sustentação ou de resistência aerodinâmica,

este tipo de turbina tem como principal vantagem a capacidade de manter seu

funcionamento integral independentemente da direção do vento, devido à orientação de

seu eixo.

A Figura 5 ilustra exemplos deste tipo de aerogerador.

Figura 5 - Aerogeradores de eixo vertical

Além de não necessitarem de nenhum tipo de mecanismo de orientação, que

potencialmente encarecem o projeto, este tipo de disposição do eixo é vantajoso, pois

requer estruturas de sustentação mais simples.

Page 18: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

11

A principal desvantagem desse tipo de turbina é a fraca potência desenvolvida por

unidade de área de captação de vento. Em geral, essa categoria utiliza perfis simétricos

que são menos eficientes comparados aos perfis arqueados utilizados nas turbinas de eixo

horizontal. Além disso, também possuem arranque “forçado”, isto é, necessitam de um

impulso inicial externo ao sistema para dar início ao seu funcionamento. Isso se dá por

normalmente se localizarem junto ao solo, onde as velocidades de vento são mais baixas.

3.2. Turbinas eólicas de Eixo Horizontal

São as mais utilizadas hoje em dia por desenvolverem maior força e potência por

unidade de área de captação do vento.

Em geral, possuem melhor rendimento que as turbinas com eixo vertical e são

capazes de alcançar velocidade de rotação mais elevadas.

Diferentemente das turbinas com eixo vertical, estas máquinas são

predominantemente acionadas por forças de sustentação e devem possuir mecanismos de

orientação capazes de garantir a permanência do rotor em posição perpendicular à direção

do vento. Em turbinas de grande porte, esses mecanismos são compostos por medidores

de velocidade e direção do vento, sistemas de controle de posição e atuadores elétricos.

A principal vantagem desse tipo de turbina está no fato de tirarem proveito de

velocidade de vento mais elevadas, uma vez que se localizam no alto de torres com várias

dezenas de metros de altura.

Tem-se como desvantagem, do ponto de vista operacional, a dificuldade no

transporte e instalação destas máquinas devido às suas grandes dimensões.

Page 19: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

12

A Figura 6 ilustra esse tipo de aerogerador.

Figura 6 - Aerogerador de eixo horizontal

Neste tipo de turbina é possível posicionar a torre a jusante ou a montante da

nacele. A figura 7 exemplifica os casos.

Figura 7- a) Configuração com rotor a montante. b) Configuração com rotor a jusante

Para rotores a jusante, existe a desvantagem de efeito esteira produzida pela torre,

tendo como consequência o fato das pás, a cada rotação, serem submetidas a seu efeito.

Além de aumentar as perdas aerodinâmicas, comprometendo, dessa maneira, a produção

Page 20: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

13

de energia da máquina, a esteira produzida pela torre representa uma carga periódica,

causando vibração, podendo levar ao comprometimento da integridade das pás por fadiga.

Além disso, a passagem das pás sobre a esteira produzida pela torre também se

torna uma fonte de ruído [5].

Para rotores a montante, o efeito esteira é causado pelas pás, causando efeitos

vibratórios na torre.

3.3. Turbinas Eólicas de Pequeno Porte

Atualmente, existem muitos exemplos de turbinas de pequeno porte, seja

desenvolvidos por universidades, ou por empresas com fins comerciais.

Este tipo de turbina eólica classifica-se pelo seu diâmetro e pela potência que

desenvolve, variando de poucos Watts até 10 kW.

Neste tipo de aerogerador, a orientação do rotor à direção do vento pode ocorrer

também pelo mesmo mecanismo descrito para turbinas de grande porte. No entanto, O

mecanismo mais utilizado é o leme, devido ao pequeno porte dos elementos envolvidos.

Em alguns casos, inclusive, é preferível optar pela não utilização do sistema de

orientação do rotor, visando simplificar e, consequentemente, reduzir custos do projeto.

Esta opção costuma ser utilizada em locais onde a direção do vento apresenta pouca

variação, isto é, quando se evidencia claramente uma direção predominante de vento,

como é o caso da maioria dos locais com potencial eólico relevante do Brasil.

A figura 8 ilustra este tipo de aerogerador.

Page 21: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

14

Figura 8 - Aerogeradores de pequeno porte

Este tipo de turbina eólica, ao redor do mundo, é utilizado majoritariamente para

complementação do sistema principal de energia de uma determinada casa ou instalação

Page 22: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

15

4. Fundamentos teóricos

4.1. Potência disponível

Turbinas eólicas são equipamentos de conversão de energia, utilizadas para

aproveitar a força oriunda dos ventos para gerar eletricidade. A capacidade do rotor em

converter a maior parcela possível de energia eólica da massa de ar que flui através da

área varrida por suas pás é resultado direto de suas propriedades aerodinâmicas.

A Figura 9 ilustra a concepção básica de uma turbina eólica de eixo horizontal.

Figura 9 - Concepção básica de uma turbina eólica

A energia cinética � contida em uma determinada massa � de ar que atravessa a

área � da turbina eólica é dada pela equação a seguir.

� = 12 ���

Page 23: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

16

Onde � representa a velocidade do vento a montante do aerogerador. Derivando-

se a equação anterior com relação ao tempo, temos uma relação para a Potência disponível

no vento:

�� ������ = 12 �� �

Onde �� é o fluxo de massa de ar por unidade de tempo.

Levando-se em consideração um volume de controle cilíndrico, o fluxo da massa

de ar pode ser dado por:

�� = ����

Onde � representa a densidade do ar. Combinando as equações acima, temos:

�� ����� = 12 �����

A expressão apresentada é referente à potência disponível total na massa de vento

estudada. Uma parcela considerável dessa energia não é, de fato, aproveitável, devido ao

fato de que o vento sempre apresenta uma velocidade residual, com a qual afasta-se do

rotor.

De fato, define-se o parâmetro �� denominado Coeficiente de Potência, como:

�� = �������� �����

Page 24: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

17

O parâmetro �� expressa diretamente a porcentagem da potência extraída pela

turbina eólica, comparada com a potência total disponível na massa de vento que passa

pela área do rotor..

4.2. Potência Aproveitável – Constante de Betz

O modelo desenvolvido por Albert Betz pode ser usado para determinar o

funcionamento e a potência de um rotor ideal. O modelo admite um volume de controle,

cujas fronteiras são as superfícies de um tubo de fluxo e duas seções transversais do

referido tubo. [5] e [6]

A Figura 10 ilustra esse modelo.

