Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3....

97
UNIVERSIDADE DO RIO GRANDE DO NORTE FEDERAL UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO Regulador Automático de Tensão Robusto Utilizando Técnicas de Controle Adaptativo Suélio Fernandes Carolino Orientador: Prof. Dr. Flávio Bezerra Costa Co-orientador: Prof. Dr. Ricardo Lúcio de Araújo Ribeiro Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica e de Computação da UFRN (área de concentração: Automação e Sistemas) como parte dos requisitos para obtenção do título de Mestre em Ciências. Número de ordem PPgEEC: M385 Natal, RN, 01 de Fevereiro de 2013

Transcript of Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3....

Page 1: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

UNIVERSIDADE DO RIO GRANDE DO NORTEFEDERAL

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE TECNOLOGIA

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E

DE COMPUTAÇÃO

Regulador Automático de Tensão RobustoUtilizando Técnicas de Controle Adaptativo

Suélio Fernandes Carolino

Orientador: Prof. Dr. Flávio Bezerra Costa

Co-orientador: Prof. Dr. Ricardo Lúcio de Araújo Ribeiro

Dissertação de Mestradoapresentada aoPrograma de Pós-Graduação em EngenhariaElétrica e de Computação da UFRN (área deconcentração: Automação e Sistemas) comoparte dos requisitos para obtenção do títulode Mestre em Ciências.

Número de ordem PPgEEC: M385

Natal, RN, 01 de Fevereiro de 2013

Page 2: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Divisão de Serviços Técnicos

Catalogação da publicação na fonte. UFRN / Biblioteca Central Zila Mamede

Carolino, Suélio Fernandes.Regulador Automático de Tensão Robusto Utilizando Técnicas de Controle

Adaptativo / Suélio Fernandes Carolino - Natal, RN, 201397 f.: il.

Orientador: Dr. Flávio Bezerra CostaCo-orientador: Dr. Ricardo Lúcio de Araújo Ribeiro

Dissertação (Mestrado) - Universidade Federal do Rio Grande do Norte. Cen-tro de Tecnologia. Programa de Pós-Graduação em EngenhariaElétrica e deComputação.

1. Regulador automático de tensão - Dissertação. 2. Geradorsíncrono depolos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação. I. Costa, Flávio Bezerra. II. Ribeiro,Ricardo Lúcio de Araújo. III. Universidade Federal do Rio Grande do Norte. IV.Título.

RN/UF/BCZM CDU 621.316.722

Page 3: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Regulador Automático de Tensão RobustoUtilizando Técnicas de Controle Adaptativo

Suélio Fernandes Carolino

Dissertação de Mestrado aprovada em 01 de Fevereiro de 2013 pela banca examinadoracomposta pelos seguintes membros:

Prof. Dr. Flávio Bezerra Costa (Orientador) . . . . . . . . . . . . .. . . . . . . ECT/UFRN

Prof. Dr. Ricardo Lúcio de Araújo Ribeiro (Co-orientador) .. . . . . DEE/UFRN

Prof. Dr. Alexandre Cunha Oliveira. . . . . . . . . . . . . . . . . . . . .. . . . . . . DEE/UFCG

Prof. Dr. Andrés Ortiz Salazar . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . DCA/UFRN

Page 4: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Aos meus pais, Sinval Carolino eLidia Fernandes pelo apoio e por ter

dado me condições para que eupudesse chegar até aqui. As minhas

irmãs Suênia e Zulmira e a minhanoiva Nádia Camila pelo grande

incentivo e apoio nos momentos emque mais precisei.

Page 5: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Agradecimentos

Aos meus orientadores, professores Ricardo Lúcio de AraújoRibeiro e Flávio BezerraCosta, pela dedicada orientação e ajuda ao longo desse trabalho.

Ao professor Alexandre Cunha de Oliveira pela excelente revisão realizada no texto dessadissertação e pelas sugestões.

Ao professor Andrés Ortiz pela contribuição técnica a esse trabalho.

Aos amigos do LEPER, em especial a Thiago de Oliveira, Rodrigo Barreto, Cecílio Mar-tins e Rômulo Lira pela dedicação e grande ajuda durante essajornada.

Ao amigo Raphaell Maciel pela ajuda na iniciação do mestrado.

À minha família pelo apoio durante esta jornada.

Ao CNPQ, pelo apoio financeiro.

Page 6: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Resumo

A estabilidade de geradores síncronos conectados a rede elétrica tem sido objeto de

estudo e investigações durante anos. O interesse por este assunto é justificado pelo fato de

grande parte da energia elétrica produzida no mundo ser obtida com a utilização de gera-

dores síncronos. Nesse aspecto, muitos trabalhos têm sido propostos utilizando técnicas

de controle convencional e não convencional como lógicafuzzy, redes neurais e controla-

dores adaptativos visando aumentar a margem de estabilidade do sistema quando ele está

sujeito a falhas súbitas e distúrbios transitórios. Este trabalho apresenta uma estratégia

de controle robusta não-convencional para a manutenção da estabilidade dos sistemas de

potência e regulação da tensão de saída de geradores síncronos conectados à rede elétrica.

A estratégia de controle utilizada é composta pela integração de uma superfície desli-

zante com um controlador linear. Esta estrutura de controlecontribui para a prevenção

dos sistemas de potência de perder o sincronismo após uma falha súbita e regulação da

tensão terminal do gerador após a falta. A viabilidade da estratégia de controle proposta

foi testada experimentalmente em um gerador síncrono de pólos salientes de 5 kVA em

uma estrutura de laboratório.

Palavras-chave: Regulador Automático de Tensão, Superfície Deslizante, Gerador

Síncrono de Pólos Salientes, Estabilizador de Sistemas de Potência.

Page 7: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Abstract

The stability of synchronous generators connected to powergrid has been the object

of study and research for years. The interest in this matter is justified by the fact that much

of the electricity produced worldwide is obtained with the use of synchronous generators.

In this respect, studies have been proposed using conventional and unconventional control

techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the

stability margin of the system during sudden failures and transient disturbances. This mas-

ter thesis presents a robust unconventional control strategy for maintaining the stability of

power systems and regulation of output voltage of synchronous generators connected to

the grid. The proposed control strategy comprises the integration of a sliding surface with

a linear controller. This control structure is designed to prevent the power system losing

synchronism after a sudden failure and regulation of the terminal voltage of the generator

after the fault. The feasibility of the proposed control strategy was experimentally tested

in a salient pole synchronous generator of 5 kVA in a laboratory structure.

Keywords: Automatic Voltage Regulator, Sliding Surface, Salient Pole Synchronous

Generator, Power System Stabilizer.

Page 8: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Sumário

Sumário i

Lista de Figuras iii

Lista de Tabelas v

Lista de Símbolos vii

Lista de Abreviaturas e Siglas x

1 Introdução 1

1.1 Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contribuições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Organização do Trabalho . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Estado da Arte 7

2.1 Controladores Convencionais . . . . . . . . . . . . . . . . . . . . . .. . 7

2.2 Controladores não Convencionais . . . . . . . . . . . . . . . . . . .. . 8

2.3 Resumo da Revisão Bibliográfica . . . . . . . . . . . . . . . . . . . . .. 11

3 Gerador Síncrono 13

3.1 Máquina Síncrona . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Descrição Matemática da Máquina Síncrona . . . . . . . . . . . .. . . . 14

i

Page 9: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

3.2.1 Equações do Estator . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Equações do Rotor . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 A Transformada dePark 0dq . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Modelagem do Gerador Síncrono . . . . . . . . . . . . . . . . . . . . . .19

3.4.1 Modelo Linear de Heffron e Phillips . . . . . . . . . . . . . . . .20

3.5 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sistema de Excitação do Gerador Síncrono 27

4.1 Estrutura Geral de um Sistema de Excitação . . . . . . . . . . . .. . . . 27

4.2 Regulador Automático de Tensão (AVR) . . . . . . . . . . . . . . . .. . 28

4.3 Estabilizador de Sistema de Potência (PSS) . . . . . . . . . . .. . . . . 30

4.4 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Técnicas de Controle Adaptativo 33

5.1 Tipos de Controladores Adaptativos . . . . . . . . . . . . . . . . .. . . 33

5.2 Controle de Modos Deslizantes . . . . . . . . . . . . . . . . . . . . . .. 36

5.3 Controlador Adaptativo Proposto . . . . . . . . . . . . . . . . . . .. . . 38

5.3.1 Alocação de Polos . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Implementação do controlador SM-PI . . . . . . . . . . . . . . . . .. . 45

5.5 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Resultados Experimentais 47

6.1 Plataforma de Desenvolvimento Experimental . . . . . . . . .. . . . . . 47

6.2 Ensaio 1: Falta Monofásica na Linha de Transmissão . . . . .. . . . . . 49

6.3 Ensaio 2: Falta Trifásica na Linha de Transmissão . . . . . .. . . . . . . 52

6.4 Ensaio 3: Abertura da Linha de Transmissão . . . . . . . . . . . .. . . . 55

6.5 Conclusão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Page 10: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

7 Conclusões 57

7.1 Conclusões Gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Trabalhos Futuros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Referências bibliográficas 59

A Ensaios laboratorial 64

A.1 Equipamentos Utilizados para o Ensaio Laboratorial . . .. . . . . . . . 64

A.2 Ensaio de Circuito Aberto . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Curva do Entreferro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.4 Ensaio de Curto-circuito . . . . . . . . . . . . . . . . . . . . . . . . . .67

A.5 Ensaio de Escorregamento para Determinação dexd exq . . . . . . . . . 68

B Descrição da Plataforma Experimental 71

B.1 Bancada Experimental para Implementação dos Controladores . . . . . . 71

B.1.1 Sensores de Tensão e de Corrente . . . . . . . . . . . . . . . . . 71

B.1.2 DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

B.1.3 Conversores Estáticos . . . . . . . . . . . . . . . . . . . . . . . 72

B.2 Conjunto Motor de Corrente Contínua e Gerador Síncrono .. . . . . . . 73

B.3 Emulador do Sistema Elétrico de Potência . . . . . . . . . . . . .. . . . 74

B.4 Dificuldades Encontradas . . . . . . . . . . . . . . . . . . . . . . . . . .76

C Operações Aritméticas para a Implementação dos Controladores 77

Índice Remissivo 78

Page 11: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Lista de Figuras

1.1 Formas de geração da energia elétrica. . . . . . . . . . . . . . . .. . . . 2

3.1 Modelo simplificado da máquina síncrona: (a) circuito dorotor; (b) cir-

cuito do estator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Tensão com a transformada de Park. . . . . . . . . . . . . . . . . . . .. 18

3.3 Máquina síncrona conectada ao barramento através da impedânciars+ jxs. 19

3.4 Estrutura do modelo de Heffron e Phillips. . . . . . . . . . . . .. . . . . 20

4.1 Sistema de excitação de um gerador síncrono. . . . . . . . . . .. . . . . 27

4.2 Estrutura clássica de um AVR. . . . . . . . . . . . . . . . . . . . . . . .28

4.3 Estrutura de um PSS convencional. . . . . . . . . . . . . . . . . . . .. . 30

4.4 Estrutura de um PSS adaptativo. . . . . . . . . . . . . . . . . . . . . .. 32

5.1 Diagrama de blocos de um controlador adaptativo. . . . . . .. . . . . . 34

5.2 Diagrama de blocos de um controlador adaptativo indireto. . . . . . . . . 35

5.3 Diagrama de blocos de um controlador adaptativo direto.. . . . . . . . . 36

5.4 Superfície de deslizamento de controlador SMC. . . . . . . .. . . . . . 37

5.5 Diagrama de blocos SM-PI. . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.6 Malha de controle proposta. . . . . . . . . . . . . . . . . . . . . . . . .39

5.7 Polos complexos com partes real e imaginária iguais. . . .. . . . . . . . 41

5.8 Lógica de implementação do SM-PI. . . . . . . . . . . . . . . . . . . .. 45

6.1 Diagrama elétrico da plataforma de desenvolvimento experimental. . . . . 47

iv

Page 12: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

6.2 Comparação entre o SM-PI e o PI na tensãoedq do gerador síncrono. . . . 50

6.3 Potência ativa no sistema durante a falta. . . . . . . . . . . . .. . . . . . 51

6.4 Ângulo de carga do gerador síncrono. . . . . . . . . . . . . . . . . .. . 52

6.5 Velocidade do gerador síncrono durante a falta trifásica. . . . . . . . . . . 53

6.6 Frequência do sistema durante a falta trifásica. . . . . . .. . . . . . . . . 54

6.7 Tensãoedq do gerador durante a abertura da linha de transmissão. . . . . 55

A.1 Esquema de ligação da plataforma experimental. . . . . . . .. . . . . . 65

A.2 Curvas do entreferro, curva de circuito aberto e curva decurto-circuito. . 67

A.3 Esquema de ligação para o ensaio de escorregamento. . . . .. . . . . . . 68

A.4 Ensaio de escorregamento. . . . . . . . . . . . . . . . . . . . . . . . . .69

B.1 Bancada experimental desenvolvida no laboratório. . . .. . . . . . . . . 73

B.2 Conjunto máquina de corrente continua e gerador síncrono. . . . . . . . . 74

B.3 Emulador de sistema de potência com simulador de distúrbios. . . . . . . 75

Page 13: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Lista de Tabelas

1.1 Publicações dos resultados da dissertação e de seu desdobramento. . . . . 5

2.1 Resumo da revisão bibliográfica. . . . . . . . . . . . . . . . . . . . .. . 11

6.1 Parâmetros dos controladores utilizados nos três ensaios. . . . . . . . . . 49

6.2 Parâmetros do ensaio 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Comparação do controlador PI com o SM-PI para o ensaio 1. .. . . . . . 51

6.4 Parâmetros do ensaio 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Comparação PI com o SM-PI para o ensaio 2 (velocidade). . .. . . . . . 53

