Capacidade_Termica_Massica

11
Faculdade de Ciências da Universidade do Porto Actividade Laboratorial Capacidade Térmica Mássica Elaborado por: Armanda Costa Fernanda Veríssimo Hélder Silva Formadores: Professor Doutor Paulo Simeão de Carvalho Professor Doutor Manuel Joaquim Marques Actividades Laboratoriais para o 10º e 11º anos do Ensino Secundário Porto, 21 de Julho de 2010

Transcript of Capacidade_Termica_Massica

Page 1: Capacidade_Termica_Massica

Faculdade de Ciências da Universidade do Porto

Actividade Laboratorial

Capacidade Térmica Mássica Elaborado por: Armanda Costa Fernanda Veríssimo Hélder Silva Formadores: Professor Doutor Paulo Simeão de Carvalho Professor Doutor Manuel Joaquim Marques

Actividades Laboratoriais para o 10º e 11º anos do Ensino Secundário

Porto, 21 de Julho de 2010

Page 2: Capacidade_Termica_Massica

1

Enquadramento no programa

A realização desta actividade laboratorial, ao nível do 10º Ano, é útil para o aluno consolidar o conceito

de capacidade térmica mássica, compreendendo que é uma caraterística de um material que lhe confere

propriedades específicas relativamente ao aquecimento e ao arrefecimento.

Questões-problema

� Por que é que no Verão a areia fica escaldante e a água do mar não?

� Por que é que os climas marítimos são mais amenos do que os continentais?

Objectivos da actividade

• Determinação da capacidade térmica mássica da substância de que é feito um corpo metálico.

• Analisar transferências e transformações de energia num sistema.

• Efectuar um balanço energético das transferências energéticas com base na Lei da Conservação

da Energia.

• Explicar determinados fenómenos com base nos valores elevados ou baixos da capacidade

térmica mássica dos materiais neles envolvidos.

• Aplicar o conceito de capacidade térmica mássica à interpretação de fenómenos do dia-a-dia.

Leis e Teorias

• Lei da Conservação da energia

• Lei Zero da Termodinâmica

Conceitos a explorar

• Energia interna

• Temperatura

• Transferência de Energia

• Transformação de Energia

• Capacidade térmica mássica

• Equilíbrio térmico

• Sistemas termodinâmicos

Page 3: Capacidade_Termica_Massica

2

Questões pré-laboratoriais

1. Justifica a afirmação: ”A capacidade térmica mássica do alumínio tabelado é de 900 11 −− KJkg .”?

2. Se dois blocos, um de alumínio e outro de cobre, forem aquecidos com a mesma fonte de energia

durante o mesmo intervalo de tempo, qual deles aquece mais? Justifique.

3. Se aquecermos uma massa igual de água e azeite fornecendo a mesma quantidade de energia,

verificaremos que o azeite atinge uma temperatura superior à da água. Qual destas substâncias tem

maior capacidade térmica mássica? Justifique.

4. Como se pode calcular a capacidade térmica mássica de uma substância constituinte de um corpo a

partir da quantidade de energia por ele recebida?

Material utilizado

• Blocos de cobre e alumínio

• Gobelé

• Água

• Resistência eléctrica de aquecimento

• Termómetro digital

• Calorímetro

• Balança

• Fio

Page 4: Capacidade_Termica_Massica

3

Procedimento

A - Determinação da capacidade do calorímetro

1. Colocar uma massa conhecida de água à temperatura ambiente no calorímetro.

2. Registar o valor da temperatura da água após ter sido estabelecido o equilíbrio térmico com

calorímetro.

3. Aquecer uma massa de água a uma determinada temperatura e registar esse valor.

4. Adicionar uma massa conhecida de água quente no calorímetro.

5. Registar a temperatura de equilíbrio.

B - Determinação da capacidade térmica mássica do cobre/alumínio

1. Colocar aproximadamente 200 mL de água no gobelé e aquecer até à ebulição desta.

2. Introduzir uma massa conhecida de água à temperatura ambiente no calorímetro e registar a sua

temperatura.

3. Atar uma linha ao bloco de cobre, por intermédio da qual se possa mergulhar e retirar o bloco de

dentro da água.