Figura 10 - Fluxo de vento através de um disco atuador

Page 25: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

18

É possível verificar que a turbina é representada por um disco atuador, que gera

uma descontinuidade na pressão do ar escoando no interior do tubo de fluxo. Aplicando-

se a equação de Bernoulli nos pontos imediantamente antes e depois do rotor, temos:

�� + 12 ��� = � + 12 �

� − ∆� + 12 � = �� + 12 � �

Somando as equações, temos:

∆� = 12 �#�� − �$

Alternativamente, é também possível calcular a queda na presão pelo balanço de

momento da massa de ar que passa pelo disco atuador. Isto é, pela segunda lei de Newton,

temos:

∆� = � #�� − �$

Combinando as duas equações anteriores, calcula-se o valor da velocidade de vento

no disco atuador:

= 12 #�� + �$

Ou seja, a velocidade de vento no disco atuador é a média aritmética das

velocidades a montante e a jusante do volume de controle.

Page 26: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

19

Modelando a velocidade no disco atuador em função da velocidade a montante,

obtem-se:

= ��#1 − &$

,onde & representa a perda de velocidade de vento. Da mesma forma, vem:

� = ��#1 − 2&$

A expressão referente à queda de pressão ∆� pode ser reescrita conforme segue:

∆� = ���#1 − &$��#1 − 1 + 2&$ → ∆� = 2���&#1 − &$

Desta maneira, pode-se estabalecer a relação para a Potência Extraída a seguir:

������í�� = (. = ∆��. = 2�����&#1 − &$

Reescrevendo a definição do Coeficiente de Potência, chega-se à relação:

�� = 2�����&#1 − &$� ����� → �� = 4&#1 − &$

De maneira a obter o máximo valor possível de �� com relação ao parâmetro &,

deriva-se a relação anterior e chega-se à expressão:

Page 27: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

20

+��+& = 4#1 − &$#1 − 3&$ = 0 →

→ & = 13 → �� = 1627 ~ 59,3 %

Este limite, denomina-se Coeficiente de Betz #�5$, a partir do qual é definida a

Potência máxima aproveitável contida na massa de ar estudada:

������ ��� = �5 12 �� �

Page 28: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

21

5. Projeto

5.1. Principais componentes

Um esquema simplificado dos principais componentes de uma turbina eólica são

apresentados na Figura 11.

Figura 11 - Principais compenentes da turbina eólica de eixo horizontal

Os principais componentes de um aerogerador de eixo horizontaç são:

• Conjunto Rotor-Bosso/Cubo: O rotor é formado pelas pás e o bosso/cubo é

o elemento de fixação das pás e de transmissão de movimento aos eixos.

• Multiplicador: Caixa de engrenagens com o objetivo de elevar a velocidade

angular para a velocidade ótima para funcionamento do gerador.

• Gerador: Equipamento responsável por converter energia mecânica em

energia elétrica.

• Eixo de baixa e alta rotação: Respectivamente, são os eixos de entrada e

saída do multiplicador. Em alguns casos, é evidenciada a inexistência de

eixo de alta rotação, devido à utilização de motorredutor, isto é, gerador

Page 29: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

22

acoplado diretamente ao multiplicdor. De fato, este é o caso abordado neste

projeto.

• Freio: Elemento de segurança com função de interromper o movimento dos

demais componentes em casos de velocidade de vento superior ao nível

considerado crítico de projeto.

• Nacele: Componente onde ficam situados o multiplicador, gerador, eixos,

freio e mancais. Este elemento tem a função de abrigar e proteger os

referidos equipamentos.

• Torre: Elemento estrutural, cuja função é sustentar os demais componentes

e situar o rotor à altura definida em projeto.

5.2. Dados de Projeto

Como ponto de partida, foram estabelecidos os parâmetros iniciais do projeto

juntamente com o orientador. Os parâmetros iniciais estabelecidos foram:

• Velocidade nominal do vento (��): 8 m/s

• Diâmetro do Rotor (7): 2 m

• Número de pás (8): 3

• Altura da torre (9): 12 m

A partir dos dados fornecidos, calculou-se a Potência Aproveitável pela turbina

eólica a ser projetada:

������ ��� = �5 12 ����� ������ ��� = 583,8 ;

Page 30: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

23

Levando-se em consideração que os aerogeradores modernos tem seu Coeficiente

de Potência �� dentro de uma faixa entre 35% e 45%,a estimou-se que a Potência

Nominal do aerogerador será:

� = �� 12�� � � 443,3;

De acordo com os valores encontrados, é realizado o projeto dos componentes do

aerogerador.

5.3. Pás

5.3.1. Escolha do perfil

O primeiro passo no projeto das pás foi a escolha do perfil a ser utilizado. A Figura

12 apresenta a nomenclatura dos elementos básicos do perfil.

Figura 12 - Nomenclatura dos elementos básicos do perfil

O perfil escolhido faz parte da família de aerofólios NACA de quatro dígitos, que

foi utilizado por sua simplicidade e confiabilidade.

Os quatro dígitos definem o perfil da seguinte maneira:

• O primeiro dígito descreve a máxima curvatura como porcentagem da

corda. Atribuir valor igual a 0 para o primeiro dígito equivale a definir um

perfil simétrico.

Page 31: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

24

• O segundo dígito dá a localização do ponto de máxima curvatura com

relação à extremidade dianteira em dezenas de porcentagem do

comprimento da corda.

• Os dois últimos dígitos representam a espessura máxima em porcentagem

do comprimento da corda.

Para escolher adequadamente o perfil a ser utilizado, foram analisadas as forças de

sustentação e arrasto que agem sobre a pá.

Figura 13 – Componentes de esforços na pá

Na Figura 13, são definidas as seguintes variáveis:

< � �� → Velocidade do Vento

Ω → Velocidade angular do rotor.

; → Velocidade do vento relativa à pá.

> → Ângulo de ataque.

? → Ângulo de torção da pá.

@ → Ângulo de incidência da velocidade ;, com relação ao plano de rotação.

A → Força de Sustentação.

7 → Força de Arrasto.

Page 32: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

25

São introduzidos também as projeções das forças de Sutentação e Arrasto nas

direções paralela e perpendicular ao plano de movimento.