6.6 Comparação PI com o SM-PI para o ensaio 2 (frequência). . .. . . . . . 54

6.7 Comparação PI com o SM-PI para o ensaio 3. . . . . . . . . . . . . . .. 55

A.1 Parâmetros da máquina de corrente contínua. . . . . . . . . . .. . . . . 64

A.2 Parâmetros de placa da máquina síncrona de polos salientes. . . . . . . . 65

A.3 Valores da tensão e corrente do ensaio de escorregamento. . . . . . . . . 69

A.4 Parâmetros da máquina síncrona eixo: d e q. . . . . . . . . . . . .. . . . 69

A.5 Parâmetros da máquina síncrona:Lmd eLmq. . . . . . . . . . . . . . . . . 70

A.6 Parâmetros do Gerador Síncrono. . . . . . . . . . . . . . . . . . . . .. . 70

B.1 Parâmetros da linha e simulador de distúrbios. . . . . . . . .. . . . . . . 74

C.1 Operações aritméticas necessárias para a implementação das estratégias

de controle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vi

Page 14: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Lista de Símbolos

Aη∗ Polinômio utilizado como referência para o cálculo dos controladores

Ce, Cm Conjugado elétrico e conjugado mecânico

C[θc(t)] Modelo do controlador

δ Ângulo entre o eixo q e o vetor tensão do barramento

∆δ Variação do ângulo de potência

∆P Variação de potência

∆ω Variação da velocidade do gerador síncrono

eacc Tensão de armadura nominal do motor de corrente continua

ea, eb eec Tensão de fase do gerador síncrono

ed, eq Tensão de eixo direto e em quadratura do gerador, respectivamente

e∗dq Módulo da tensão do barramento (valor de referência)

ef d Tensão de campo do gerador

e∗f d Tensão de campo do gerador (valor de referência)

es Matriz de tensão de armadura do gerador síncrono

e∞ Tensão do barramento infinito

f , g, h Funções não-lineares

fs Frequência das tensões geradas à velocidade nominal

Gc(s) Função de transferência do controlador

Ges(s) Função de transferência do gerador síncrono

iacc Corrente de armadura nominal do motor de corrente continua

ia, ib e ic Corrente de fase do gerador síncrono

id, iq Corrente de eixo direto e em quadratura do gerador, respectivamente

i f d Corrente de campo do gerador

ikd e ikq Corrente nos enrolamentos amortecedores nos eixosd e q , respectiva-

mente

i0dq, e0dq e

λ0dq

Matrizes de corrente, tensão e fluxo obtidos através da transformada de

Park

ir Matriz de correntes do rotor

vii

Page 15: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

is Matriz de corrente de armadura do gerador síncrono

isnom Corrente de armadura nominal do gerador síncrono

K1 · · · , K6 Coeficientes do modelo de Heffron e Philips

kp, kp, k+p ,

k−p ekηp

Ganhos proporcionais do controlador SM-PI

ki , ki , k+i ,

k−i ekηi

Ganhos integrais do controlador SM-PI

La f d, Lb f d e

Lc f d

Indutância mútua entre as bobinas do estator e rotor

L f d Indutância do enrolamento de campo

Lk f d Indutância do enrolamento amortecedor do eixod

Ls, Lr Matriz de indutâncias próprias entre bobinas do estator e entre bobinas

do rotor, respectivamente

λd, λq Fluxo de eixo direto e em quadratura respectivamente

λs, λr Fluxos do estator e rotor, respectivamente

λa, λb e λc Fluxo em cada fase do gerador síncrono

λ f d Fluxo de campo

λs Matriz de fluxo das fases do gerador síncrono

Mo% Percentual deovershoot

Ms, Mr Matriz de indutâncias mútuas entre duas bobinas do estator eentre duas

bobinas do rotor, respectivamente

Mrs, Msr Matriz de indutâncias mútuas entre bobinas do estator e do rotor, res-

pectivamente

M Constante de inércia do gerador

ncc Velocidade nominal do motor de corrente continua

P, P−1 Transformadas dePark

P(θ∗) Função de transferência da planta

Pmcc Potência ativa do motor de corrente continua

Ra, Rb eRc Resistência de armadura do gerador síncrono

Rf d Resistências do campo

Rkd eRkq Resistências dos enrolamentos amortecedores dos eixosd eq, respecti-

vamente

Rs Matriz de resistência das fases do gerador síncrono

rs, xs Resistência e reatância entre o gerador e o barramento infinito, respec-

tivamente

Sgs Potência aparente nominal do gerador síncrono

Page 16: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

σ Superfície de deslizamento do SM-PI

θc(t) Parâmetros do controlador

θ∗ Parâmetros da planta

θ(t) Estimativa paraθ∗ em um determinado instante t

Pc(θ∗c) Módulo da planta em função dos parâmetros do controlador

Tes(s) Função de transferência em malha fechada do controlador como mo-

delo do gerador

tηss2% Tempo de estabilização da planta levando-se em conta o critério de 2%

τ′d0 Constante de tempo de eixo direto em circuito aberto do gerador

ε Erro entre o valor de referência e o valor medido

Xodq Variável obtida através da transformada dePark

xd, xq Reatância síncrona de eixo direto e em quadratura do gerador, respecti-

vamente

x′d Reatância transitória de eixo direto do gerador

Z(s), R(s),

P(s) eR(s)

Polinômios

ωr Velocidade nominal do gerador

Page 17: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Lista de Abreviaturas e Siglas

ANEEL Agência Nacional de Energia Elétrica

APEC Applied Power Electronics Conference and Exposition

APPC Adaptive Pole Placement Control

AVR Automatic Voltage Regulator

CA Corrente Alternada

CC Corrente Continua

CL Carga Linear

CNPq Conselho Nacional de Desenvolvimento Cientifico e Tecnológico

DEE Departamento de Engenharia Elétrica

DSP Digital Signal Processing

FMM Força magnetomotriz

GS Gerador síncrono

HOSM Higher Order Sliding Modes

IEEE Institute of Electrical and Electronic Engineers

INDUSCON International Conference on Industry Application

LEPER Laboratório de Eletrônica de Potência e Energias Renováveis

LTI Linear Time Invariant

MCC Motor de Corrente Continua

MRAC Model Reference Adaptive Control

PI Controlador Proporcional Integral

PID Controlador Proporcional Integral Derivativo

PSS Power System Stabilizer

PWM Pulse Width Modulation

RNA Rede Neural Artificial

SEP Sistema Elétrico de Potência

SM Sliding Mode

SMC Sliding Mode Control

UFRN Universidade Federal do Rio Grande do Norte

x

Page 18: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

VSI Voltage Source Inverter

VS-APPC Variable Structure Adaptive Pole Placement Control

Page 19: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 1

Introdução

A energia elétrica é responsável por grande parte dos avanços tecnológicos, tornando-

se a principal fonte de luz, calor e força do mundo moderno. NoBrasil, a energia elétrica

é produzida em usinas, normalmente hidrelétrica, que são geralmente construídas longe

dos centros consumidores. Um sistema elétrico de potência (SEP) é comumente dividido

em subsistemas, tais como:

• Sistema de Geração - compreende o processo de conversão de energia elétrica por

meio de diversas fontes primárias, tais como fontes térmicas, hidráulicas, solar e

eólica;

• Sistema de Transmissão - está associado ao “transporte” da energia elétrica através

de linhas de transmissão de médias e longas distâncias;

• Sistema de Distribuição - está associado ao “transporte” daenergia elétrica do ponto

de chegada da transmissão até cada consumidor;

• Consumidores - indústrias e residências que utilizam a energia elétrica.

Dentre os componentes do SEP, o sistema de geração exerce um papel fundamental,

compreendendo todo o processo de conversão de energia de umafonte primária (recurso

natural) em eletricidade. As principais formas de geração de energia elétrica são mostra-

das no diagrama da Figura 1.1.

Page 20: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 1. INTRODUÇÃO 2

Térmica Mecânica Elétrica

FóssilNuclearBiomassaSolar

Conversão de Energia

HidroEólica

Solar

Figura 1.1: Formas de geração da energia elétrica.

No Brasil, o sistema de geração tem forte predominância por usinas hidrelétricas.

Segundo dados da ANEEL (2012), 65,57% da energia elétrica produzida no país é prove-

niente desta forma de conversão de energia, seguida da geração por meio de termelétricas,

que corresponde a 26,76% da produção energética. Portanto,92,33% da energia produ-

zida no Brasil vem dessas duas formas de conversão. A energiaelétrica proveniente de

hidrelétricas e termelétricas é produzida por geradores síncronos que são classificados

pelo aspecto construtivo do seu rotor em geradores síncronos de polos lisos ou geradores

síncronos de polos salientes. Os geradores síncronos de polos lisos são acionados meca-

nicamente por turbinas a vapor (usinas termelétricas) em altas velocidades, na ordem de

3600 rpm ou 1800 rpm, dependendo da quantidade de polos do rotor. Por outro lado, os

geradores síncronos de polos salientes são acionados mecanicamente por turbinas hidráu-

licas (usinas hidrelétricas) em baixas rotações, normalmente menores que 900 rpm. Com

isso, os geradores síncronos de polos salientes possuem um número elevado de polos no

rotor e, consequentemente, os seus rotores são maiores que os de polos lisos.

Em geral, os geradores síncronos operam conectados a um sistema de alimentação

conhecido como barramento infinito, nos quais a tensão e a frequência raramente mudam

de valor (SEN, 1997). Os benefícios de diversos geradores funcionando em paralelo, do

ponto de vista da geração, são aumento na flexibilidade e na facilidade de manutenção,

visto que em uma configuração paralela, por exemplo se um gerador falhar, as cargas

são redistribuídas entre as outras unidades do sistema. Além disso, com vários geradores

disponíveis, manutenções e reparos preventivos podem ser programados, pois os demais

geradores irão continuar atendendo a demanda do sistema (BEKIROGLU; BAYRAK,

2009). Fan e Liao (2012) mostraram que apesar da confiabilidade dos geradores operando

interligados, eles estão sujeitos a falhas, transitórios rápidos e harmônicos que podem

fazê-los perder o sincronismo com o sistema ou diminuir o seudesempenho. Se esses

eventos não forem corrigidos de maneira satisfatória, os geradores podem entrar em uma

Page 21: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 1. INTRODUÇÃO 3

região de instabilidade, podendo ser retirados de operação.

Tradicionalmente, os problemas de estabilidade em SEPs residem na manutenção do

gerador funcionando em sincronismo com o barramento. Desteponto de vista, a estabi-

lidade é influenciada pelas dinâmicas do rotor dos geradorese as relações de potência-

ângulo dos mesmos, sendo conhecida como estabilidade de ângulo do rotor (KUNDUR,

1994). A estabilidade do SEP também pode ser influenciada semque ocorra a perda de

sincronismo do gerador com o barramento. Neste caso, o problema se trata em manter as

tensões em níveis pré-estabelecidos apesar de variações decargas no sistema. Esta forma

de estabilidade é conhecida como estabilidade de tensão (KUNDUR, 1994). Portanto, o

SEP deve ser capaz de permanecer estável apesar de estar sujeito a distúrbios, pertuba-

ções e variações de carga. Basler e Schaefer (2007) relatam que entre os anos de 1950

e 1960 as unidades de geração de energia começaram a ser equipadas com reguladores

automáticos de tensão (AVR,do inglês Automatic Voltage Regulator). Esses regulado-

res são os principais componentes do sistema de excitação dogerador síncrono, tendo

como principal função regular a tensão terminal fornecida pelo gerador, aumentar o de-

sempenho quando ocorrem transitórios e assegurar a estabilidade do SEP na ocorrência de

perturbações externas e/ou variações paramétricas (DEMELLO; CONCORDIA, 1969).

Os estabilizadores do sistema de potência (PSS,do inglês Power System Stabilizer)

também podem ser incluídos nos AVRs (BASLER; SCHAEFER, 2007). Os PSSs têm

como função amortecer oscilações do rotor do gerador síncrono, adicionando um sinal

estabilizante auxiliar no controle de excitação do gerador. Para conseguir proporcionar

esse amortecimento, o PSS deve ser capaz de produzir um conjugado elétrico em fase

com as variações de velocidade do rotor do gerador. Desta forma, o sinal de saída do PSS

é aplicado ao ponto de soma do AVR.

O conjunto AVR-PSS é implementado utilizando técnicas de controle convencionais,

sendo o controlador Proporcional Integral Derivativo (PID) o mais utilizado nas usinas

de geração de energia, com o cálculo dos seus ganhos baseadosno modelo linearizado

do sistema (PADIYAR, 2008). No entanto, pelo fato do sistemapossuir características

não lineares, controles não convencionais também têm sido utilizados para melhorar a

resposta do sistema, a exemplo dos controladores baseados em lógicafuzzy, redes neurais

artificiais e técnicas de controle adaptativo. Os controlesnão convencionais prometem

aumentar a margem de estabilidade do sistema e deixar o sistema mais robusto a pertur-

bações e condições adversas. No entanto, essas técnicas de controle, na maioria das vezes

são bastante complexas para serem implementadas na prática, seja pela alta carga compu-

tacional ou seja pela alta complexidade na sintonia do controlador. Neste contexto, esse

Page 22: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 1. INTRODUÇÃO 4

trabalho propõe a implementação de uma técnica de controle híbrida, com a utilização da

técnica de controle por modo deslizante (SMC, do inglêsSliding Mode Control) associada

ao controlador Proporcional Integral (PI), empregada a um AVR com a finalidade de au-

mentar a margem de estabilidade do sistema sem aumentar a complexidade da estratégia

proposta.

1.1 Motivação

Apesar de diversos trabalhos propostos nas últimas décadassobre os reguladores au-

tomáticos de tensão aplicados a geradores síncronos, aindaexiste a possibilidade de me-

lhorias na sua concepção, visto que os AVRs baseados nos controladores convencionais

garantem a estabilidade do sistema apenas em torno do ponto de operação ao qual foram

projetados, enquanto que estratégias de controle não convencionais apresentam alta carga

computacional e complexidade no projeto. Nesse cenário, a concepção de um AVR com

característica híbrida que contemple a facilidade de projeto do controlador convencional

com a característica de auto-ajuste de controladores não convencionais sem que para isso

seja necessário uma carga computacional elevada é a principal motivação do estudo dos

reguladores de tensão.