4. Introduzir o cobre na água em ebulição (de forma que fique suspenso por intermédio da linha).

5. Registar a temperatura da água em ebulição.

6. Retirar o cobre da água em ebulição, e, rapidamente, introduzi-lo no calorímetro.

7. Fechar o calorímetro com a tampa e agitar ligeiramente.

8. Registar a temperatura quando se atinge novo equilíbrio térmico.

9. Repetir o procedimento anterior para o bloco de alumínio.

Resultados obtidos

A. Capacidade térmica do calorímetro

mágua fria/g mágua quente/g θθθθágua fria/ºC θθθθágua quente/ºC θθθθequilíbrio/ºC

134,4 116,6 23,2 100,2 57,2

Page 5: Capacidade_Termica_Massica

4

B. Capacidade térmica mássica do cobre

mcobre/g mágua/g θθθθcobre/ºC θθθθágua/ºC θθθθequilíbrio/ºC

68,5 160,6 100,0 23,4 26,2

C. Capacidade térmica mássica do alumínio

malumínio/g mágua/g θθθθalumínio/ºC θθθθágua/ºC θθθθequilíbrio/ºC

21,3 160,0 99,7 23,9 26,3

Tratamento dos dados

A. Capacidade térmica do calorímetro

θ∆××= cmQ

Qágua quente + Qágua fria + Qcalorímetro = 0

mq c ∆θ + mf c ∆θ + C ∆θ = 0

116,6 x 10-3 x 4,18 x 103 x (57,2 – 100,2) + 134,4 x 10-3 x 4,18 x 103 x (57,2 – 23,2)

+ C (57,2 – 23,2) = 0

C = 54,6 J/ ºC

B. Capacidade térmica mássica do cobre

θ∆××= cmQ

Qcobre+ Qágua+ Qcalorímetro = 0

Page 6: Capacidade_Termica_Massica

5

m cCu ∆θ + m cH2O ∆θ + C ∆θ = 0

68,5 x 10-3 x cCu x (26,2 – 100,0) + 160,6 x 10-3 x 4,18 x 103 x (26,2 – 23,4) + 54,6 x

(26,2 – 23,4) = 0

cCu = 402 J/kg ºC

%100% ×−

=

tabelado

tabeladomédio

voerrorelatic

cc

%42,4%100385

402385% =×

−=voerrorelati

C. Capacidade térmica mássica do alumínio

θ∆××= cmQ

Qalumínio+ Qágua+ Qcalorímetro = 0

m cAl ∆θ + m cH2O ∆θ + C ∆θ = 0

21,3 x 10-3 x cAl x (26,3 – 99,7) + 160,0 x 10-3 x 4,18 x 103 x (26,3 – 23,9) + 54,6 x

(26,3 – 23,9) = 0

cAl = 1110 J/kg ºC

%100% ×−

=

tabelado

tabeladomédio

voerrorelatic

cc

%3,23%100900

1110900% =×

−=voerrorelati

Page 7: Capacidade_Termica_Massica

6

Questões pós-laboratoriais

1. Qual o melhor recipiente para um refrigerante, garrafas de vidro ou latas de alumínio?

c(Al) = 900 J/kg ºC; c(vidro) = 2100 J/kg ºC

2. Faça uma discussão com todos os grupos, de modo a dar resposta às questões iniciais que se

relembram de seguida:

Num dia de Verão, quando caminhamos sobre a areia, por que ”queima” muito mais a areia seca do

que a areia molhada, embora ambas tenham sido igualmente aquecidas?

Por que é que os climas marítimos são mais amenos do que os continentais?

Conclusão / Crítica

As diferenças obtidas relativamente aos valores tabelados poderão dever-se a:

• Perda de energia para o exterior quando se retira o metal da água em ebulição e se introduz no

calorímetro;

• Foi transferida juntamente com o bloco uma pequena quantidade de água que tinha sido utilizada

para o aquecer;

• O aquecimento do bloco pode não ter ocorrido de forma homogénea.

• O calorímetro não é um sistema perfeitamente isolado;

• Os metais utilizados podem conter impurezas;

• Erros cometidos na realização das medições.

Page 8: Capacidade_Termica_Massica

7

Bibliografia

Caldeira, Helena; Bello Adelaide. Ontem e Hoje 10º Ano. Porto Editora, 2007.

Rodrigues, M. Margarida; Dias, Fernando Morão. Física Na Nossa Vida 10º Ano. Porto Editora, 2007.

Ventura, Graça; Fiolhais, Carlos; entre outros. 10 F A. Texto Editora, 2007.

Silva, Daniel Marques. Desafios da Física 10º Ano. Lisboa Editora, 2007.

Silva, António José; Resende, Fernanda; Ribeiro, Manuela. Física 10. Areal Editores, 2007.