(BCç& �&C&EFE& = (� = A sin @ − 7 cos @

(BCç& �FC�FL+MNOE&C = ( = A cos @ + 7 sin @

A Força (� é responsável pelo torque nas pás, enquanto que a Força (, por incidir

perpendicularmente ao plano de rotação, não contribui com o movimento do rotor. Por

outro lado, a Força (, impacta diretamente nos esforços a serem suportados na fixação

das pás.

As forças de sustentação e arrasto podem ser calculadas pelas seguintes fórmulas:

PA = 12 �;N��PC

P7 = 12 �;N��PC

Onde:

�� → Coeficiente de Sustentação

�� → Coeficiente de Arrasto

N → Comprimento da corda da pá

PC → Diferencial da distância do ponto considerado até o centro do rotor.

As fórmulas anteriores permitem a integração ao longo do comprimento da pá para

determinação da força total de sustentação e arrasto.

Foi utilizado o software livre QBLADE para cálculo desses parâmetros. Como

alternativa às simulações CFD, que são custosas e demandam tempo, o software utiliza

ferramentas baseadas no método BEM (Blade Element Momentum). Por esse motivo, o

programa possui a limitação de não ser capaz de modelar comportamentos viscosos, o

que, para o propósito deste trabalho, foi interpretado como aceitável e os resultados foram

considerados confiáveis e satisfatórios.

Page 33: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

26

O software apresenta como resultados, gráficos dos parâmetros aerodinâmicos em

função do ângulo de ataque. Após análise de diversos perfis, foi selecionado o perfil

NACA 4618, por apresentar coeficiente de sustentação compatível com o propósito do

projeto e relação sustentação/arrasto elevada.

A Tabela 2 a seguir apresenta alguns perfis estudados e os resultados obtidos.

Tabela 2 - Perfis estudados e resultados obtidos

Perfil > �� ��/�� NACA4415 10° 1,413 46,73 NACA4418 12° 1,447 35,68 NACA4420 6° 1,002 31,58 NACA4618 8° 1,262 48,93 NACA5618 8° 1,345 48,82

Na Tabela 2, > representa o ângulo de ataque correspondente à máxima relação

CS/CT. Pode-se verificar que o perfil que apresenta melhor relação ��/�� é o NACA4618

com um ângulo de ataque igual a 8°.

As Figuras 14 a 16 ilustram a variação dos parâmetros aerodinâmicos do perfil

escolhido em função do ângulo de ataque.

Figura 14 - Variação do Coeficiente de Sustentação com o ângulo de ataquedo perfil NACA 4618.

Page 34: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

27

Figura 15 - Variação do Coficiente de Arrasto com o ângulo de ataque do perfil NACA 4618.

Figura 16 - Variação da razão Sustentação/Arrasto com o ângulo de ataque do perfil NACA 4618.

É possível observar também, pelos gráficos apresentados, que, a partir de

determinado ângulo de ataque, os valores de �� e �� sofrem uma alteração brusca em seus

valores. A este fenômeno dá-se o nome de estol, que se configura pelo descolamento do

escoamento. Durante este fenômeno, observa-se uma queda repentina na sustentação

proporcionada pelo perfil selecionado.

A Figura 17 apresenta uma representação do perfil selecionado.

Page 35: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

28

Figura 17 - Representação do perfil NACA 4618

5.3.2. Comprimento da Corda

Visando alcançar a máxima extração de energia possível do vento, os elementos do

aerogerador precisam ser otimizados para alcançar este objetivo.

Selecionado o perfil a ser utilizado, torna-se possível utilizar suas características

aerodinâmicas para calcular a variação do comprimento da corda da pá ao longo de seu

comprimento, segundo a fórmula a seguir. [7]

8N2UV W�� = XYZ[Y + W\ ]1 + Y#^_`_$a

Onde:

W →Tip Speed Ratio. Razão entre a velocidade na ponta da pá e velocidade do

vento.

\ = �b → Razão percentual da distância do ponto estudado até o Centro do Rotor.

Uma vez que, a princípio, não nos é conhecido o valor de W, foi aplicado um método

iterativo de cálculo. O método consistiu nos seguintes passos:

1- Assumir um valor inicial para W.

2- Calcular, pela fórmula anterior, a variação do comprimento da corda ao longo da pá.

Page 36: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

29

3- De posse da variação do comprimento da corda ao longo da pá, integrar as

contribuições de sustentação e arrasto, PA e P7 respectivamente, para então calcular a

força favorável ao movimento na pá.

4- Calcular o torque no rotor e, considerando a Potência calculada anteriormente, calcular

a velocidade angular do rotor.

5- Calcular o novo valor de W e comparar com o original.

Após algumas tentativas, verificou-se que:

λ � 3,3 → Ω = 250 C��

Após obtenção do valor de W, foram considerados os valores de N calculados ao

longo do comprimento da pá. A Tabela 3 apresenta os resultados obtidos.

Tabela 3 - Comprimento da corda ao longo da pá d c [mm] d c [mm] 0,10 373 0,60 207 0,15 390 0,65 194 0,20 377 0,70 182 0,25 353 0,75 171 0,30 327 0,80 162 0,35 301 0,85 153 0,40 278 0,90 146 0,45 257 0,95 139 0,50 238 1,00 132 0,55 221

Como é possível analisar pela Figura 18, ao aproximar-se do centro do rotor, o

torque favorável à rotação fornecido pelo vento decresce. Como consequência, tirando

proveito de haver menor quantidade de energia sendo aproveitada nessa região, foram

efetuados ajustes nos valores obtidos apresentados na Tabela 4.

Os ajustes foram efetuados visando redução do tamanho e, consequentemente, peso

das pás. A Tabela 4 apresenta os valores utilizados para projeto da variação do

comprimento da corda das pás.

Page 37: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

30

Figura 18 - Distribuição de torque favorável à rotação

Tabela 4 - Comprimento da corda ao algo da pá utilizado d c [mm] d c [mm] 0,10 60 0,60 207 0,15 210 0,65 194 0,20 300 0,70 182 0,25 330 0,75 171 0,30 320 0,80 162 0,35 301 0,85 153 0,40 278 0,90 146 0,45 257 0,95 139 0,50 238 1,00 132 0,55 221

5.3.3. Torção da pá

Uma vez que se trata de um aerogerador de pequeno porte, considerou-se, por

simplicidade, que as características aerodinâmicas obtidas para o perfil selecionado são

constantes ao longo de toda a pá.