1.2 Objetivos

Esse trabalho tem como objetivo o desenvolvimento e implementação de um regu-

lador de tensão robusto, de simples implementação, que apresente desempenho superior

as estratégias de controle convencionais e que seja equivalente as estruturas de controle

adaptativa.

Os objetivos específicos são:

• Implementação do controlador em DSP;

• Avaliação do desempenho do controlador proposto mediante testes experimentais

realizados no laboratório com um protótipo reduzido de um sistema elétrico de

potência;

• Comparação de desempenho do controlador proposto com um controlador conven-

cional;

Page 23: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 1. INTRODUÇÃO 5

1.3 Contribuições

As principais contribuições são:

• Obter um controlador robusto para o regulador de tensão de fácil implementação e

que reduz ochaterringoriundo da técnica SMC;

• O controlador proposto se adequa às novas situações sem a necessidade de estima-

tivas paramétricas da planta;

• Possibilidade de implementação do controlador proposto nos AVRs utilizados nas

usinas de geração de energia elétrica, visto que o algoritmodo controlador proposto

possui uma rotina de controle similar ao controlador convencional PI.

No que diz respeito às publicações dos resultados da dissertação e de seu desdobra-

mento, apresentam-se na Tabela 1.1 as publicações em periódicos e anais de congressos.

Tabela 1.1: Publicações dos resultados da dissertação e de seu desdobramento.

Evento/Periódico Título Autores

International Conference on

Industry Applications (IN-

DUSCON), 2012 Fortaleza

Comparison Between two Ver-

sions of the Discrete Wavelet

Transform for Real-Time Tran-

sient Detection on Synchronous

Machine Terminals*

F.B. Costa, C. M. S. Neto,

S. F. Carolino, R. L. A. Ri-

beiro, R. L. Barreto, T. O.

A. Rocha, P. Pott

Applied Power Electronics

Conference and Exposition

(APEC), 2013, Long Beach,

USA

Enhanced Power Quality Com-

pensation in PV Single-Phase

Grid-Tied Systems**

R. L. A. Ribeiro, T. O. A.

Rocha, R. L. Barreto e S. F.

Carolino

* Publicado, ** Aceito.

Page 24: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 1. INTRODUÇÃO 6

1.4 Organização do Trabalho

Este trabalho está organizado em sete capítulos e três apêndices da seguinte forma:

• Capítulo 1: Apresenta-se a introdução e a contextualizaçãodo tema;

• Capítulo 2: Apresenta-se o estado da arte dos SEPs, os principais componentes do

sistema de controle para a sua estabilização e uma revisão geral das técnicas de

controle utilizadas nos AVRs e nos PSSs.

• Capítulo 3: Apresenta-se o modelo linear de Heffron e Phillips para o gerador sín-

crono conectado ao barramento infinito através de uma impedância externa. Tam-

bém é apresentada a função de transferência utilizada para ocálculo dos controla-

dores convencionais e do controlador SM-PI.

• Capítulo 4: Apresenta-se o sistema de excitação do gerador síncrono, os regulado-

res de tensão e os PSSs, mostrando-se as características dosPSSs convencionais e

não-convencionais.

• Capítulo 5: Apresentam-se as técnicas de controle adaptativas direta e indireta.

Também é apresentado o procedimento realizado para o projeto do controlador SM-

PI proposto.

• Capítulo 6: Apresentam-se os resultados experimentais do controlador proposto

obtidos com um modelo em escala laboratorial de um sistema elétrico de potência,

composto por um gerador síncrono de pólos salientes de 5 kVA euma máquina de

corrente continua, linhas de transmissão e cargas lineares, com o objetivo de emular

de maneira reduzida um sistema real de maior porte.

• Capítulo 7: Apresentam-se as conclusões do trabalho e perspectivas de trabalhos

futuros;

• Apêndice A: Apresentam-se os ensaios laboratoriais realizados para a obtenção dos

parâmetros da máquina síncrona;

• Apêndice B: Apresentam-se detalhes da montagem experimental;

• Apêndice C: Apresenta-se o número de operações aritméticaspara a implementa-

ção dos controladores.

Page 25: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 2

Estado da Arte

Apresenta-se nesse capítulo o estado da arte referente as estratégias de controle con-

vencionais e não convencionais utilizadas nos reguladoresautomáticos de tensão.

2.1 Controladores Convencionais

Na literatura são propostas diversas estratégias de controle para o conjunto AVR-PSS,

nas quais muitas delas baseiam-se em estratégias de controle convencionais, tais como

controlador Proporcional Integral (PI), Proporcional Integral Derivativo (PID) e controla-

dor avanço-atraso (Lead-Lag) (BA-MUQABEL; ABIDO, 2006), (BERA; DAS; BASU,

2004) assim como nos esquemas de controle preditivo, no quala ação de controle é base-

ada nos valores atuais e futuros das variáveis relevantes. Aação rápida dos controladores

convencionais de ganhos fixos é necessária para manter a estabilidade do SEP, visto que

uma resposta lenta do controlador ou um atraso na sua atuaçãopode levar o gerador a

perder o sincronismo com o sistema (AMAN et al., 2011).

Em geral, a modelagem adotada nos esquemas de controle convencionais inclui o

modelo linear de um gerador síncrono conectado a um barramento infinito, escrito na de-

composição da transformada de Park d-q, cujos parâmetros são normalmente conhecidos

e constantes (DEMELLO; CONCORDIA, 1969). Contudo, deve serenfatizado que em

tais abordagens as variações das condições de operação do sistema não são modeladas.

Padiyar (2008) mostra a necessidade da linearização do modelo do sistema em torno do

ponto de operação para a regulação dos ganhos do AVR-PSS baseado no controlador con-

vencional. Além disso, a sintonia desse tipo de AVR-PSS varia de acordo com o modo

de oscilação do sistema. Com isso, para cada modo de oscilação, tais como oscilação

intra-planta, oscilação local e oscilação inter-área a sintonia do AVR-PSS convencional

Page 26: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 2. ESTADO DA ARTE 8

deverá ser alterada. Desta forma, o conjunto AVR-PSS baseado nos controladores con-

vencionais apresentam bom desempenho na compensação das oscilações específicas e

mantém o sistema estável apenas em torno do ponto de operaçãolinearizado. No en-

tanto, os SEPs tipicamente apresentam comportamento não-linear (Lü; SUN; MEI, 2001)

e, de acordo com Anderson e Fouad (2002), os limites de regimepermanente do SEP

aumentam quando são usados controladores de rápida atuaçãono conjunto AVR-PSS.

2.2 Controladores não Convencionais

Para superar as limitações dos controladores convencionais, sistemas de controle

que não dependem do modelo do sistema vêm sendo proposto, tais como lógicafuzzy

(HIYAMA; UEKI; ANDOU, 1997),(LOWN; SWIDENBANK; HOGG, 1997),(BHAT,

2004) ou redes neurais artificiais (RNA) (HE; MALIK, 1997),(SWIDENBANK et al.,

1999). Apesar de apresentarem bom desempenho se comparado com os controladores

convencionais, esses tipos de controle não garantem a estabilidade do sistema em malha

fechada (MOUNI; TNANI; CHAMPENOIS, 2009), visto que uma base de treinamento

bem representativa é essencial e não se tem garantia de seu desempenho diante de uma

situação nova no caso das RNAs. Além do mais, esse tipo de estratégia de controle funci-

ona como uma caixa preta, no qual não é possível saber a relação entre os parâmetros de

entrada e saída.

O controle linear ótimo também é usado na regulação da tensãoterminal do gerador.

Com base no modelo de terceira ordem do gerador, esse tipo de controlador é constituído

por três partes: a identificação de parâmetros, o cálculo dosganhos de realimentação

pela equação de Ricatti e o controlador. A principal desvantagem desse tipo de técnica

de controle consiste na elevada carga computacional necessária para a identificação de

parâmetros e a solução da equação de Riccati (MAO et al., 1990), (MOUNI; TNANI;

CHAMPENOIS, 2009). Recentemente, estratégia de controle de realimentação não-linear

associada a um sistema de modelagem linear, considerando asvariações de carga desco-

nhecidas tem sido proposta para melhorar o desempenho do sistema. Os controladores

são desenvolvidos usando o métodoH∞1 e implementado no domínio do tempo (BARA-

KAT et al., 2011). O principal objetivo é melhorar o desempenho transitório e garantir

a estabilidade do sistema na presença de variações desconhecidas das condições de ope-

1Técnica de controle robusto que lida com incertezas na representação do modelo da planta. Controla-dores projetados utilizando essa técnica estão aptos para superarem as pequenas diferenças entre o modeloreal da planta e o modelo utilizado para o projeto.

Page 27: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 2. ESTADO DA ARTE 9

ração. O desempenho desse controlador está relacionado coma precisão da modelagem

do sistema, sendo que diferentes estratégias de modelagem são analisadas para que seja

obtido um modelo linear global do sistema, tendo em conta a variação de carga desco-

nhecida e a realimentação não-linear do controlador. O desempenho de cada solução é

avaliada usando a síntese do controleH∞ e realizados testes experimentais em tempo real.

As estratégias de controle adaptativas também foram propostas na concepção do con-

junto AVR-PSS para assegurar a estabilidade do sistema e suprimir as oscilações de baixa

frequência decorrentes de perturbações que ocorrem na redeelétrica. Nos esquemas de

auto-ajuste, um circuito adaptativo externo é adicionado ao AVR convencional. Neste ci-

clo, os parâmetros do sistema são estimados a partir das medições de entrada e de saída

da planta, em geral pelo método dos mínimos quadrados recursivos. Com base nos pa-

râmetros estimados, os coeficientes do AVR são ajustados, deacordo com o método de

concepção escolhido, como o controle linear ótimo (MAO et al., 1990), controle adapta-

tivo (FARSI; ZACHARIAH; FINCH, 1996), controle de variância mínima (WU; HOGG,

1988). Embora essas técnicas de controle sejam diferentes por conta do procedimento

de projeto escolhido, todas elas são procedimentos tipo caixa preta. Além disso, estas

técnicas de controle adaptativas são difíceis de serem implementadas na prática devido

a elevada carga computacional e o procedimento para o projeto do controlador não ser

trivial.

Devido aos problemas das estratégias de controle adaptativas, abordagens simplifi-

cadas também vêm sendo propostas. Zhang e Luo (2009) propõemum AVR usando o

algoritmo de mínimos quadrados restritos, uma estratégia de controle adaptativa simples,

com base no modelo de referência (MRAC). Essa lei é definida detal forma que o com-

portamento do sistema em malha fechada converge para o modelo de referência. No

entanto, devido à dinâmica do sistema ser complexa, o modelode referência que descreva

o comportamento do sistema é comparativamente difícil de seobter. Além disso, a planta

controlada deve cumprir os pressupostos necessários para assegurar a existência de uma

solução assintoticamente estável (ZHANG; LUO, 2009). Esseesquema de controle pro-

mete reduzir a complexidade de implementação, sem perder o desempenho do sistema.

Outra estratégia de controle também utilizada na literatura é o controle por modo des-

lizante (SMC, do inglêsSliding Mode Control)(UTKIN; GULDNER; SHIN, 1999), de-

vido à sua baixa sensibilidade a variações paramétricas e perturbações externas. O SMC

é considerado uma técnica bem adequada para em aplicações com plantas não-lineares,

como é o caso do gerador ligado ao sistema de potência (ABIDI;SABANOVIC, 2007).

Com base nesta abordagem, dois controladores têm sido propostos para aplicações com

Page 28: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 2. ESTADO DA ARTE 10

uma máquina ligada ao barramento infinito (LOUKIANOV et al.,2004) ou em sistemas

multi-máquinas (HUERTA; LOUKIANOV; CANEDO, 2009). As variáveis da lei de con-

trole alternam rapidamente entre limites extremos. A desvantagem do SMC está no fato

de gerar ochatteringpodendo com isso provocar vibrações no sistema de energia devido a

dinâmica não modelada da excitatriz (BOIKO et al., 2007). Essas vibrações podem resul-

tar em oscilações mecânicas indesejáveis, o que pode resultar na imprecisão do controle.

Com o objetivo de reduzir esses efeitos, Loukianov et al. (2011) propuseram uma aborda-

gem baseada na técnica de bloco de controle combinado com o SMC de alta ordem. No

trabalho de Loukianov et al. (2011), um controlador não linear com base na combinação

do bloco de controle de linearização e a técnica do controle por modo deslizante foi pro-

posta. O modelo utilizado para o controle é totalmente não-linear, e leva em conta todas

as interações entre a dinâmica elétrica, a mecânica e as restrições de carga. Um observa-

dor não linear para estimar a excitação e os fluxos do rotor e o conjugado mecânico são

utilizados.

Mais recentemente, estruturas híbridas de controle que utilizam as propriedades de

duas ou mais abordagens têm sido concebidas, cada uma tratando de diferentes necessi-

dades do sistema como é o caso do VS-APPC que combina o controle a estrutura variável

SMC com o controle por posicionamento de pólos (APPC, do inglêsAdaptive Pole Place-

ment Control) ganharam considerável interesse (RIBEIRO; AZEVEDO; SOUSA, 2012).

Isto é conseguido por conta da robustez inerente do SMC a incertezas paramétricas e

aumento da margem de estabilidade promovido pelo controle adaptativo. Essa estrutura

é implementada com a associação do APPC e a técnica de controle a estrutura variável

(SMC), onde os ganhos do controlador são calculados com basenas leis de adaptação das

estimativas paramétricas da planta obtidas pelo SMC. Além da dependência da estimação

dos parâmetros da planta, estas estruturas de controle ainda apresentam uma implementa-

ção de considerável complexidade.

Na mesma linha de concepção das estruturas de controle híbrida, tendo em conta os

problemas relacionados aos reguladores de tensão baseadosnos controladores convenci-

onais que são restritos a um ponto de operação e aos controladores não convencionais

que possuem uma elevada carga computacional para implementações práticas e comple-

xos projetos, pretende-se nesse trabalho desenvolver um regulador de tensão robusto que

apresente desempenho superior aos concebidos por estratégias de controle convencionais

e sejam equivalentes as estruturas de controle adaptativase que possua simples imple-

mentação prática e fácil projeto.

