Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of...

61
Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology

Transcript of Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of...

Page 1: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

Summer SchoolRio de JaneiroMarch 2009

5. MODELING MARITIME PBL

Amauri Pereira de Oliveira

Group of Micrometeorology

Page 2: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

2

Topics

1. Micrometeorology

2. PBL properties

3. PBL modeling

4. Modeling surface-biosphere interaction

5. Modeling Maritime PBL

6. Modeling Convective PBL

Page 3: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

3

Modeling Maritime PBL

Page 4: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

4

Maritime PBL

Sjöblom, A. and Smedam, A.S., 2003: Vertical structure in the marine atmospheric boundary layer and its implication for the inertial dissipation method, Boundary-Layer Meteorology, 109, 1-25

•Inertial layer;•Roughness layer.

Page 5: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

5

What is going on beneath the ocean surface

Thorpe, S.A., 2004: Recent developments in the study of ocean turbulence. Ann. Rew. Earth Planet. Science., 32, 91-102.

Page 6: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

6

Oceanic mixed layer

Page 7: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

7

Air-Sea Interaction

Edson et al., 1999: Coupled Marine Boundary Layers and Air-Sea Interaction Initiative: Combining Process Studies, Simulations, and Numerical Models.

Page 8: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

8

Some important discrepancies

Wainer, et al., 2003: Intercomparison of Heat Fluxes in the South Atlantic. Part I: The Seasonal Cycle. Journal of Climate.

Page 9: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

9

Convective PBL over Cabo Frio

• Cabo Frio – upwelling area• Upwelling - Stable PBL• Cold Front passage disrupt upwelling • Upwelling give place to a downwelling• Dowelling - Convective PBL

Page 10: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

10

References

Dourado, M.S. and Oliveira, A.P., 2008: A numerical investigation of the atmosphere-ocean thermal contrast over the coastal upwelling region of Cabo Frio , Brazil, Atmosfera , 21(1) ,13-34.

Dourado, M., and Oliveira, A.P., 2001: Observational description of the atmospheric and oceanic boundary layers over the Atlantic Ocean. Revista Brasileira de Oceanografia, 49, 49-64.

Available at:

http://www.iag.usp.br/meteo/labmicro

Page 11: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

11

Cabo Frio upwelling

SST

AVHRR NOAA(Dutra et al. 2006, XV CBMET)

Page 12: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

12

Upwelling Downwelling

Page 13: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

13

Cold Front July 6, 21GMT

Page 14: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

14

Cold Front

Page 15: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

15

upwellingdownwellin

g

Page 16: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

16

Second Order Closure Model

Oceanic mixed layer model

Page 17: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

17

Mean equations

z

´w´u)vV(f

t

uG

z

´w´v)uU(f

t

vG

z

R

1

z

´w'θ

t

θ N

P

vV

z

´w´q

t

q

Momentum

Thermodynamic

Specific Humidity

Page 18: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

18

Second Order Closure Model

Page 19: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

19

Oceanic Mixed Layer Model

(i) The turbulent mixing is strong enough so that upper ocean is characterized by a mixed layer where the temperature does not vary in the vertical direction;

(ii) Transition layer between the mixed layer and the stratified non turbulent ocean bellow is much smaller than the mixed layer so that the vertical variation of temperature can be indicated by a temperature jump;

(iii) The energy required to sustain turbulent mixing is provided by convergence of the vertical flux of TKE.

Page 20: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

20

Oceanic Mixed Layer Model

Mixed layer

ocean

atmosphere

Page 21: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

21

Oceanic Mixed Layer ModelTemperature (To)

Page 22: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

22

Derivation of OML Temperature equation

Page 23: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

23

Oceanic Mixed Layer Modeldepth (h) and temperature jump

(ΔT)

BT

0T13*1

Tαg

´w´TαgBhνA

h

1

td

hd

h

1´w´TII

1

td

hd

h

T

td

)T(d0Nh0N

ww

BB

Page 24: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

24

Turbulent heat flux effects

Page 25: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

25

Boundary (coupling) conditions

ww

000N0N0

c

LEHIR´w´T

Energy

Page 26: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

26

Oceanic Mixed Layer

Page 27: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

27

**P00 θucρH

**e00 quLρLE

Atmospheric turbulent fluxes

CH, CE and CD are transfer coefficient of sensible, latent and momentum (drag coefficient).