Dessa forma, de maneira a manter o ângulo de ataque > da pá constante por todo o

seu comprimento, foram calculados os ângulos de torção ? ao longo da pá, segundo as

equações a seguir. [7]

@ � &CNef g �W\ h1 + �^_`_ij

0

2

4

6

8

10

12

14

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Nm

/m

m

Distribuição de Torque Favorável à Rotação

Page 38: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

31

? � @ − >

A Tabela 5 apresenta os resultados desses cálculos e a Figura 19 ilustra a

modelagem das pás antes e depois de ser aplicada a torção nas pás.

Tabela 5 - Torção da pá d k[°] l[°] d k[°] l[°] 0,10 15,7 7,7 0,60 16,1 8,1 0,15 19,8 11,8 0,65 15,3 7,3 0,20 21,7 13,7 0,70 14,5 6,5 0,25 22,2 14,2 0,75 13,7 5,7 0,30 21,9 13,9 0,80 13,1 5,1 0,35 21,1 13,1 0,85 12,4 4,4 0,40 20,1 12,1 0,90 11,9 3,9 0,45 19,1 11,1 0,95 11,3 3,3 0,50 18,1 10,1 1,00 10,9 2,9 0,55 17,1 9,1

Figura 19 - Modelagem antes e depois da aplicação da torção nas pás.

Page 39: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

32

5.3.4. Haste da Pá

A haste é o elemento que conecta a pá ao bosso e deve ser fixada na linha neutra

axial da pá, onde minimizam-se ou anulam-se os efeitos de torção. A localização da

referida linha neutra pode ser definida, de forma prática, como um quarto do comprimento

da corda. [7]

Para dimensionamento da haste foram levados em consideração os esforços do

vento sobre a pá, assim como seu próprio peso e o efeito inercial de rotação.

Os efeitos foram considerados separadamente e são apresentados a seguir.

• Esforços do vento

Conforme mencionado no capítulo 5.1.1., existe uma componente da força causada

pelo vento, perpendicular ao plano de rotação, isto é, que não contribui para o movimento

do rotor. Esta componente é dada pela relação:

( � A cos@ + 7 sin@

Desta maneira, foram calculadas as contribuições ao longo da pá, para cálculo das

reações no ponto de fixação. Foi levado em consideração o caso extremo de vento a 15

m/s.

Utilizando os resultados obtidos, as reações de apoio na haste da pá foram

calculadas e são apresentadas a seguir.

V���� � 63,1 8 m���� = 31,6 8�

As figuras 20 e 21 ilustram a distribuição dos esforços internos ao longo da pá.

Page 40: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

33

Figura 20 - Esforço Cortante ao longo da pá

Figura 21 - Momento Fletor ao longo da pá

O momento fletor máximo encontra-se no ponto de fixação da pá e seu valor

absoluto é apresentado a seguir:

mn� � 31,6 8�

• Peso da pá

-70

-60

-50

-40

-30

-20

-10

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

[N]

[m]

Esforço Cortante

-35

-30

-25

-20

-15

-10

-5

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

[Nm

]

[m]

Momento Fletor

Page 41: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

34

O volume da pá, bem como a localização de seu centro de massa, foi calculado com

auxílio do software Autodesk Inventor e, selecionada a fibra de vidro como material a ser

utilizado em sua fabricação, foi possível calcular o peso de cada pá.

Considerou-se que o maior esforço acontece quando a pá se encontra em posição

horizontal, por se tratar da maior distância do centro de massa até ponto de fixação. O

cálculo do momento fletor máximo e seu valor absoluto são apresentados a seguir.

�FoB � 164 8

p∗#NFLeCB +F �&oo&$ = 343 ��

mn_ = 56,2 8�

Os esforços calculados (mnr e mn_) encontram-se em planos perpendiculares, de

maneira que causam flexão em dois planos. A tensão máxima de flexão para seções

circulares nesses casos pode ser obtida pela fórmula a seguir. [8]

st = 32U+� #m� + m$�/

Onde + representa o diâmetro da haste.

• Efeitos Inerciais X’

Levando-se em consideração os efeitos inerciais de rotação chegamos ao valor

máximo de tensão. Para cálculo da tensão adicional, foram utilizadasas relações a seguir:

(u = �ΩV = 11,5 v8

st = 32U+� #m� + m$r_ + 4U (u+

Diferentes valores de diâmetro foram testados e seus respectivos coeficientes de

segurança foram analisados. O material a ser utilizado na haste será o aço AISI 1050

temperado e revenido a 425 °C, por apresentar boa resistência mecânica oferecendo

Page 42: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

35

segurança à operação da pá em condições críticas. O aço selecionado possui as seguintes

características:

wx� � 1090 m�&

wy = 793 m�&

9z = 187

+ = 25,4 �� → st = 263,3 m�& → �w = 3,0

5.4. Bosso

Responsável por transmitir o torque oriundo do vento para o eixo, o bosso foi

dimensionado considerando-se uma proporção de 10% do diâmetro do rotor. A Figura 22

apresenta o modelo utilizado.

Figura 22 - Representação do bosso utilizado

Para chegar ao design final do bosso, foram pesquisados vários modelos utilizados

no mercado. Este componente será produzido em aço SAE 1020, por oferecer boa

Page 43: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

36

usinabilidade. A haste das pás será encaixada ao bosso e um pino será utilizado para

garantir fixação do rotor ao cubo.

O bosso será fixado ao eixo, utilizando uma porca de segurança da SKF Anexo I.

5.5. Freio

O freio é responsável pela interrupção do funcionamento de todo o sistema, caso

sejam atingidas condições críticas, ou para o caso de manutenção de algum componente,

cuja verificação demande parada total do equipamento.

Visando maior segurança e confiabilidade, optou-se pela utilização de um freio com

acionamento eletromagnético. O funcionamento se dá de maneira que o freio,

normalmente energizado, permaneça desacoplado devido ao campo magnético atuante,

mantendo o giro do eixo livre. O sistema de frenagem é acionado interrompendo-se o

campo magnético.

De forma ideal, o eixo seria acoplado ao eixo de alta rotação, devido ao menor

torque atuante. Esta escolha permitiria a seleção de um freio menor e mais leve. No

entanto, uma vez que optou-se pela utilização de um motorredutor, esta opção não seria

possível.

Para dimensionamento do freio, considerou-se o caso de velocidade crítica igual a

15 m/s. Os cálculos são apresentados a seguir.