Page 29: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 2. ESTADO DA ARTE 11

A estrutura de controle proposta é composta pela integraçãodo SMC com o contro-

lador convencional PI, nos quais os ganhos do PI são calculados pelas leis chaveadas de

acordo com a superfície de deslizamento. Essa estrutura de controle apresenta robustez a

distúrbios externos e variações paramétricas, além de possuir chatteringreduzido quando

comparada às estratégias que utilizam o SMC convencional.

2.3 Resumo da Revisão Bibliográfica

O resumo da revisão bibliográfica é apresentado na Tabela 2.1, destacando-se as prin-

cipais publicações referentes aos métodos de controle utilizados na regulação da tensão

terminal do gerador síncrono e no amortecimento das oscilações eletromecânicas. Tam-

bém é mostrado se o método utilizado é aplicado apenas no AVR,apenas no PSS ou em

ambos, bem como a forma como esses métodos foram validados, se por simulação (Sim.)

ou de forma experimental (Exp.).

Tabela 2.1: Resumo da revisão bibliográfica.

Referência ControladorAplic. Validação

AVR PSS Sim. Exp.

Limebeer e Kasenally (1986) Controle linear ótimo√

-√

-

Wu e Hogg (1988) Adaptativo c/ estimação√

-√

-

Mao et al. (1990) Controle linear ótimo√ √ √

-

Saidy e Hughes (1995) Preditivo√ √ √

-

Farsi, Zachariah e Finch (1996) Adaptativo c/ estimação√

-√

-

Flynn et al. (1996) Adaptativo c/ estimação√

-√

-

Ghazizadeh, Saidy e Hughes (1997) Preditivo√ √ √

-

Saidy (1997) Preditivo√ √ √

-

Hiyama, Ueki e Andou (1997) Fuzzy√ √ √

-

Lown, Swidenbank e Hogg (1997) Fuzzy -√ √

-

He e Malik (1997) Rede Neural -√ √

-

Machowski et al. (1998) Método de Lyapunov√ √ √

-

Swidenbank et al. (1999) Rede Neural√

-√

-

Ghazizadeh, Saidy e Hughes (1997) Preditivo√ √ √

-

Loukianov et al. (2004) SMC c/ observ. não-linear√

-√

-

Page 30: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 2. ESTADO DA ARTE 12

Kim e Schaefer (2004) PID√ √ √

-

Perez, Mora e Olguin (2006) Adaptativo c/ estimação -√ √ √

Okabe, Fukuoka e Iwamoto (2008)Adaptativo Gain Sheduling -√ √

-

Fusco e Russo (2008) Adaptativo c/ estimação√ √ √

-

Zhang e Luo (2009) Adaptativo MRAC -√

-√

Huerta, Loukianov e Canedo (2009)SMC + Bloco de Controle -√ √

-

Mouni, Tnani e Champenois (2009) MétodoH∞√

-√

-

Barakat et al. (2011) MétodoH∞√

-√

-

Loukianov et al. (2011) SMC de alta ordem√ √ √

-

Page 31: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 3

Gerador Síncrono

Neste capítulo será mostrado o modelo para um sistema de potência composto por

um gerador síncrono ligado a um barramento infinito. O modeloa ser tratado é o modelo

linear de Heffron e Phillips (DEMELLO; CONCORDIA, 1969), largamente utilizado na

literatura para o estudo da estabilidade a pequenas perturbações. Nesse modelo, o gerador

síncrono é representado por três enrolamentos do estator e um enrolamento no rotor. São

assumidas condições balanceadas, e as grandezas do estatorsão refletidas em um sistema

de coordenadasdqpor meio da transformada de Park.

3.1 Máquina Síncrona

A máquina síncrona considerada na modelagem é mostrada na Figura 3.1, sendo cons-

tituída de três enrolamentos de fase (a, bec ) no estator e três enrolamentos no rotor, um

de campo e dois amortecedores.

i kd

i kq

e fd

i fdEixo-q

Eixo-d

Eixo da fase a

θ

a

b

c

i a

i b

i c

e c

ea

eb

λ c

λb

λa

(a) (b)

Figura 3.1: Modelo simplificado da máquina síncrona: (a) circuito do rotor; (b) circuito

do estator.

Page 32: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 14

As seguintes suposições são utilizadas na dedução das equações básicas da máquina

síncrona:

• A FMM (força magnetomotriz) no entreferro é distribuída de formasenoidal e os

harmônicos são desprezados;

• A saliência é limitada ao rotor. O efeito das ranhuras do estator são desprezadas;

• A saturação magnética e a histerese são ignoradas.

3.2 Descrição Matemática da Máquina Síncrona

As equações elétricas do rotor e do estator são obtidas pela representação da máquina

síncrona mostrada na Figura 3.1.

3.2.1 Equações do Estator

Considerando as tensões no estator (es) como tensões por fase e assumindo que a

máquina síncrona está funcionado na convenção gerador, têm-se para o estator a seguinte

relação.

es=dλs

dt−Rsis, (3.1)

com

es =

ea

eb

ec

, λs=

λa

λb

λc

, is=

iaibic

, (3.2)

Rs =

Ra 0 0

0 Rb 0

0 0 Rc

, (3.3)

em queλs é o fluxo no estator;Rs são as resistências por fase do estator;is são as correntes

por fase do estator.

O fluxo total em cada enrolamento do estator é dado pela soma dos fluxos próprios e

mútuos do estator e o fluxo mútuo entre o rotor e o estator, que resulta em:

λs=−Lsis−Msis+Msrir (3.4)

Page 33: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 15

em queLs são as indutâncias próprias do estator;Ms são as indutâncias mútuas entre as

bobinas do estator;Msr são as indutâncias mútuas entre as bobinas do estator e rotore irsão as correntes do rotor.

A matrizes de indutâncias do estator (Ls) é dada por

Ls =

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

, (3.5)

sendoLi j comi = j a indutância própria da fasei eLi j comi 6= j a indutância mútua entre

as fases.

As indutâncias mútuas entre o estator e o rotor (Msr) são dadas por

Msr =

La f d cosθ Lakdcosθ −Lakqsenθ

Lb f dcos

(

θ− 2π3

)

Lbkdcos

(

θ− 2π3

)

−Lbkqsen

(

θ− 2π3

)

Lc f dcos

(

θ+2π3

)

Lckdcos

(

2θ+2π3

)

−Lckqsen

(

θ+2π3

)

(3.6)

em queLs f d é a indutância mútua entre a bobina da fases do estator e a bobina de eixo

direto do rotor;Lskd é a indutância mútua entre a bobina da fases do estator e o enrola-

mento amortecedor do eixo direto do rotor;Lskq é a indutância mútua entre a bobina da

fases do estator e o enrolamento amortecedor do eixo em quadraturado rotor; coms as

fasesa, bec do estator.

A correnteir é dada por

ir =

i f d

ikd

ikq

. (3.7)

Page 34: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 16

3.2.2 Equações do Rotor

A aplicação de uma tensão ao terminal de campo do rotor irá resultar em um fluxo. As

tensões nos enrolamentos amortecedores são nulas, pois encontram-se curto-circuitados.

Com isso, tem-se

ef d =dλ f d

dt+Rf di f d, (3.8)

em queef d é a tensão de campo do gerador;λ f d o fluxo de campo;Rf d as resistências do

campo;i f d a corrente de campo.

dλkd

dt+Rkdikd = 0, (3.9)

dλkq

dt+Rkqikq = 0. (3.10)

O fluxo total em cada enrolamento do rotor é dado pela soma dos fluxos próprios entre

os enrolamentos do rotor e os fluxos mútuos entre os enrolamentos do rotor e estator. Não

existe indutância mútua entre os enrolamentos do rotor, visto que eles estão defasados em

90o. Com isso, o fluxo total do rotor é dado por:

λr = Lr ir −Mrsis, (3.11)

com

λr =

λ f d

λkd

λkq

. (3.12)

As indutâncias próprias do rotor são dadas por

Lr =

L f d Lk f d 0

L f dkd Lkd 0

0 0 Lkkq

. (3.13)

As indutâncias mútuas entre rotor e estator são dadas por

Page 35: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 17

Mrs =

−La f dcosθ La f dcos

(

θ− 2π2

)

−La f d cos

(

θ+2π3

)

−Lakdcosθ −Lakdcos

(

θ− 2π3

)

−Lakdcos

(

θ+2π3

)

Lakqsenθ Lakqsen

(

θ− 2π3

)

Lakqsen

(

θ+2π3

)

. (3.14)

3.3 A Transformada dePark 0dq

Dado o modelo da máquina síncrona trifásica representada pelas equações de fluxo e

tensão, pode-se definir uma transformação para as variáveisda máquina (fluxo, corrente

ou tensão) para representá-las por um modelo mais simples que o trifásico.

Uma transformação 0dq das variáveis é definida pela operação:

Xabc= PX0dq, (3.15)

em queXabc é a variável a ser transformada eX0dq é a variável nova. A matrizP é

denominada matriz de transformação e deve ser regular, ou seja, sua inversaP−1 deve

existir.

A matriz P adequada para a obtenção de uma nova representação pode ser obtida a

partir das projeções das variáveis reais (a, b e c) ao longo dos eixosd, q e de um eixo

fixo. A vantagem da utilização do sistema 0dq está relacionada com a simplificação da

representação da máquina trifásica em uma máquina de dois eixos, no qual as indutâncias

mútuas e próprias, que no sistema trifásico variam com o tempo, na representação 0dq

são representadas de maneira constante, visto que com a escolha do novo referencial os

dois eixos giram à mesma velocidadeω, do vetor tensão, do fluxo ou do rotor.

O eixo d gira com velocidadeω e se posiciona em um ânguloθ em relação a um

ponto de referência, como mostrado na Figura 3.2. Os eixosa, be c são fixos, enquanto

que os eixosd eq giram a velocidadeω e são defasados em 90o.

Page 36: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 18

i a

λa

i b

λb

i c

λ c

eixo a

eixo b

eixo c

eixo d

eixo q

Neq

Neq

ωθ

Figura 3.2: Tensão com a transformada de Park.

Decompondo as variáveis dos eixos (a, b e c) nos eixos (d e q), tem-se a matriz de

transformação, como segue:

P=

23

1√2

1√2

1√2

cos(θ) cos(

θ− 2π3

)

cos(

θ− 4π3

)

−sen(θ) −sen(

θ− 2π3

)

−sen(

θ− 4π3

)

. (3.16)

As corrente, tensões e fluxos podem ser representadas nesse novo sistema de referên-

cia da seguinte forma:

i0dq = Pis, e0dq = Pes, λ0dq = Pλs, (3.17)

com os vetores corrente, tensão e fluxo dados por:

i0dq =

i0idiq

, e0dq =

e0

ed

eq

, λ0dq =

λ0

λd

λq

. (3.18)

Page 37: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 19

3.4 Modelagem do Gerador Síncrono

No modelo padrão, o gerador síncrono trifásico é representado por um estator, for-

mado por três enrolamentos, e um rotor constituído por um enrolamento de campo e dois

enrolamentos amortecedores. No referencialdq (rotor), tem-se um modelo de sétima or-

dem de equações diferenciais não-lineares. No entanto, para o estudo de estabilidade são

usados modelos simplificados como os adotados em Demello e Concordia (1969), nos

quais os efeitos dos enrolamentos amortecedores, resistência de armadura e os efeitos da

saturação são desprezados. O modelo é desenvolvido com uma única máquina síncrona

conectada ao barramento infinito (e∞) através de uma impedância externa (rs+ jxs), como

mostrado na Figura 3.4.

es e 8

rs+jxsBarramento

InfinitoMáquina

Síncrona

Figura 3.3: Máquina síncrona conectada ao barramento através da impedânciars+ jxs.

As equações que regem o comportamento da máquina síncrona conectada ao barra-

mento infinito através de uma impedância externa segundo Demello e Concordia (1969)

são:

ed =dλd

dt−ωrλq = xs

diddt

−ωrxsiq+e∞senδ, (3.19)

eq =dλq

dt+ωrλd = xs

diqdt

−ωrxsid+e∞ cosδ, (3.20)

λd = i f d−xdid, (3.21)

λq =−xqiq, (3.22)

λ f d = i f d+ τ′d0

dλ f d

dt, (3.23)

Page 38: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 20

ef d = i f d−(

xd−x′q

)

id, (3.24)

e2s = e2

d +e2q, (3.25)

Cm−Ce = Md2δdt2

, (3.26)

em queed, eq, id e iq são as respectivas tensões e correntes no referencialdq; λd e λq

são os fluxo no referencialdq; ωr é a velocidade síncrona;δ é o ângulo entre o eixoq e

o vetor tensão do barramento infinito;xd e xq são as reatâncias síncrona no eixo direto e

em quadratura, respectivamente;λ f d é o fluxo de campo;i f d é a corrente de campo;τ′d0

a constante de tempo de eixo direto em circuito aberto da máquina;es é a tensão terminal

da máquina;Cm e Ce são os conjugados mecânico e elétrico, respectivamente eM é a

constante de inércia.

3.4.1 Modelo Linear de Heffron e Phillips

No modelo linear de Heffron e Phillips, o gerador é representado por um modelo

de 3a ordem capaz de representar tanto a dinâmica eletromecânica, quanto a dinâmica

do campo do gerador, sendo aplicável a estudos de estabilidade do gerador ligado ao

barramento infinito através de uma impedância externa.

A modelagem do SEP constituído por uma máquina síncrona conectada ao barra-

mento infinito por meio de uma impedância externa permite obter as equações matemáti-

cas que inter-relacionam as variáveis das equações 3.19-3.26. Na Figura 3.4 é ilustrada a

estrutura do modelo de Heffron e Philips:

Variáveis de Estado

* Ângulo de torque, δ

* Desvio de velocidade, ωr

* Tensão proporcional ao fluxo, λfd

Cm

efd

δ

es

Figura 3.4: Estrutura do modelo de Heffron e Phillips.

Page 39: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 21

As variáveis do modelo de Heffron e Phillips são classificadas em 3 categorias:

• Variáveis de entrada do sistema:

– Conjugado mecânico da Turbina (Cm).

– Tensão de campo do gerador (ef d).