Page 28: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

28

Atmospheric turbulent fluxes

Page 29: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

29

Radiation balance at the surface

00000N LWULWDSWUSWDR

ZcosISWD 00

00 SWDSWU

Short wave down

Short wave up

Zcos2.06.0

rZtan

rZtan

rZsin

rZsin50.0

2

2

2

2

Broadband transmissivity

Albedo

Page 30: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

30

Radiation balance at the surface

Long wave contribution

Long wave up

Long wave down

ε = 0.98 Surface emissivity

a = 0.52 and b = 0.064

4000 TσεLWU

4RR0 Tσ)eba(LWD

Page 31: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

31

Boundary and coupling conditions

w0** u Stress

Page 32: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

32

MIXING LAYER MODEL CLOSURE

w

pe

zw

g

zd

vdwv

zd

udwu

t

e

00

Applying TKE equation to transition layer

Page 33: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

33

MIXING LAYER MODEL CLOSURE

i

0i0

wp

ez

wg

0

In the interface

Dimensional analysis

hw

pe

z

3

w

i0

hg

1w

3

w

0

i

Page 34: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

34

MIXING LAYER MODEL CLOSURE

1. Stationary:

2. Shear production, molecular dissipation and pressure term are neglected in transition layer is neglected because:

0t

e

0zd

udwu

zd

udwu

0

Page 35: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

35

Mixing Layer Model

TransitionLayer

Page 36: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

36

i)w(t

h

hh

h

h

)w()w(zdt

Thermodynamic Equation

Limit 0

z

)w(

t

ewt

h

Page 37: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

37

MIXING LAYER MODEL CLOSURE

hg

1w

3

w

0

i

2.0w

3

*

3

w

Thermal mixing Mechanical Mixing

3*

3w uA

hwg

w 0

0

3

*

gh

uAw 0*

i

0i w2.0w

Page 38: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

38

Stable and Convective Run

Page 39: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

39

Upwelling – Stable PBL

Downwelling - Convective PBL

Page 40: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

40

Upwelling – Stable PBL

Downwelling - Convective PBL

Page 41: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

41

Upwelling – Stable PBL

Downwelling - Convective PBL

Page 42: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

42

Upwelling – Stable PBL

Downwelling - Convective PBL

Page 43: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

43

PBL Time Evolution

Page 44: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

44

Fluxes and Variances

Page 45: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

45

Page 46: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

46

Page 47: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

47

Observations

• FluTuA– Campaign May 2002– Campaign December 2008

Page 48: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

48

FluTuAObservational campaign May

2002

Page 49: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

49

Bacellar, S., Oliveira, A. P., Soares, J., and Servain, J., 2009:

Assessing the diurnal evolution surface radiation balance over the

Tropical Atlantic Ocean using in situ measurements carried out

during the FluTuA Project. Meteorological Application.

http://dx.doi.org/10.1002/met.111

Available at:

http://www.iag.usp.br/meteo/labmicro/index_arquivos/Page779.htm

References

Page 50: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

50

Surface Emissivity

ε = 0.97 Surface emissivity

ε = 0.97

Page 51: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

51

Broadband atmospheric transmissivity

Zcos3.05.0

Page 52: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

52

Surface albedo

Page 53: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

53

Net radiation

Page 54: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

54

Comparison with satellite estimate (SRB/NASA project)

Page 55: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

55

Conclusion

Page 56: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

56

Flutua 2008

Page 57: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

57

Archipelago St Peter and St Paul

Page 58: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

58

Air Temperature and SST

Page 59: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

59

Turbulence – Nighttime conditions (20 Hz)

Page 60: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

60

Turbulence – Daytime Conditions (20 Hz)

Page 61: Summer School Rio de Janeiro March 2009 5. MODELING MARITIME PBL Amauri Pereira de Oliveira Group of Micrometeorology.

61

http://www.iag.usp.br/meteo/labmicro