�u � 12 �5���u� = 3,8 v;

{u = �u| = 147 8�

Page 44: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

37

Levando em consideração os critérios levantados, selecionou-se o modelo Holding

brake M100 do fabricante Mayr com torque nominal de 180 Nm – Anexo II.

�w � {n�� {u � 1,2

5.6. Multiplicador

O multiplicador é responsável por elevar a rotação do eixo de baixa para a rotação

determinada para o eixo de alta. Para o caso deste projeto, optou-se pela utilização de um

motorredutor, isto é, suprime-se a utilização de um eixo de alta rotação e liga-se o gerador

diretamente ao multiplicador.

O gerador selecionado, que será abordado com mais detalhes no próximo capítulo,

possui rotação nominal de 1725 rpm. Logo, para melhor operação, necessita-se de um

multiplicador com fator de multiplicação mais próximo possível de 6,90.

Optou-se pelo redutor WEG C51217 – Anexo III – devido a suas dimensões

relativamente pequenas e por possuir alta disponibilidade no mercado. O modelo em

questão apresenta fator de redução de 7,05 de modo que a rotação final será de 1762,5

rpm, cujo excedente não chega a representar um grande problema. O rendimento esperado

é de 90,0 % segundo o fabricante.

A Figura 23 apresenta o multiplicador selecionado.

Page 45: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

38

Figura 23 - Modelo do multiplicador utilizado

5.7. Gerador

Como gerador será utilizado um motor WEG de 0,55 W. O modelo utilizado será o

W22 Premium com 4 polos 220/380 V Carcaça 80 – Anexo IV. Sua seleção se justifica

pela alta disponibilidade no mercado e alto rendimento.

O motor será ligado a um inversor, também da WEG, modelo CFW10 – Anexo V.

O inversor é responsável por tratar a corrente gerada pelo motor, possibilitando sua futura

utilização e controlando o funcionamento do equipamento, visando maior eficiência para

diferentes condições de vento.

5.8. Eixo

Além de ser responsável por transmitir o torque do rotor ao multiplicador, o eixo

deve suportar o peso do rotor e ser compatível com todos os elementos a ele conectados.

O suporte do eixo será feito por dois rolamentos autocompensadores de rolos, da

SKF, que serão descritos mais detalhadamente nos próximos capítulos.

Para o dimensionamento do eixo foram levados em consideração os esforços

referentes ao peso do rotor e ao acionamento do torque de frenagem. Os valores são

apresentados a seguir.

Page 46: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

39

��á � 164 8

�5�� = 63,9 8

����� = 3�}á + �5�� = 555,7 8

{ = 180 8�

A Figura 24 ilustra os esforços internos no eixo ao longo de seu comprimento para

a configuração final.

Figura 24 – Esforço Cortante e Momento Fletor ao longo do eixo

A partir da configuração apresentada, são analisados os pontos críticos. O material

a ser utilizado para o eixo é o aço ASTM 1040 laminado a frio.

wx� = 520 m�&

Page 47: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

40

wy � 290 m�&

9z = 149

�w = 3

Ponto crítico 1 – Momento Fletor Máximo.

m#152,5 ��$ = 84,8 8�

{ = 180 8�

7 = 35 ��

Critério de Máxima Tensão Cisalhante. [8]

7~�� = �32�wUwy . �m + {� = 27,6 ��

Critério de Máxima Energia de Distorção. [8]

7~�� = �32�wUwy �m + 34 {� = 25,6 ��

Critério de Carregamento Dinâmico (Soderberg): [8]

Limite de Resistência a Fadiga wF� = 0,5wx� = 260 m�& do Corpo de Prova

Fator de Acabamento Superficial v� = 4,51 . 580��,�� = 0,860

Fator de Forma v5 = 1,24 . 35��,��� = 0,848

Fator de Confiabilidade vu#99%$ = 0,814

Fator de Temperatura v�#{ < 350° ($ = 1

Fator de Concentração de Tensões v� = 1

Limite de Resistência a Fadiga wF = wF�v�v5vuv�v� = 154,3 m�& do Elemento de Máquina

Page 48: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

41

7��� � �32�wU �� {wy� + �mwF�� = 29,4 ��

Ponto Crítico 2 – Concentrador de tensão – Chaveta do bosso

m#12,5 ��$ = 6,9 8�

{ = 180 8�

7 = 30 ��

Critério de Máxima Tensão Cisalhante:

7~�� = �32�wUwy . �m + {� = 26,7 ��

Critério de Máxima Energia de Distorção:

7~�� = �32�wUwy �m + 34 {� = 24,2 ��

Critério de Carregamento Dinâmico (Soderberg):

Limite de Resistência a Fadiga wF� = 0,5wx� = 260 m�& do Corpo de Prova

Fator de Acabamento Superficial v� = 4,51 . 580��,�� = 0,860

Fator de Forma v5 = 1,24 . 35��,��� = 0,861

Fator de Confiabilidade vu#99%$ = 0,814

Fator de Temperatura v�#{ < 350° ($ = 1

Fator de Concentração de Tensões vn∗ = 1,3 (Rasgo de chaveta) v� = 0,769

Limite de Resistência a Fadiga wF = wF�v�v5vuv�v� = 120,6 m�& do Elemento de Máquina

Page 49: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

42

7��� � �32�wU �� {wy� + �mwF�� = 26,7 ��

Ponto Crítico 3 – Concentrador de tensão – Mudança de diâmetro

m#137 ��$ = 76,4 8�

{ = 180 8�

7 = 35 ��

Critério de Máxima Tensão Cisalhante:

7~�� = �32�wUwy . �m + {� = 27,4 ��

Critério de Máxima Energia de Distorção:

7~�� = �32�wUwy �m + 34 {� = 25,3 ��

Critério de Carregamento Dinâmico (Soderberg):

Limite de Resistência a Fadiga wF� = 0,5wx� = 260 m�& do Corpo de Prova

Fator de Acabamento Superficial v� = 4,51 . 580��,�� = 0,860

Fator de Forma v5 = 1,24 . 35��,��� = 0,848

Fator de Confiabilidade vu#99%$ = 0,814

Fator de Temperatura v�#{ < 350° ($ = 1

Fator de Concentração de Tensões 7 +⁄ = 1,4 C +⁄ = 0,08 v�� = 1,7 � = 0,8 vn∗ = 1,56 v� = 0,641