• Variáveis de estado que descrevem a máquina:

– Ângulo de torque (δ).

– Desvio de velocidade (ωr ).

– Tensão proporcional ao fluxo (λ f d),

• Variáveis de saída:

– Ângulo de torque (δ).

– Tensão terminal da máquina (es).

As equações do modelo são não-lineares, sendo duas delas algébricas e as três restan-

tes diferenciais. As equações algébricas que relacionam o conjugado elétrico e a tensão

terminal às variáveis de estado são da forma:

Ce= f (δ,λ f d), (3.27)

es = g(δ,λ f d), (3.28)

em quef eg são funções não-lineares.

As equações diferenciais compreendem:

• A equação do balanço de conjugado da máquina:

Cm−Ce = Md2δdt2

. (3.29)

• A relação entreωr eδ. Supõe-se queωr está expressa empueδ esteja em radianos.

Com isso, tem-se

δ = 2π f 0×∫ t

0ωr(t)dt. (3.30)

Page 40: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 22

• A relação dinâmica entre a tensãoλ f d proporcional ao fluxo de eixo direto, o efeito

da reação da armadura proporcional aδ e a tensão aplicada ao campo do gerador,

ef d, que é do tipo:

Tzdλ f d

dt+λ f d = h(δ,ef d), (3.31)

sendoh uma função não-linear.

O modelo de Heffron-Phillips é obtido pela linearização dascinco equações 3.27-3.31

em relação a um ponto de operação, que resulta em:

∆Ce= K1∆δ+K2∆λ f d, (3.32)

∆et = K5∆δ+K6∆λ f d, (3.33)

∆Cm−∆Ce = Md∆ωr

dt, (3.34)

∆δ = 2π f 0×∫ t

0∆ωr(t)dt, (3.35)

K3τ′d0

d∆λ f d

dt+∆λ f d = K3

(

∆ef d−K4∆δ)

. (3.36)

Escrevendo a equação 3.36 em termos de∆λ f d, tem-se

∆λ f d =K3

1+sK3τ′d0

∆ef d−K3K4

1+sK3τ′d0

∆δ, (3.37)

sendoK1 · · ·K6 constantes que dependem do ponto de operação considerado eτ′d0 a cons-

tante de tempo de eixo direto em circuito aberto da máquina síncrona.

Da equação 3.32, considerandoλ f d constante, o coeficienteK1 é obtido a partir da

seguinte relação:

K1 =∆Ce

∆δ

λ f d=constante, (3.38)

Page 41: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 23

K1 =

(

xq−x′d

)

iq0

x′d+xs

e∞0senδ0+λ f d

xq+xse∞ cosδ0, (3.39)

em queK1 é a variação no conjugado elétrico, provocada pela variaçãodo ângulo interno,

considerando constante o enlace de fluxo com o eixo direto (λ f d = constante). Segundo

Demello e Concordia (1969),K1 é um coeficiente de conjugado de sincronização.

Da equação 3.32, considerando o ângulo internoδ constante, o coeficienteK2 é obtido

a partir da seguinte relação:

K2 =∆Ce

∆λ f d

δ=constante, (3.40)

K2 =1

x′q+xs

e∞0senδ0, (3.41)

em queK2 é a variação de conjugado elétrico (∆Ce) provocado pela variação do enlace de

fluxo com o eixo direto (∆λ f d), considerando o ângulo interno (δ) constante.

O coeficienteK3 depende apenas da impedância da máquina e do sistema de trans-

missão, sendo o único coeficiente que não varia com as condições de operação do sistema,

como segue

K3 =x′d +xs

xd +xs, (3.42)

A partir da equação 3.36, o coeficienteK4 é obtido da seguinte forma:

K4 =1

K3

∆λ f d

∆δ

ef d=constante, (3.43)

K4 =xd−x

′d

x′d+xs

e∞0senδ0, (3.44)

em queK4 representa o efeito desmagnetizante da reação de armadura sobre o fluxo no

eixo d (DEMELLO; CONCORDIA, 1969).

Page 42: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 24

O coeficienteK5 é encontrado a partir da equação 3.33, considerandoλ f d constante,

como segue:

K5 =∆es

∆δ

λ f d=constante, (3.45)

K5 =xq

xq+xs

ed0

es0e∞0cosδ0−

x′d

x′d+xs

eq0

es0v∞0senδ0, (3.46)

em queK5 representa a variação da tensão terminal (∆es), provocada pela variação do

ângulo interno (∆δ) considerando o enlace de fluxo com o eixo direto (λ f d) constante.

Considerando-seδ constante, da equação 3.33, o coeficienteK6 é calculado da se-

guinte forma:

K6 =∆es

∆λ f d

δ=constante, (3.47)

K6 =xs

x′d+xs

eq0

es0, (3.48)

em queK6 representa a variação na tensão terminal (∆es) provocada pela variação do

enlace de fluxo com o eixo direto (∆λ f d), considerando constante o ângulo internoδconstante.

Da equação 3.33, a variação da tensão terminal (∆es) pode ser relacionada com a

mudança do ângulo (∆δ) e do fluxo por meio dos coeficientesK5 e K6. Substituindo-se a

equação 3.37 na equação 3.33, o seguinte modelo dinâmico pode ser obtido:

∆es =K3K6

1+sK3τ′d0

∆ef d−K3K4K6+K5

(

1+sK3τ′d0

)

1+sK3τ′d0

∆δ. (3.49)

No modelo descrito pela equação 3.49, a constanteK6 é sempre positiva, embora a

sua amplitude seja reduzida com o carregamento ou pequenas impedâncias externas. Por

outro lado, a constanteK5 pode ter um sinal de amplitude considerável, dependendo das

impedâncias e das condições de funcionamento (DEMELLO; CONCORDIA, 1969). De-

vido a estas características dinâmicas, o regulador de tensão deve ter um comportamento

adaptativo dinâmico e ter a capacidade de compensar as perturbações.

Page 43: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 25

Separando a equação 3.49 em duas partes, tem-se

∆es = ∆e′s(s)+∆esδ(s), (3.50)

com

∆e′s(s) =

K3K6

1+sK3τ′d0

∆ef d. (3.51)

O segundo termo da equação 3.50 refere-se ao efeito causado pela variação do ângulo

de carga da máquina síncrona, sendo

∆esδ(s) =K3K4K6+K5

(

1+sK3τ′d0

)

1+sK3τ′d0

∆δ. (3.52)

O modelo dinâmico da tensão terminal do gerador, descrito pela equação 3.49, pode

ser representado como a seguinte função de transferência:

Ges(s) =∆e

′s

∆ef d(s)=

bs+a

, (3.53)

com

a=1

K3τ′d0

, (3.54)

b=K6

τ′d0

. (3.55)

Com isso, a função de transferência da máquina síncrona que relaciona a variação da

tensão terminal (es) pela variação da tensão de campo (ef d) é dada por:

Ges(s) =K6/τ′

d0

s+1/K3τ′d0

. (3.56)

A função de transferência da equação 3.56 será utilizada na regulação da tensão ter-

minal do gerador, enquanto o termo dado pela equação 3.52 será considerado uma pertur-

bação que deverá ser compensada pelo controlador.

Page 44: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 3. GERADOR SÍNCRONO 26

3.5 Conclusão

Nesse capítulo foi apresentada a modelagem do gerador síncrono conectado ao barra-

mento infinito, sendo utilizado o modelo de Heffron e Phillips que é capaz de representar

tanto a dinâmica eletromecânica quanto a de campo do geradorsíncrono. Também foi

apresentada a função de transferência que será utilizada para o cálculo dos ganhos do

controlador SM-PI.

Page 45: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 4

Sistema de Excitação do Gerador

Síncrono

Neste capítulo será descrito o sistema de excitação do gerador síncrono e seus prin-

cipais componentes, dando maior destaque aos reguladores automáticos de tensão e aos

estabilizadores de sistema de potência.

4.1 Estrutura Geral de um Sistema de Excitação

Segundo Kundur (1994), os sistemas de excitação de geradores síncronos realizam

funções de proteção e controle, imprescindíveis ao desempenho correto dos sistemas de

potência. As suas funções básicas são fornecer e ajustar automaticamente a corrente de

campo do gerador síncrono para manter a tensão terminal dentro de limites aceitáveis de

estabilidade. A estrutura de um sistema de excitação é mostrado na Figura 4.1, sendo∆P

a variação de potência,∆δ a variação angular e∆ω a variação de velocidade.

AVR Excitatriz Gerador

SensoresPSS

Δ Δδ ΔωP, ,

es

u

e fd

e s*

Figura 4.1: Sistema de excitação de um gerador síncrono.

Page 46: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 4. SISTEMA DE EXCITAÇÃO DO GERADOR SÍNCRONO 28

Os sistemas de excitação são compostos basicamente por quatro elementos: excita-

triz, sensores, AVR e PSS. A excitatriz é o elemento responsável por fornecer a corrente

de campo necessária ao gerador para controlar a sua tensão terminal. Existem diversos

tipos de excitatrizes, tais como: excitatrizes CC, excitatrizes CA e circuitos retificadores.

Os sensores medem as grandezas de saída do gerador, tais comotensão e corrente, os

quais são processados pelo AVR que fornece em sua saída um sinal para o controle da ex-

citatriz. Um sinal de controle adicional ao AVR pode ser fornecido pelo PSS para reduzir

as oscilações no gerador.

4.2 Regulador Automático de Tensão (AVR)

Os reguladores automáticos de tensão são sistemas de controle usados nas excitatrizes

dos geradores síncronos, que têm como principais funções:

• Controlar a tensão terminal do gerador dentro dos níveis pré-estabelecidos em nor-

mas;

• Regular a divisão de potência reativa entre as máquinas que operam em paralelo;

• Controlar a corrente de campo para manter o gerador em sincronismo com o sis-

tema;

• Aumentar a excitação sob condições de curto-circuito no sistema, para manter o

gerador em sincronismo com os demais geradores do sistema;

• Amortecer as oscilações de baixa frequência que podem trazer problemas de esta-

bilidade dinâmica.

A estrutura clássica de um AVR é mostrada na Figura 4.2, sendocomposta por con-

troladores convencionais, tais como controladores PID, PI, ou avanço e atraso de fase

(Lead/Lag) (BA-MUQABEL; ABIDO, 2006).

S

-

+

AVRes

es

GeradorExcitatrizesefd

e*fd

*

Figura 4.2: Estrutura clássica de um AVR.

O regulador da Figura 4.2 controla a saída da excitatriz de modo que a corrente gerada

por ela e a potência reativa do gerador se alterem de maneira desejada. Basicamente, a

Page 47: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 4. SISTEMA DE EXCITAÇÃO DO GERADOR SÍNCRONO 29

tensão terminal do gerador (es) é comparada com um valor de referência pré-determinado

(e∗s). O erro resultante da comparação é processado pelo AVR e enviado para a excitatriz

que produzirá a corrente necessária para o ajuste da tensão terminal do gerador. Há uma

variedade de modelos para o AVR, nos quais os principais modelos são padronizados por

normas (IEEE, 2006).

A norma IEEE (2006) define os modelos básicos de reguladores de tensão mais uti-

lizados nos estudos dos SEPs de acordo com as formas de atuação da excitatriz, como

segue:

• Modelo rotativo com máquina CC (Modelo IEEE Tipo DC1);

Este sistema utiliza geradores de corrente contínua como fonte de alimentação do

campo da máquina síncrona. A conexão é realizada através de anéis coletores e es-

covas, sendo que o gerador de corrente contínua pode ser auto-excitado (máquinas

de pequeno porte) ou com excitação independente (máquinas de grande porte).

• Modelo rotativo com máquina CA“Brushless” (Modelo IEEE Tipo AC4);

Esta configuração utiliza um gerador de corrente alternada,chamado de excitatriz

principal, como fonte de alimentação do enrolamento de campo do gerador sín-

crono. O enrolamento de campo desta excitatriz é alimentadocom corrente contí-

nua e está localizado no rotor, enquanto que o enrolamento daarmadura, de corrente

alternada, está disposto no estator. A corrente alternada produzida neste enrola-

mento é retificada através de um retificador composto por diodos montados direta-

mente sobre o rotor, alimentando o enrolamento de campo do gerador principal sem

a necessidade de anéis e escovas.

• Modelo Estático com alimentação composta (Modelo IEEE TipoST2).

Nestes tipos de sistemas de excitação todos os componentes principais são estáticos.

A alimentação do campo do gerador síncrono é realizada diretamente por retifica-

dores estáticos controlados, por meio dos terminais do gerador ou pelo barramento

auxiliar da usina.

O tipos de excitatrizes citados anteriormente, quando baseadas nos controladores con-

vencionais com os ganhos calculados a partir dos modelos linearizados do sistema, garan-

tem estabilidade ao sistema apenas em torno do ponto de operação (IEEE, 2006). Caso

ocorra uma pertubação que faça o gerador ultrapassar esses limites de operação, os con-

troladores convencionais deixam de ser eficientes e o gerador pode perder o sincronismo

com o sistema. A perda do sincronismo pode ser evitada usando-se AVRs robustos de

rápida atuação, visto que após os distúrbios a relação entreo conjugado elétrico e o con-

Page 48: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 4. SISTEMA DE EXCITAÇÃO DO GERADOR SÍNCRONO 30

jugado mecânico é afetada. Então, o AVR deverá compensar os distúrbios nessa relação

aplicando ou reduzindo o conjugado elétrico para amorteceras oscilações do rotor.

4.3 Estabilizador de Sistema de Potência (PSS)

Em sistemas de potência de grande porte, oscilações eletromecânicas são provocadas

normalmente por amortecimento insuficiente do AVR. Neste cenário, existem diferentes

tipos de modos de oscilação que são de grande interesse: modode oscilação local, modo

de oscilação inter-área, modos torsionais, entre outros. No modo de oscilação local, as

oscilações estão localizadas dentro de uma estação de geração ou em uma pequena parte

do SEP. No modo de oscilação inter-área, as oscilações estãoassociadas a um grupo de

geradores localizados dentro de uma estação de geração com outros localizados em outra

estação de geração. Os modos torsionais estão associados aos componentes rotacionais

do sistema: eixo-turbina-gerador.