Programa de Física e Química A 10º Ano, Ministério da Educação, Departamento do Ensino

Secundário, 2001.

Page 9: Capacidade_Termica_Massica

8

Anexos

Page 10: Capacidade_Termica_Massica

9

“V” DE GOWIN

Material/Procedimento ∗ Blocos de cobre e alumínio ∗ Gobelé ∗ Água ∗ Resistência eléctrica de aquecimento ∗ Termómetro digital ∗ Calorímetro ∗ Balança ∗ Fio

A - Capacidade do calorímetro

1. Colocar uma massa conhecida de água à temperatura ambiente no calorímetro.

2. Registar o valor da temperatura da água após ter sido estabelecidoo equilíbrio térmico com o calorímetro.

3. Aquecer uma massa de água a uma determinada temperatura e registar esse valor.

4. Adicionar uma massa conhecida de água quente no calorímetro. 5. Registar a temperatura de equilíbrio.

B- Capacidade térmica mássica do cobre/alumínio 1. Colocar aproximadamente 200 mL de água no gobelé e

aquecer até à ebulição desta. 2. Introduzir uma massa conhecida de água à temperatura

ambiente no calorímetro e registar a sua temperatura. 3. Atar uma linha ao bloco de cobre, por intermédio da qual se

possa mergulhar e retirar o bloco de dentro da água. 4. Introduzir o cobre na água em ebulição (de forma que fique

suspenso por intermédio da linha). 5. Registar a temperatura da água em ebulição. 6. Retirar o cobre da água em ebulição, e, rapidamente, introduzi-

lo no calorímetro. 7. Fechar o calorímetro com a tampa e agitar ligeiramente. 8. Registar a temperatura quando se atinge novo equilíbrio

térmico. 9. Repetir o procedimento anterior para o bloco de alumínio.

ALA CONCEPTUAL ALA METODOLÓGICA

Por que é que no Verão a areia fica escaldante e

a água do mar não? Por que é que o climas

marítimos são mais amenos que os continentais?

Teoria Teoria corpuscular da matéria Princípios e Leis � Lei da conservação da

energia. � Lei zero da termodinâmica.

Conceitos � Energia interna � Temperatura � Transferência de Energia � Capacidade térmica mássica � Equilíbrio térmico � Sistemas termodinâmicos

Juízos Cognitivos O material de que é feita a areia e a água apresentam capacidades térmicas mássicas diferentes, devido a serem substâncias diferentes. Se considerarmos uma dada massa de água e igual massa de areia, aquecidas pela radiação solar durante o mesmo intervalo de tempo, a elevação de temperatura na areia é muito mais elevada, porque a capacidade térmica mássica da areia é muito menor que a da água. Isto faz com que a mesma quantidade de energia transferida provoca uma menor variação de temperatura da água do que aquela que se verifica na areia. Podemos ainda referir que os climas marítimos são mais amenos do que os continentais porque, devido à sua enorme capacidade térmica mássica, a água é capaz de armazenar grandes quantidades de energia ao longo do dia, que aquando do arrefecimento nocturno pode libertar, aquecendo o ar da vizinhança. Juízos de Valores Para as mesmas temperaturas iniciais dos blocos e da água verificam-se diferentes temperaturas de equilíbrio. Pode-se então concluir que a variação de temperatura ocorrida pelos diferentes blocos depende da constituição dos mesmos. Transformações dos registos

Experimental Tabelado Erro

Dados, factos e medidas � Medição de temperaturas � Determinação de massas � Cálculo da energia transferida como calor � Cálculo das capacidades térmicas mássicas

Controlo de Variáveis � Massa dos blocos de metal

Page 11: Capacidade_Termica_Massica

10

Mapa de conceitos

CAPACIDADE TÉRMICA MÁSSICA

Energia Recebida Q > 0

CAPACIDADE TÉRMICA MÁSSICA diferente

Variação de temperatura

∆θ (ºC)

pode ser

Massa dos materiais

m (kg)

Energia como calor

Q (J)

Energia Cedida Q < 0

implica

exemplos

temperatura final

> temperatura

inicial ∆θ > 0

diferentes materiais

temperatura final

<

temperatura inicial ∆θ < 0

transferência de energia

SISTEMA - VIZINHANÇA

c (Cu) = 385 J kg-1 ºC-1

transferência de energia

VIZINHANÇA - SISTEMA

Equilíbrio térmico

depende

implica

relaciona-se com

deixa de haver transferência de energia

c (Al) = 900 J kg-1 ºC-1

depende