Limite de Resistência a Fadiga wF = wF�v�v5vuv�v� = 98,9m�&

Page 50: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

43

do Elemento de Máquina

7��� � �32�wU �� {wy� + �mwF�� = 31,2 ��

Ponto Crítico 4 – Concentrador de tensão – Freio

m#248 ��$ = 53,9 8�

{ = 180 8�

7 = 35 ��

Critério de Máxima Tensão Cisalhante:

7~�� = �32�wUwy . �m + {� = 27,1 ��

Critério de Máxima Energia de Distorção:

7~�� = �32�wUwy �m + 34 {� = 24,8 ��

Critério de Carregamento Dinâmico (Soderberg):

Limite de Resistência a Fadiga wF� = 0,5wx� = 260 m�& do Corpo de Prova

Fator de Acabamento Superficial v� = 4,51 . 580��,�� = 0,860

Fator de Forma v5 = 1,24 . 35��,��� = 0,848

Fator de Confiabilidade vu#99%$ = 0,814

Fator de Temperatura v�#{ < 350° ($ = 1

Fator de Concentração de Tensões vn∗ = 1,3 v� = 0,769

Limite de Resistência a Fadiga wF = wF�v�v5vuv�v� = 118,7 m�&

Page 51: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

44

do Elemento de Máquina

7��� � �32�wU �� {wy� + �mwF�� = 28,6 ��

5.9. Chavetas

As chavetas são elementos utilizados para transmitir movimento de rotação entre

eixo e cubo. Neste projeto, foram utilizadas chavetas para transmitir movimentação entre

o rotor e o eixo e, também, entre o freio e o eixo.

O dimensionamento destes elementos foi desenvolvido baseado na situação crítica

de operação determinada para o projeto.

Conforme explorado em capítulos anteriores, o maior torque ao qual o eixo será

exposto se dará no caso de acionamento do freio ao se alcançar a velocidade de vento

crítica de projeto. O material selecionado para as chavetas foi o Aço AISI 1010 laminado.

wx� = 325 m�&

wy = 180m�&

9z = 95

A&CfOC& +& Nℎ&�Fe&: � = 8 ��

�EeOC& +& Nℎ&�Fe&: e = 7 ��

�B��CM�FLeB +& Nℎ&�Fe&: A = 25 ��

• Chaveta do bosso

7Mâ�FeCB +B FMpB L& oFçãB +& Nℎ&�Fe&: + = 30 ��

Cálculo da tensão de compressão [8]:

s = 4{~��+. e. A = 137,1 m�&

Page 52: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

45

Coeficiente de Segurança de compressão [8]:

�wut�����ã � wys � 1,3

Cálculo da tensão de cisalhamento [8]:

� = 2{~��+. �. A = 60,0 m�&

Coeficiente de Segurança de cisalhamento [8]:

�wu �����t��� = 0,577wy� = 1,7

• Chaveta do freio

7Mâ�FeCB +B FMpB L& oFçãB +& Nℎ&�Fe&: + = 35 ��

Cálculo da tensão de compressão:

s = 4{~��+. e. A = 117,6 m�&

Coeficiente de Segurança de compressão:

�wut�����ã = wys = 1,5

Cálculo da tensão de cisalhamento:

� = 2{~��+. �. A = 51,4 m�&

Coeficiente de Segurança de cisalhamento:

�wu �����t��� = 0,577wy� = 2,0

5.10. Rolamentos

Considerando o tempo de operação da maioria dos empreendimentos eólicos, os

rolamentos foram selecionados considerando este tempo de vida.

De acordo com as orientações do fabricante, foi selecionado o tipo mais adequado

de rolamento de acordo com o tipo e intensidade do carregamento estático e dinâmico.

Page 53: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

46

Foram selecionados rolamentos autocompensadores de rolos, adequados para

suportar cargas combinadas, isto é, carga radial e carga axial, se a componente axial for

relativamente pequena. Os modelos selecionados, denominados 22208 EK – Anexo VI –

serão utilizados em conjunto com a caixa de mancal SE 508 – Anexo VII. [9]

O cálculo do tempo de vida foi efetuado de acordo considerando o rolamento, cuja

solicitação é mais elevada.

Carga dinâmica equivalente P do rolamento:

� � (� +  �(� , oF (�(� ≤ F

� = 0,67(� +  (� , oF (�(� > F

Os parâmetros  �,  e F são referentes ao rolamento e podem ser verificados no

Anexo VI. De acordo com os estudos realizados nos capítulos anteriores,podemos

calcular os esforços radial e axial no rolamento:

(� = 878,8 8

(� = 198,0 8

� = 1354,0 8

Dessa maneira, calcula-se o tempo de vida nominal básica para 90% de

confiabilidade, pela relação: [9]

A�� = �����

Onde C é a Capacidade de Carga Dinâmica do rolamento e pode ser verificado no

Anexo VI.

A�� = 385029 �MEℎõFo +F CF�BEOçõFo

Para um tempo de vida de 20 anos, considerando a velocidade angular do eixo, é

esperado um tempo de vida mínimo de 2628 milhões de revoluções. Uma vez que o valor

calculado excede este valor mínimo, o rolamento foi selecionado corretamente.

Page 54: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

47

5.11. Acoplamento

Foi selecionado, para o projeto, acoplamentos elásticos flexíveis do Fabricante

Mayr. Foi selecionado o modelo 28/940.522.A/25/25 – Anexo VIII. O modelo utilizado

contém um elemento intermediário de poliuretano que, além de permitir eventuais

desalinhamentos, evita ruídos e vibrações do sistema. O acoplamento é utilizado para

conectar o eixo projetado ao eixo do motorredutor.

A Figura 25 apresenta o modelo de acoplamento utilizado.

Figura 25 - Acoplamento do fabricante Mayr.

5.12. Torre

A torre é responsável pelo posicionamento do conjunto rotor-nacele na altura

conveniente ao seu funcionamento, isto é, altura onde são alcançados os valores de

velocidade de vento que garantem a operação adequada da máquina. Este componente

deve oferecer a sustentação necessária para a atividade segura do aerogerador e, para tal,

foram analisadas as forças atuantes sobre ela.

Considerou-se para esse estudo que, durante a operação da máquina, a torre se

comporta como uma coluna engastada em uma das extremidades e livre na outra, onde

está localizada a máquina. A torre será dividida em três segmentos de seções tubulares

Page 55: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

48

Schedule 40 – Anexo IX. A conexão entre os segmentos da torre será efetuada por flanges

com dimensões baseados no padrão americano – Anexo X.