O PSS é uma malha de controle suplementar que fornece um sinalque atua sobre a

malha de controle do regulador de tensão do gerador com o propósito de amortecer as os-

cilações eletromecânicas por meio de um sinal de baixa amplitude que é somado ao sinal

de referência fornecido pelo AVR. Entradas comumente utilizadas no PSS são a variação

da velocidade do rotor (∆ω), a variação do ângulo de potência do gerador (∆δ) e variação

da potência (∆P) (KUNDUR, 1994). Esses parâmetros devem ser consistentes com o tipo

de sinal de entrada especificado no modelo do estabilizador.Sinais de entrada com carac-

terísticas diferentes podem proporcionar as mesmas características de amortecimento.

Os PSSs convencionais geralmente são concebidos com funções de transferência li-

neares, cujos parâmetros são ajustados para produzir amortecimento positivo para a gama

de frequências de oscilação que se deseja reduzir. É importante que os valores corretos

sejam utilizados para estes parâmetros. A saída do PSS é limitada, geralmente a±5% da

tensão nominal do gerador. Os elementos básicos de um PSS convencional são mostrados

na Figura 4.3.

Limitador

Compensador

Dinâmico

Washout

Filtro

1+sTW

sTW

u

Torsional

Δ Δδ ΔωP, ,

Figura 4.3: Estrutura de um PSS convencional.

Page 49: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 4. SISTEMA DE EXCITAÇÃO DO GERADOR SÍNCRONO 31

De acordo com a Figura 4.3, a etapa inicial (filtrowashout) remove o valor médio

do sinal de entrada, deixando passar apenas a variação destesinal. Na etapa seguinte,

o compensador tem como saída um sinal com uma defasagem projetada para uma dada

frequência de oscilação. As etapas seguintes servem para ajustar a intensidade do sinal

amortecedor e limitá-lo de modo que não afete demasiadamente a operação do AVR.

Nos PSSs utilizados nas usinas de geração de energia, o compensador dinâmico nor-

malmente utilizado é do tipo PID, PI ouLead-Lag. Esse controlador deverá produzir uma

componente de conjugado elétrico em fase com as variações develocidade do rotor do

gerador. Eles devem atuar no sistema apenas quando ocorrem variações, não podendo

alterar o funcionamento do sistema durante o regime permanente.

Os PSSs convencionais apresentam um problema em comum, o fato de serem base-

ados no modelo linearizado do sistema, sendo que os sistemasde potência apresentam

um comportamento tipicamente não-linear (AMAN et al., 2011). Com isso, os regula-

dores PSSs convencionais apresentam desempenho satisfatório apenas em torno do ponto

de operação para o qual foram linearizados. Além disso, o seuamortecimento pode não

ser satisfatório em toda a faixa de operação do gerador, sendo o seu desempenho afetado

pelas variações nas condições de operação. Portanto, um PSSclássico compensa as varia-

ções específicas de cada modo de oscilação, sendo necessárioalterar o seu ajuste quando

se deseja atuar no modo de oscilação para o qual não foi projetado inicialmente.

Anderson e Fouad (2002) mostram que a margem de estabilidadedo sistema aumenta

quando são utilizados compensadores com atuação mais rápida. Desta forma, novas estru-

turas de controle são requeridas de modo que o amortecimentoseja aumentado a múltiplos

modos de oscilação.

Assim como nos AVRs, na literatura muitos trabalhos propõema substituição dos

controladores convencionais por controladores que se adaptem a mudanças repentinas,

tais como PSSs adaptativos e utilizando lógicaFuzzy(PEREZ; MORA; OLGUIN, 2006),

(HASSAN; MOGHAVVEMI; MOHAMED, 2009). A estrutura do PSS adaptativo pro-

posto por Perez, Mora e Olguin (2006) é mostrado na Figura 4.4.

Page 50: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 4. SISTEMA DE EXCITAÇÃO DO GERADOR SÍNCRONO 32

S

AVR

Car

gas

es

PSSAdaptativo

Excitatriz

S e s

GS

+

++

-

Rede

ΔP

S1

*

Figura 4.4: Estrutura de um PSS adaptativo.

Nos controladores adaptativos não há necessidade de alterar os parâmetros do contro-

lador quando deseja-se compensar as oscilações de outros modos de oscilação, visto que

o próprio controlador se adapta às novas situações. Desta forma, essas estratégias de con-

trole baseadas em controladores de rápida atuação aumentama margem de estabilidade

do sistema (ANDERSON; FOUAD, 2002).

4.4 Conclusão

Nesse capítulo foi apresentado o sistema de excitação do gerador síncrono dando

maior ênfase ao regulador de tensão e ao estabilizador do sistema de potência. Foram

mostrados as principais técnicas de controle convencionalque são empregadas nos AVRs

e PSSs, bem como os principais problemas que são encontradoscom a configuração con-

vencional, como por exemplo não garantir a estabilidade do sistema quando o sistema

sofre grandes variações provenientes de curtos-circuitose outros problemas. Também

foram mostrados que técnicas de controle não convencional são empregadas nos AVRs e

PSSs atualmente e apresentam alguns problemas, tais como, carga computacional elevada

e o projeto dos ganhos do controlador ser complexo.

Page 51: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 5

Técnicas de Controle Adaptativo

O controle adaptativo é definido como sendo uma estratégia decontrole que se adapta

às variações paramétricas e pertubações da planta utilizando, para isso, medições da en-

trada e saída da planta. A partir dessas medições são calculados, em tempo real, os ganhos

do controlador. O controle adaptativo é definido por Astrom eWittenmark (1994) como

um controlador que pode modificar seu comportamento em resposta às mudanças na di-

nâmica do processo e em resposta ao caráter dos distúrbios.

As estratégias de controle adaptativo surgiram como alternativa para os sistemas cu-

jos parâmetros das plantas são desconhecidos (incertezas)ou variam com o tempo. Além

disso, a técnica de controle adaptativo apresenta melhor desempenho quando são neces-

sárias respostas rápidas em sistemas em que as condições de operação variam. Algumas

delas comportam-se melhor durante um período transitório,enquanto outras possuem me-

lhor desempenho em regime permanente. A concepção básica dessa técnica de controle

reside no fato de combinar a técnica de estimação paramétrica com a técnica de projeto

de sistemas de controle.

5.1 Tipos de Controladores Adaptativos

Diferentemente do convencional, no controle adaptativo realiza-se a estimação pa-

ramétrica do controlador ou da planta, em tempo real, baseado nos sinais de entrada e

de saída medidos no sistema. Os parâmetros estimados são usados na lei de controle

adaptativa, tendo como função alterar o comportamento do sistema de modo a regulá-lo

as novas circunstâncias ou modificações ocorridas no sistema (IOANNOU; IOANNOU;

SUN, 1996). No controle clássico, os ganhos do controlador são obtidos a partir dos pa-

Page 52: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 34

râmetros do sistema que podem ser determinados a partir de medidas de entrada e saída.

Já no controle adaptativo, os ganhos do controlador são encontrados a partir da medição

direta da entrada e saída da planta ou a partir de suas estimações paramétricas. A estrutura

de um controlador adaptativo é composta por uma malha de realimentação, um estimador

de parâmetros e um controlador com ganhos ajustáveis, conforme mostrado na Figura 5.1.

Controlador Planta

Ajuste de

Parâmetros

Sinalde controle

Parâmetrosdo

controlador

SaídaReferência

Figura 5.1: Diagrama de blocos de um controlador adaptativo.

Os métodos de controle adaptativo podem ser divididos em duas categorias: controle

direto e controle indireto. Os métodos de controle direto executam as funções de iden-

tificação paramétrica da planta e do controlador apenas em umprocesso. Os ganhos do

controlador são calculados diretamente sem identificação dos parâmetros da planta. Os

métodos de controle indireto executam a identificação dos parâmetros da planta e, a par-

tir deles, são calculados os ganhos do controlador por meio de uma equação Diofantina

(IOANNOU; IOANNOU; SUN, 1996) . Desta forma, uma das vantagens do controle di-

reto em relação ao indireto é o menor número de cálculos envolvidos, resultando em uma

menor carga computacional e maior velocidade no processo decontrole.

No controle adaptativo indireto, representado pelo diagrama de blocos mostrado na

Figura 5.2, o modelo da plantaP(θ∗) é parametrizado em relação a um vetor de parâme-

tros desconhecidosθ∗. Um estimador de parâmetros em tempo real gera uma estimativa

θ∗ deθ(t) a cada instantet, pelo processamento da entradau(t) e da saíday(t). A estima-

tiva dos parâmetrosθ(t) especifica um modelo estimado caracterizado porP(θ(t)). Este

modelo estimado é tratado como o verdadeiro modelo da plantae é usado para calcular

os ganhos do controlador ou do vetor de ganhosθc(t) a cada instantet. Tal princípio é

conhecido como princípio de equivalência a incerteza. As formas da lei de controleC(θc)

e da equação algébricaθc = F(θ) são escolhidas como as mesmas que seriam usadas

para atender os requisitos de desempenho para o modeloP(θ∗), seθ∗ fosse conhecido.

Page 53: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 35

Neste método,C(θc(t)) é ajustado a cada instantet, de modo a satisfazer os requisitos

de desempenho do modelo estimadoP(θ(t)). Assim, o principal problema no controle

adaptativo indireto é escolher a classe de leis de controleC(θc) e a classe de estimado-

res de parâmetros que geramθ(t), bem como a equação algébricaθc(t) = F(θ(t)) de

forma queC(θc(t)) atenda aos requisitos de desempenho para o modeloP(θ∗) com oθ∗

desconhecido (IOANNOU; IOANNOU; SUN, 1996).

Planta

Estimador

de *θ

Cálculos

Controlador

C( )θc P( *)θr(t)

y t( )

θc( )t

θ( )t

r t( )

θ θc( )= ( ( ))t F t

u t( )

Figura 5.2: Diagrama de blocos de um controlador adaptativoindireto.

No controle adaptativo direto (Figura 5.3), o modelo da plantaP(θ∗) é parametrizado

em função de um vetor de parâmetros desconhecidosθ∗c do controlador, com o qualC(θ∗c)atende aos requisitos de desempenho, para obter o modeloPc(θ∗c), com exatamente as

mesmas características entrada/saída deP(θ∗). O estimador de parâmetros em tempo

real é projetado baseado emPc(θ∗c), ao invés deP(θ∗), para fornecer estimativas diretas

θc(t) de θ∗c em cada instantet por meio do processamento da entradau(t) e da saída

y(t) da planta. A estimativaθc(t) é então usada para atualizar o vetor de parâmetros

do controladorθc sem cálculos intermediários. A escolha da classe de leis de controle

C(θc) e os estimadores dos ganhos que geram(θc(t)), de forma queC(θc(t)) atenda aos

requisitos de desempenho para o modeloP(θ∗) são os principais problemas no controle

adaptativo direto. As propriedades do modeloP(θ∗) são fundamentais na obtenção do

modelo parametrizadoPc(θ∗c) que é conveniente para a estimação em tempo real. Como

consequência, o controle adaptativo direto é restrito a certas classes de modelos de planta.

Uma classe de modelos possíveis consiste em todas as plantasmonovariáveis, lineares e

invariantes no tempo (LTI) que são de fase não mínima, ou seja, seus zeros são localizados

no semi-plano esquerdo (IOANNOU; IOANNOU; SUN, 1996).

Page 54: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 36

Planta

Estimação

em tempo real

Controlador

C( )θc P( *)θr t( )

y t( )

r t( )

u(t)

de θ c*

θc( )t

Figura 5.3: Diagrama de blocos de um controlador adaptativodireto.

5.2 Controle de Modos Deslizantes

Sistemas de controle de modo deslizante constituem uma classe de sistemas a estru-

tura variável, pertencente a uma categoria de controle não-linear (CASTRUCCI; CURTI,

1981), cuja característica principal é a robustez em relação às pertubações externas e va-

riações paramétricas da planta.

Em geral, além das trajetórias características de cada uma das estruturas do sistema

realimentado, um novo movimento no espaço de estados pode ser criado denominado

modo deslizante (EMELYANOV, 1970), (ITKIS, 1976), (UTKIM,1992). Neste caso,

a estrategia de controle é chamada de Controle por Modos Deslizantes (Sliding Mode

Control - (SMC)).

A estratégia de chaveamento é desenvolvida de tal forma que as trajetórias do sis-

tema alcancem e mantenham-se em uma superfície no espaço de estado (superfície de

deslizamento), especificada conforme um comportamento dinâmico desejado (EMELYA-

NOV, 1970), (UTKIM, 1992). Uma vez que o modo deslizante tenha sido alcançado, o

desempenho do sistema torna-se insensível a incertezas paramétricas da planta e a algu-

mas perturbações externas. Esta característica é conhecida por propriedade da invariância,

quando o regime deslizante é alcançado a dinâmica invariante do sistema é tal que ele per-

manece na superfície de deslizamento. Sendo assim, a ideia básica do SMC é determinar

a estrutura e os parâmetros dos controladores de forma a proporcionar um bom desempe-

nho em diversas condições de operação (TARANTO, 1996). As estratégias de controle

de modos deslizantes utilizam uma lei de controle chaveada para conduzir e manter a

trajetória dos estados de uma planta em uma superfície de deslizamento. Quando a tra-

jetória atinge esta superfície de deslizamento, o comportamento do sistema sofre menor

Page 55: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 37

influência por parte de alterações paramétricas ou de distúrbios externos.

No modo deslizante convencional, a trajetória do sistema fica restrita a uma superfície

de deslizamento definida pors(x) = 0. Este conceito foi recentemente generalizado em

Levant (2001) com a introdução dos modos deslizantes de ordem superior (do inglês,

Higher Order Sliding Modes- HOSM). Neste caso, a superfície de deslizamento passa a

ser definida por

s(x) = s(x) = · · ·= sr−1(x) = 0, (5.1)

em quer é a ordem do deslizamento.

O projeto do SMC envolve dois passos. No passo inicial é feitaa seleção de uma su-

perfície de deslizamento que induza o sistema a uma dinâmicade ordem reduzida estável

designada pelo projetista, e posteriormente, a síntese de uma lei de controle que força as

trajetórias do sistema em malha fechada irem e permaneceremna superfície de desliza-

mento. Na Figura 5.4 é mostrada a superfície de deslizamentode um SMC convencional.

s x =x +x( ) 1 2=0

x1

x2

s x <( ) 0

s x >( ) 0.

s x >( ) 0

s x <( ) 0.

x(0)

f x( )+

f x( )-

Figura 5.4: Superfície de deslizamento de controlador SMC.

A maior parte das técnicas para o projeto do SMC convencionalsupõe que todos os

estados do sistema são acessíveis para a lei de controle. Porém, na prática, nem todos os

estados estão fisicamente disponíveis para a realimentação. Sendo assim, um controlador

SMC com realimentação de estados não pode ser implementado amenos que um obser-

vador de estados seja usado para estimar os estados não mensuráveis do sistema (HA et

al., 2003).

Page 56: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 38

Em comparação aos sistemas de controle convencionais, a técnica de modos desli-

zantes apresenta-se vantajosa sob o ponto de vista de mantero desempenho do sistema

de controle em maiores faixas de operação, sem a necessidadede ajustes posteriores para

a obtenção do desempenho desejado. Assim, a ideia principalé projetar o controle de

modo que todas as trajetórias do sistema convirjam para a superfície de controle e nela

permaneçam indefinidamente. Na superfície definida, as trajetórias descritas pelo vetor

de estado deslizam assintoticamente para os valores desejados, justificando assim o nome

de modo de deslizamento.

5.3 Controlador Adaptativo Proposto

Com a finalidade de aliar a facilidade de implementação do controlador linear PI com

a robustez a pertubações dos sistemas de superfície deslizante, propõe-se um controlador

composto por uma associação de um controlador PI com um controle de modos desli-

zantes denominado SM-PI. O SM-PI é empregado para regulaçãoda tensão terminal do

gerador síncrono e para a estabilização do SEP. Este controle determina a tensão de refe-

rência para conseguir regulação apropriada da tensão terminales(s) do gerador síncrono.

Os ganhos do controlador são obtidos pelas leis chaveadas deacordo com a superfície

de deslizamento e diferentemente da técnica SMC convencional não há necessidade de

estimação dos estados do sistema visto que a superfície de deslizamento é determinada

diretamente pelo erro e pela derivada do erro. O diagrama de blocos do SM-PI é mostrado

na Figura 5.5.

-

Sε(s)

Y sm( )

+

R s( )pk s

~k i

~+

s

c +sε εAjuste dos

parâmetros

σ

Y s( )

kp,~

k i~

b

s + a

Figura 5.5: Diagrama de blocos SM-PI.

Page 57: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 39

A função de transferência do controlador SM-PI é dada por:

Gc(s) =kps+ ki

s, (5.2)

com os ganhos do controladorkp e ki sendo determinados pela teoria do SMC. A superfí-

cie deslizante é dada por:

σ = cε+ ε. (5.3)

Baseadas nas restrições de estabilidade de Lyapunov e critério de desempenho, os

ganhos do controlador são determinados pelas seguintes leis de chaveamento

kp = [(sgn(σ)+1)k+p − (1−sgn(σ))k−p ]+kavp , (5.4)

ki = [(sgn(σ)+1)k+i − (1−sgn(σ))k−i ]+kavi , (5.5)

comkavp , kav

i , k+p e k+i sendo constantes positivas, determinadas de acordo com o desem-

penho desejado.sgn(σ) é uma função matemática que retorna os valores -1 e 1, como

segue

sgn(σ) =

−1, se σ < 0

+1, se σ > 0,(5.6)

sendoσ 6= 0.

O modelo do gerador obtido no Capítulo 3, que representa a tensão terminal em fun-

ção da tensão de campo, pode ser descrito pela seguinte função de transferência:

Ges(s) =∆e

′s(s)

∆ef d(s)=

bs+a

. (5.7)

O diagrama de blocos da estrutura de controle é mostrado na Figura 5.6:

ifd

-S PI

PWM

VSI 1+

εS

-SM PI

efd,min

efd,máx

*fdedq*e

dqe

+

ifd,máx

ifd,min

i fd*

fdeε

Figura 5.6: Malha de controle proposta.

Page 58: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 40

Conforme a Figura 5.6, o controle da amplitude das tensões geradas é realizado me-

diante a regulação da amplitude da corrente de campo do gerador síncrono. Para isso,

utilizou-se uma estrutura de controle composta pelo controlador SM-PI em cascata com

um PI. O SM-PI gera uma corrente de campo de referência (i∗f d) a partir da comparação do

módulo das tensões (e∗dq) do barramento no referencial síncrono com o módulo da tensão

(edq) do gerador. O PI da malha interna gera a tensão de campo de referência (e∗f d) a partir

da comparação da corrente de campo de referência (i∗f d) com a corrente de campo (i f d)

medida no enrolamento de campo do gerador síncrono. Baseadona tensão de referência,

uma estratégia PWM convencional é utilizada para determinar os tempos de condução das

chaves do VSI 1.

5.3.1 Alocação de Polos

O critério de projeto empregado neste trabalho é baseado no método de alocação de

polos com a solução da equação Diofantina. Assim, considerando a função de transferên-

cia do gerador síncrono(Ges(s)), o regulador de tensão SM-PI(Gc(s)) pode ser escrito

em termos de polinômios. Para a função de transferência do gerador tem-se:

Ges(s) =Z(s)R(s)

, (5.8)

comZ(s) = k6/τ′do eR(s) = s+1/(k3τ′

do).

A função de transferência do regulador de tensão SM-PI é dadapor:

Gc(s) =P(s)L(s)

, (5.9)

comP(s) = kps+ ki eL(s) = s.

O método de alocação de polos consiste em determinar os parâmetros do controlador,

de tal forma que os polos da função de transferênciaTes(s) em malha fechada esteja

em posição previamente especificada. A função de transferência de malha fechada do

controlador com o gerador síncrono é dada por

Tes(s) =Z(s)P(s)

Z(s)P(s)+R(s)L(s)=

B(s)Q(s)

. (5.10)

Page 59: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 41

Os polos escolhidos paraTes(s) determinam o polinômio característico desejado em

malha fechadaQ(s), no qual tem-se a equação Diofantina:

Q(s) = Z(s)P(s)+R(s)L(s) = Aη∗(s). (5.11)

Na equação 5.11,Q(s), Z(s) eR(s) são polinômios conhecidos, enquantoP(s) eL(s)

são os polinômios da função de transferência do controladorque devem ser determinados

de forma a satisfazer esta equação.Aη∗(s) é o polinômio desejado, sendo um polinô-

mio mônico Hurwitz1 e os sobrescritos(η = f s(rápido),av(médio),sl(lento)) referem-se

ao desempenho empregado para determinar o polinômio desejado. Uma vez definido o

polinômio Aη∗(s) desejado, os ganhos do regulador de tensão podem ser obtidospela

solução da equação Diofantina.

O polinômioAη∗(s) é dado por:

Aη∗(s) = s2+2ξωns+ω2n. (5.12)

No polinômioAη∗(s) apresenta-se os polos complexos com parte real e imaginárias

iguais, como mostrado na Figura 5.7.

am

a jm

-a jm

Im

Re

θ

θ

θ=45º

Figura 5.7: Polos complexos com partes real e imaginária iguais.

Pela Figura 5.7, tem-se as seguintes raízes:

Aη∗(s) = (s+am+am j)(s+am−am j). (5.13)

1Polinômio mônico Hurwitz é um polinômio em que o coeficiente do termo de grau mais alto é igual a1 e cujos coeficientes são números reais positivos, ou seja, aparte real de todas as raízes é negativa.

Page 60: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 42

Resolvendo a equação 5.13 obtem-se

Aη∗(s) = s2+ams−am js+ams+a2m−a2

m j +am js+a2m j −a2

m j2 (5.14)

Rearrumando a equação 5.14 e fazendo as devidas simplificações, tem-se

Aη∗(s) = s2+2aηms+2(aη

m)2. (5.15)

Igualando a equação 5.15 ao polinômio característico na equação 5.12, tem-se

s2+2aηms+2(aη

m)2 = s2+2ξωns+ω2

n. (5.16)

Por igualdade de polinômios, tem-se

2aηm = 2ξωn ⇒ ξωn = aη

m ⇒ ξ =aη

m

ωn, (5.17)

e

2(aηm)

2 = ω2n ⇒ ωn =

√2×aη

m. (5.18)

Substituindo a equação 5.18 na equação 5.17, tem-se

ξ =aη

m

ωn⇒ ξ =

aηm√

2×aηm⇒ ξ =

1√2= 0,707, (5.19)

Segundo Bazanella e Jr (2005), o tempo de estabilização de uma planta é dada por:

tηss2%=

4ξωn

, (5.20)

sendotηss2% o tempo de estabilização da planta.

Reescrevendo a equação 5.20, tem-se

ξωn =4

tηss2%

, (5.21)

e substituindo a equação 5.17 na equação 5.21, tem-se

aηm =

4

tηss2%

. (5.22)

Page 61: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 43

O coeficienteaηm do polinômio 5.15 pode ser determinado pelo tempo de estabilização

tηss2% seguindo os seguintes critérios:η = f s(rápido),η = av(médio) eη = sl(lento).

O percentual deovershooté dado por:

Mo%= 100e−π ξ√

1−ξ2 . (5.23)

Comξ = 0,707, tem-se que o percentual deovershootcalculado a partir da equação

5.23 comoMo%≤ 5%.

Resolvendo a equação 5.11, para encontrar os ganhos do controlador, tem-se

b(kηps+kη

i )+(s+a)s= s2+2aηms+2a2

m. (5.24)

Rearrumando a equação 5.24, tem-se

s2+s(kηpb+a)+kη

i b= s2+2aηms+2(aη

m)2. (5.25)

Por igualdade de polinômios, tem-se

kηpb+a= 2aη

m ⇒ kηp =

2aηm−ab

, (5.26)

e

kηi b= 2(aη

m)2 ⇒ kη

i =2(aη

m)2

b. (5.27)

Para calcular os ganhos dos controladores, inicialmente determina-se o polinômio

lento (Asl∗(s)) pelos parâmetros nominais da planta (equação 5.7). Com isso, o tempo de

estabilização do controlador lento (tss2%) é igual ao tempo de estabilização da planta e o

polinômio característico (Asl∗(s)) é dado por:

Asl∗(s) = s2+2aslms+2(asl

m)2, (5.28)

e os ganhos do controlador lento são dados por:

kslp =

2aslm−ab

, ksli =

2(aslm)

2

b. (5.29)

Page 62: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 44

Para determinar as amplitudes da lei de chaveamento dada nasequações 5.4 e 5.5

deve-se encontrar outros dois polinômios, que são os polinômio médio (Aav∗(s)) e rápido

(Af s∗(s)), definidos ao reduzir o tempo de estabilização em 25% para o controlador médio

(tavss2%) e em 50% para o controlador rápido (t f s

ss2%). Com isso, para o polinômio de ganhos

médios com (η = av), tem-se:

Aav∗(s) = s2+2aavms+2(aav

m )2, (5.30)

e os ganhos do controlador médio dados por:

kavp =

2aavm −ab

, kavi =

2(aavm )2

b. (5.31)

Para o controlador rápido (η = f s), tem-se:

Af s∗(s) = s2+2af sm s+2(af s

m )2, (5.32)

e os ganhos do controlador rápido dados por

k f sp =

2af sm −ab

, k f si =

2(af sm )2

b. (5.33)

Com os três controladores calculados (f s(rápido),av(médio) esl(lento)) é possível

determinar os coeficientesk+p , k−p , k+i ek−i da seguinte maneira:

k+p =k f s

p −kavp

2, k+i =

k f si −kav

i

2, (5.34)

k−p =kav

p −kslp

2, k−i =

kavi −ksl

i

2. (5.35)

Com esse projeto, encontram-se os ganhos do controlador SM-PI com base nos parâ-

metros da planta de maneira direta, utilizando-se para istocritérios de projeto semelhante

aos que são feitos para o cálculo dos controladores convencionais.

Page 63: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 45

5.4 Implementação do controlador SM-PI

Com os cálculos dos ganhos do controlador SM-PI obtidos é feita a implementação

do controlador de acordo com a Figura 5.4.

k ifs

k isl

σ>0 σ<0

kpfs

kpsl

σ>0 σ<0kp k iavav

Figura 5.8: Lógica de implementação do SM-PI.

Seguindo a lógica apresentada na Figura 5.4 os ganhos do controlador SM-PI tem

ganhos os alterados através da superfície de deslizamento representada porσ, sendo os

ganhoskp e ki da seguinte forma:

Paraσ > 0 e resolvendo-se as equações 5.4 e 5.5 tem-se

kp = 2k+p +kavp , ki = 2k+i +kav

i . (5.36)

E paraσ < 0 e resolvendo-se as equações 5.4 e 5.5 tem-se

kp =−2k−p +kavp , ki =−2k−i +kav

i . (5.37)

Substituindok+p ek+i da equação 5.34 na equação 5.36 tem se

kp = k f sp , ki = k f s

i , (5.38)

e substituindok−p ek−i da equação 5.35 na equação 5.37 tem se

kp = kslp , ki = ksl

i . (5.39)

Dessa lógica de implementação pode-se notar que os ganhos docontrolador SM-

PI são alternados entre os ganhos rápidos (f s) e os ganhos lentos (sl) de acordo com a

superfície de deslizamentoσ.

Page 64: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 5. TÉCNICAS DE CONTROLE ADAPTATIVO 46

5.5 Conclusão

Nesse capítulo foram apresentadas estratégias de controleadaptativos direto e indi-

reto. Também foi apresentada a estratégia de controle utilizada para o regulador de tensão

do gerador síncrono, incluindo a descrição e projeto do controlador. A principal contri-

buição desse capítulo foi a proposta de um controlador híbrido que integra a técnica SMC

com o controlador convencional PI (SM-PI), em que os ganhos do controlador são calcu-

lados sem a necessidade de estimação paramétrica a partir dasuperfície de deslizamento

que é baseada no erro e na derivada do erro.