As características dos segmentos são apresentadas a seguir:

Material dos tubos AISI 1020 Laminado

Tensão de ruptura wx� � 450 m�&

Tensão de escoamento wy = 330 m�&

Dureza Brinell 9z = 143

Módulo de Elasticidade � = 200 ¤�&

Segmento 1 – Solo – Tubo 6” Schedule 40 – Anexo IX.

Diâmetro maior 7 = 168,3 ��

Diâmetro menor + = 154,08 ��

Densidade linear \ = 28,23 vf/�

Área da Seção � = ¥#�_��_$[ = 3600,5 ��

Momento de Inércia ¦ = ¥#�§��§$�[ = 1,172 × 10���[

Segmento 2 – Meio – Tubo 5” Schedule 40 – Anexo IX.

Diâmetro maior 7 = 141,3 ��

Diâmetro menor + = 128,2 ��

Densidade linear \ = 21,75 vf/�

Área da Seção � = ¥#�_��_$[ = 2772,8 ��

Page 56: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

49

Momento de Inércia ¦ � ¥(�§��§)�[ � 6,308 × 10���[

Segmento 3 – Topo – Tubo 4” Schedule 40 – Anexo IX.

Diâmetro maior 7 = 114,3 ��

Diâmetro menor + = 102,26 ��

Densidade linear \ = 16,06 vf/�

Área da Seção � = ¥#�_��_$[ = 2047,8 ��

Momento de Inércia ¦ = ¥#�§��§$�[ = 3,010 × 10���[

Neste tipo de situação, o principal cuidado para o qual atentar é na prevenção da

flambagem.

Para verificar se a flambagem constitui um risco real neste caso, foi calculada a

Carga Crítica de Flambagem. Os cálculos são apresentados a seguir. [8]

Altura da torre A = 12 �

Raio de giração v = Z �� = 38,34 ��

Índice de esbeltez A v⁄ = 312,97

Carga Crítica de Flambagem �u� = �×¥_×�#© ª⁄ $_ = 10316,9 8

Peso total da máquina � = 3837,88

Coeficiente de segurança �w = 7,3 para flambagem

Page 57: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

50

O tubo em questão foi selecionado de maneira a serem alcançados valores

recomendados de coeficientes de segurança acima de 7, uma vez que a flambagem é um

fenômeno altamente indesejado.

Para dimensionamento da torre com relação ao escoamento do vento, será

considerado o estudo do ponto de engaste como seção crítica. Conforme calculado

anteriormente, o esforço horizontal no rotor:

(� � 198,0 8

Momento Fletor Máximo (no ponto de engaste):

m = (�A = 2375,7 8�

Segmento 1

Tensão de Flexão Máxima [8]:

sn = m72¦ = 17,1 m�&

Tensão de Compressão [8]:

su = ������ = 0,179 m�&

Tensão de cisalhamento no engaste [8]:

� = �«�¦ = 2�� #wFçãB eO�OE&C$ = 0,018 m�&

Tensão Equivalente [8]:

s�¬ = �s + 3� = 17,24 m�&

Coeficiente de Segurança para escoamento do vento [8]:

�w = 19,1

Além deste estudo, uma das preocupações durante o projeto do aerogerador foi a

viabilização do acesso à máquina quando for necessária a realização de manutenção em

alguma das partes do conjunto. Com este objetivo, projetou-se para esta torre um sistema

Page 58: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

51

de elevação pivotante, utilizando um cilindro hidráulico, de forma que todo o conjunto

possa ser facilmente erguido ou abaixado, conforme necessidade.

Para dimensionamento dos segmentos da torre, levou-se em consideração o

processo de elevação do conjunto, no qual serão encontrados os máximos carregamentos

sofridos com a torre na posição horizontal.

A Figura 26 apresenta os gráficos com os esforços internos na torre ao longo de seu

comprimento.

Figura 26 – Esforço Cortante e Momento Fletor ao longo do comprimento da torre

A seguir são calculados os respectivos coeficientes de segurança das seções que

sofrem maiores solicitações [8].

Page 59: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

52

Segmento 1.

Esforço Cortante Máximo �(0,41 �$ = 66020,68 no Segmento 1

Momento Fletor Máximo m#0,41 �$ = 27045,28� no Segmento 1

Tensão Normal Máxima s = ~�� = 194,2m�&

Tensão Cisalhante Máxima � = ­®5� = ­� (Seção tubular)= 36,7m�&

Tensão Equivalente s�¬ = √s + 3� = 204,4 m�&

Coeficiente de Segurança �w = 1,6

Segmento 2 – Meio – Tubo 5” Schedule 40 – Anexo IX.

Esforço Cortante Máximo �#4 �$ = 2730,18 no Segmento 2

Momento Fletor Máximo m#4 �$ = 15459,58�

no Segmento 2

Tensão Normal Máxima s = ~�� = 173,1m�&

Tensão Cisalhante Máxima � = ­®5� = ­� (Seção tubular)= 2,0m�&

Tensão Equivalente s�¬ = √s + 3� = 173,2

Coeficiente de Segurança �w = 1,9

Segmento 3 – Topo – Tubo 4” Schedule 40 – Anexo IX.

Esforço Cortante Máximo �#8 �$ = 1876,68 no Segmento 3

Page 60: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

53

Momento Fletor Máximo m(8 �$ = 6246,18� no Segmento 3

Tensão Normal Máxima s = ~�� = 118,6m�&

Tensão Cisalhante Máxima � = ­®5� = ­� (Seção tubular)= 1,8m�&

Tensão Equivalente s�¬ = √s + 3� = 118,6

Coeficiente de Segurança �w = 2,8

Para pivotagem da torre será utilizado um pino, o qual estará submetido à tensão de

cisalhamento proveniente da reação neste ponto durante o processo de ascensão da torre.

Para garantir a segurança do processo, foi calculado o diâmetro necessário para tal com

um nível de segurança adequado [8].

Material do pino AISI 1045 repuxado a frio

Tensão de Ruptura wx� = 630 m�&

Tensão de Escoamento wy = 530 m�&

Dureza Brinell 9z = 179

Reação sobre o pino ( = 65907,1 8

Diâmetro do pino + = 25 ��

Área da Seção � = ¥�_[ = 490,9 ��

Tensão de Cisalhamento � = °� = 134,3 m�&

Coeficiente de Segurança �w = �,���±²³ = 2,3

Page 61: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

54

5.13. Cilindro Hidráulico

O acesso aos componentes internos da nacele do aerogerador será feito por meio de

um cilindro hidráulico selecionado de maneira a suportar os esforços de elevação da torre

até sua posição vertical.

A norma ISO 6020-2-1991 estabelece as dimensões padronizadas dos cilindros

hidráulicos. A seleção do cilindro se dá de maneira a verificar se a carga mínima

necessária para içar a torre é oferecida e se seu curso é suficiente para conclusão do

processo.

O modelo de cilindro da Eurohidraulics EH44MP1, com pistão de camisa tamanho

100, e diâmetro de haste de 45 mm, conta com pressão máxima de trabalho de 160 bar –

Anexo XI. Dessa maneira, podemos calcular a carga oferecida e comparar com a

necessária.

Figura 27 – Detalhe do Pivotamento da torre.

Page 62: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

55

� � 200 ��

z = 500 ��

� = 410 ��

(BCç& �FCeMN&E LFNFooáCM& �&C& FEF�&C & eBCCF = (� = 72944,8 8

(BCç& LFNFooáCM& L& +MCFçãB +B NMEML+CB = (� (�cos ]tan�� h���¶ ia = 79117,4 8

(BCç& �ápM�& +B NMEML+CB = (� = 160 �&C . U. #100 ��$²4 = 125664 8

�B��CM�FLeB �ápM�B LFNFooáCMB = A~á� = z + �sin ]tan�� h¶¸�� ia = 931,7 ��

�OCoB �ápM�B B¹FCFNM+B �FEB NMEML+CB = Au = 2000 �� Uma vez que verifica-se que o cilindro hidráulico atende os requisitos do projeto,

gerando a força necessária e contando com curso adequado para desempenhar a elevação

da torre, sua seleção é considerada satisfatória.

Page 63: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

56

6. Conclusão

O projeto foi desenvolvido de maneira a simplificar e reduzir custos de fabricação

e montagem do aerogerador, de maneira que se buscou selecionar componentes de fácil

aquisição e boa disponibilidade no mercado.

Tendo em mente o objetivo de tornar a etapa construtiva do aerogerador o mais

simples possível, optou-se por utilizar um sistema de elevação da torre composto por

cilindro hidráulico. Esta opção permite que os componentes do aerogerador possam sem

fixados em solo, facilitando também a manutenção da máquina.

Levando em consideração o atual momento em que vivemos, onde a fonte eólica de

geração de energia tem sua participação cada vez mais representativa na matriz energética

brasileira, verifica-se a relevância do tema proposto para este projeto.

A contribuição da realização deste projeto em minha formação acadêmica vai desde

a aplicação de conhecimentos adquiridos durante o curso de graduação até a capacidade

de trabalhar em equipe, dialogando com o orientador e com profissionais atuantes da área.

Page 64: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

57

7. Referências Bibliográficas

[1] http://www.greenenergyohio.org/, Acesso em março de 2016

[2] http://www.whirlopedia.com/, Acesso em março de 2016

[3] http://www.portalabeeolica.org.br/, Acesso em março de 2016

[4]http://www.epe.gov.br/, Acesso em março de 2016

[5] Manwell, J, F., McGowan, J, G., Rogers, L, A., et. al., "WIND ENERGY

EXPLAINED theory design and application" – 2009

[6] Sorensen, T.,Nielsen, P., Grotzner, A., Chun, S., "Introduction to Wind Turbine

Wake Modelling and Wake Generated Turbulance" - 2011

[7] Burton, T., Jenkins, N., Sharpe, D., e Bossanyi, E., "Wind Energy Handbook" -

2011

[8] Shigley, Joseph E., Mischke, Charles R., Budynas, Richard G., "Projeto de

Engenharia Mecânica, 7ª e.," - 2005

[9] SKF, www.skf.com/br/, Acesso em março de 2016

Page 65: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

58

Anexo I – Porca de Segurança KMFE 6

Page 66: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

59

Anexo II – Freio Mayr ROBA-STOP 100/891

Page 67: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

60

Page 68: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

61

Anexo III – Multiplicador WEG C51217

Page 69: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

62

Anexo IV – Gerador WEG Premium

Page 70: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

63

Anexo V – Inversor

Page 71: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

64

Anexo VI – Rolamento SKF 22208 EK

Page 72: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

65

Anexo VII – Mancal SKF SE 508

Page 73: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

66

Anexo VIII – Acoplamento ROBA-ES 28/940

Page 74: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

67

Anexo IX – Dimensões padrão de tubos de aço

Page 75: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

68

Anexo X – Padrão de Flanges

Page 76: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

69

Anexo XI – Cilindro Hidráulico – Camisa 100 Eurohidraulics

Page 77: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

70

Page 78: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

Ruan Arthur M. S. Teixeira Projeto Final - Aerogerador

Prof. Flávio de Marco Filho A1Arranjo Geral do Aerogerador

Escala 1/25 Folha 1 de 3Universidade Federal do Rio de Janeiro

Perspectiva do AerogeradorEscala 1/8

1076.50

12000

Ø2000

Page 79: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

Ruan Arthur M. S. Teixeira Projeto Final - Aerogerador

Prof. Flávio de Marco Filho A1Componentes da Nacele

Escala 1/2 Folha 2 de 3Universidade Federal do Rio de Janeiro

LISTA DE PEÇAS

QuantidadeItemNúmero

1Eixo1

1Bosso2

3Pá3

2Rolamento SKF 22208 EK / Mancal SKF SE 5084

1Suporte do Freio5

1Freio Mayr ROBA-Stop 100/8916

1Acoplamento ROBA-Stop 100/8917

1Multiplicador WEG C512178

1Gerador WEG W22 Premium 4 polos9

1Carcaça Superior da Nacele10

1Carcaça Inferior da Nacele11

1Base da Nacele12

1Tubo da Torre13

1Porca de Segurança KMFE 614

Perspectiva da NaceleEscala 1/8

1

2

3

98

4

6

57

12

10

13

14

11

Page 80: PROJETO DE PROTÓTIPO DE TURBINA EÓLICA DE EIXO … · 2016-04-25 · Este trabalho vai ao encontro desta tendência mundial e tem por objetivo a elaboração de um projeto de aerogerador

Ruan Arthur M. S. Teixeira Projeto Final - Aerogerador

Prof. Flávio de Marco Filho A3Pivotamento da torre

Escala 1/10 Folha 3 de 3Universidade Federal do Rio de Janeiro