Page 65: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 6

Resultados Experimentais

Neste capítulo são apresentados os resultados experimentais decorrentes da avaliação

do desempenho do controlador proposto SM-PI e do controlador convencional PI utiliza-

dos na regulação do campo da máquina síncrona submetida a ensaios de curto circuito e

abertura da linha de transmissão.

6.1 Plataforma de Desenvolvimento Experimental

A plataforma de desenvolvimento experimental utilizada para a obtenção dos resulta-

dos experimentais foi desenvolvida e construída no Laboratório de Eletrônica de Potência

e Energias Renováveis do departamento de Energia Elétrica da UFRN (LEPER-DEE-

UFRN). No esquema elétrico da Figura 6.1 são apresentadas asligações entre os compo-

nentes que formam a plataforma de desenvolvimento experimental.

VSI 1 VSI 2USB

Fibra

GS

Chaves de by-pass

rslsrs ls

rl

ll

MCC

DSP

es i s

i fd i a

efd eaSensores

e 8 e 8

Fibra

Barramento Infinito

K1

Simulador de Falta

rf rf rf

LT e Cargas

Microcomputador

Figura 6.1: Diagrama elétrico da plataforma de desenvolvimento experimental.

Page 66: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 48

A montagem é constituída pelos seguintes itens:

• Um microcomputador;

• Seis sensores de corrente e seis sensores de tensão;

• Um DSP equipado com uma placa de aquisição de dados;

• Dois conversores estáticos;

• Um gerador síncrono de polos salientes;

• Um motor de corrente continua;

• Um emulador de sistema de potência com simulador de distúrbios;

• Um variador de tensão de 4,45 kW.

A descrição detalhada de cada item mencionado acima encontra-se no Apêndice B.

Para a obtenção dos resultados experimentais foram realizados três ensaios para ana-

lisar o desempenho da estrutura de controle proposta:

1) Falta monofásica na linha de transmissão;

2) Falta trifásica na linha de transmissão;

3) Abertura da linha de transmissão.

Nas faltas monofásicas e trifásicas e na abertura da linha detransmissão elaborou-se

um algoritmo para que o ângulo de incidência das faltas estivessem aproximadamente

com o mesmo valor. Nesse algoritmo utilizou-se a informaçãodo ângulo obtido através

da transformada de Park, e quando o ângulo da tensão atingia ovalor desejado enviava-

se um comado através do DSP para acionar o contator que realizava a falta. Para que

o valor do ângulo estivesse o mais próximo possível do desejado realizou-se diversos

ensaios para observar o tempo de atuação do contator que levou em média 22,5mspara

atuar. Com isso, observando o tempo de atuação do contator enviava-se um sinal para

acioná-lo já levado em conta o tempo de atuação do mesmo. O ângulo de incidência das

faltas monofásicas e trifásicas é mostrado nas tabelas dos respectivos ensaios, o ângulo

de incidência da abertura da linha de transmissão foi de≈ 70o.

Os ganhos dos dois controladores utilizados nos três ensaios são mostrados na Ta-

bela 6.1. Os ganhos do controlador SM-PI foram calculados com base nos pólos de malha

fechada a partir da planta teórica que foi obtida no Capítulo5, enquanto que os ganhos do

controlador convencional PI foram obtidos a partir dos ganhos chaveados do SM-PI, esses

ganhos do controlador convencional foram obtidos na prática e representam os melhores

Page 67: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 49

ganhos para o controlador convencional visto que nesse casoconsidera-se a planta como

sendo a planta real do sistema.

Tabela 6.1: Parâmetros dos controladores utilizados nos três ensaios.

SM-PI

kηp kη

i

k+p = 7,53 k+i = 10,10

kavp = 1,92 kav

i = 16,16

k−p = 3,70 k−i = 3,53

PI

kp =0,023 ki =23,20

Nos ensaios também foram testados os ganhos rápidos e lentosdo SM-PI no con-

trolador PI, no entanto o desempenho do controlador SM-PI foi bastante superior. Com

isso, os ganhos obtidos do chaveamento do SM-PI foram os que apresentaram melhores

desempenhos no PI e por isso foram utilizados nos três ensaios.

6.2 Ensaio 1: Falta Monofásica na Linha de Transmissão

A linha de transmissão foi submetida a uma falta monofásica emulada com o chave-

amento do resistor de faltar f em paralelo com uma das fases da cargaRL localizada no

meio da linha de transmissão. Essa situação é similar a uma falta monofásica visto que

no momento do chaveamento do resistorr f a corrente em uma das fases eleva-se rapida-

mente como ocorre em uma falta monofásica. Na Tabela 6.2 são mostrados os parâmetros

da carga e da falta que foram utilizados para a realização do ensaio 1.

Page 68: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 50

Tabela 6.2: Parâmetros do ensaio 1.

Tipo de Falta Monofásica

Duração da falta t = 500 ms

Resistência de Falta r f = 1,83Ω

Carga Utilizadar l = 30 Ωl l = 60 mH

Ângulo de incidência da falta≈ 70o

Tensão de linha e∞ = 220 V

Para a comparação do controlador PI com o SM-PI foram realizados dois ensaios

com as mesmas condições de operação. No primeiro ensaio, o regulador de tensão utili-

zou como controlador o PI convencional enquanto que no segundo ensaio o regulador de

tensão utilizou o controlador SM-PI.

Na Figura 6.2 é mostrado o comportamento da tensãoedq do gerador síncrono durante

o ensaio 1, no qual se tem a comparação do desempenho dos controladores PI e SM-PI

aplicados na regulação da tensão durante a falta monofásica. Os índices de comparação

entre o SM-PI e o PI são mostrados de forma resumida na Tabela 6.3, em que o índice de

overshooté a diferença entre o valor de pico e o valor em regime (380 V), enquanto que

o índice deundershooté a diferença entre o valor em regime (380 V) e o menor valor.

Tempo (s)

Ten

são

(V

)

19,8 20,0 20,2 20,4 20,6 20,8 21,0 21,2360

370

380

390

400

PI SM-PI

Figura 6.2: Comparação entre o SM-PI e o PI na tensãoedq do gerador síncrono.

Page 69: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 51

Tabela 6.3: Comparação do controlador PI com o SM-PI para o ensaio 1.

ControladorInício da falta Fim da falta

Overshoot(V) Undershoot(V) Overshoot(V) Undershoot(V)

PI 16,7 15,5 13,8 12,3

SM-PI 7,0 13,6 9,4 8,0

De acordo com os resultados apresentados na Figura 6.2 e na Tabela 6.3, o controlador

SM-PI apresentou o seguinte desempenho frente ao PI:

• Início da falta -overshootde 7,0 V, o que corresponde a uma redução de 58,08 %

em relação ao PI que apresentouovershootde 16,7 V.Undershootde 13,6 V, o que

corresponde a uma redução de 11,61% em relação ao PI que apresentouundershoot

de 15,5 V.

• Fim da falta -overshootde 9,4 V, o que corresponde a uma redução de 31,88 %

em relação ao PI, que apresentouovershootde 13,8 V.Undershootde 8,0 V, o que

corresponde uma redução de 34,95% em relação ao PI, que apresentouundershoot

de 12,3 V.

Em todos os períodos da falta, o SM-PI manteve os níveis de tensão em valores me-

nores que o controlador SM-PI. Portanto, com a rápida atuação do AVR as oscilações de

tensão são melhores amortecidas por reguladores de rápida atuação como o SM-PI.

Nas Figuras 6.3 e 6.4 são mostrados o comportamento da potência ativa e ângulo de

potência do gerador síncrono durante a falta, utilizava-seo controlador SM-PI no regula-

dor de tensão.

Tempo (s)

Potê

nci

a (k

W)

19,0 19,5 20,0 20,5 21,0 21,5 22,01,0

1,5

2,0

2,5

3,0

Figura 6.3: Potência ativa no sistema durante a falta.

Page 70: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 52

Tempo (s)

19,0 19,5 20,0 20,5 21,0 21,5 22,00

5

10

15Â

ng

ulo

de

Po

tên

cia

(deg

)

Figura 6.4: Ângulo de carga do gerador síncrono.

De acordo com as Figuras 6.3 e 6.4, a potência aumenta com o aumento do ângulo

de carga. Com isso, o ângulo de carga sendo monitorado de maneira adequada pode-se

aumentar a transferência de potência entre o gerador e o sistema sem que ocorra perca

de sincronismo do gerador com o sistema ou motorização do gerador. Os resultados

possuem significativa importância pelo fato do ângulo de potência ser o ponto chave na

transferência de potência do gerador para o sistema.

6.3 Ensaio 2: Falta Trifásica na Linha de Transmissão

O segundo ensaio foi realizado submetendo-se a linha de transmissão a falta trifásica,

para isso, chaveou-se um resistorr f em paralelo com cada fase da carga linear locali-

zada no meio da linha de transmissão. Para avaliar o desempenho dos controladores PI e

SM-PI, mediu-se a velocidade do gerador e observou-se a frequência do sistema com o

propósito de observar a natureza das oscilações ocorridas durante a falta. Na Tabela 6.2

são mostradas os parâmetros para a realização do ensaio 2.

Tabela 6.4: Parâmetros do ensaio 2.

Tipo de Falta Trifásica

Duração da falta t = 500 ms

Resistência de Falta r f = 3,66Ω

Carga Utilizadar l = 100 Ωl l = 60 mH

Ângulo de incidência da falta≈ 70o

Tensão de linha e∞ = 220 V

Page 71: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 53

Na Figura 6.5 é apresentado o resultado do ensaio no qual o regulador de tensão

baseado no SM-PI reduz a oscilação da velocidade, mesmo sem ainclusão do sinal esta-

bilizante do PSS.

18,0 18,5 19,0 19,5 20,0 20,5

580

590

600

610

620

PI SM-PI

Vel

oci

dad

e (R

PM

)

Tempo (s)

Início da falta Fim da falta

Figura 6.5: Velocidade do gerador síncrono durante a falta trifásica.

Na Tabela 6.5 são sumarizados os índices deovershootreferentes aos gráficos da

Figura 6.5, no qual pode ser verificado que o controlador SM-PI apresenta o seguinte

desempenho em relação ao PI:

• Início da falta -overshootde 5,82 RPM, o que corresponde a uma redução de

47,82% em relação ao PI que apresentouovershootde 11,0 RPM.Undershootde

12,1 RPM, o que corresponde uma redução de 20,39% em relação ao PI que apre-

sentouundershootde 15,2 RPM.

• Fim da falta -overshootde 5,8 RPM, o que corresponde a uma redução de 47,27%

em relação ao PI que apresentouovershootde 11,60 RPM.Undershootde 0,0 RPM,

o que corresponde uma redução de 100% em relação ao PI.

Tabela 6.5: Comparação PI com o SM-PI para o ensaio 2 (velocidade).

ControladorInício da falta Fim da falta

Overshoot* Undershoot* Overshoot* Undershoot*

PI 11,00 15,20 11,60 6,10

SM-PI 5,82 12,10 5,80 0,00

* Valores em RPM.

Page 72: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 54

Trançando-se o gráfico da frequência através da equação,

n=120f

P(6.1)

que relaciona a velocidaden com a frequênciaf e o número de pólosP do gerador sín-

crono, obtêm-se o gráfico da frequência conforme mostrado naFigura 6.6 e sumarizado

na Tabela 6.6.

18,0 18,5 19,0 19,5 20,0 20,558

60

62

Tempo (s)

SM-PIPI

Fre

quên

cia

(HZ

) Início da falta Fim da falta

Figura 6.6: Frequência do sistema durante a falta trifásica.

Tabela 6.6: Comparação PI com o SM-PI para o ensaio 2 (frequência).

Valor deControlador

Início da falta Fim da falta

referência* Overshoot* Undershoot* Overshoot* Undershoot*

± 0,1 PI 1,10 1,52 1,16 0,61

- SM-PI 0,58 1,21 0,58 0,00

* Valores em HZ.

Como a velocidade tem influência na frequência, no caso particular desse gerador

uma oscilação de velocidade de 10 rpm provoca uma oscilação de 1 HZ na frequência, um

amortecimento das oscilações da velocidade é importante para que os níveis de frequên-

cia fiquem dentro ou próximos dos níveis estabelecidos em norma. No caso do sistema

elétrico brasileiro, a norma ANEEL (2008) estabelece que o sistema de distribuição e as

instalações de geração conectadas ao mesmo devem, em condições normais de operação

e em regime permanente, operar dentro dos limites de frequência situados entre 59,9 Hz

e 60,1 Hz.

Page 73: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 55

No caso do ensaio 2 tanto o PI quanto o SM-PI não conseguiram amortecer as os-

cilações mantendo-as dentro dos níveis estabelecidos em norma. No entanto, observa-se

que o controlador SM-PI reduziu os níveis de frequência praticamente pela metade em

relação ao PI.

6.4 Ensaio 3: Abertura da Linha de Transmissão

No ensaio 3 um resistorr f = 250Ω foi inserido em série com a carga linear conectada

no meio da linha de transmissão para avaliação do comportamento do gerador com a

redução da corrente no ponto central da linha, como ocorre naabertura de uma linha de

transmissão.

Na Figura 6.7 é ilustrado a tensãoedq do gerador síncrono, enquanto que na Tabela

6.7 é sumarizada a comparação do desempenho entre os controladores PI e SM-PI.

4,85 4,90 4,95 5,00 5,05 5,10 5,15 5,20

350

400

450

SM-PI PI

Ten

são (

V)

Tempo (s)

Figura 6.7: Tensãoedq do gerador durante a abertura da linha de transmissão.

Tabela 6.7: Comparação PI com o SM-PI para o ensaio 3.

Controlador Overshoot(V) Undershoot(V) Período osc. (ms)

PI 41,5 44,0 259,0

SM-PI 18,0 44,0 120,0

De acordo com a Tabela 6.7, o SM-PI apresentouovershootda tensão de 18,0 V,

enquanto que o PI apresentouovershootde 41,5 V. Portanto, o SM-PI reduziu oovershoot

em relação ao PI em 56,62%. O SM-PI também reduziu o período deoscilação após a

Page 74: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 6. RESULTADOS EXPERIMENTAIS 56

falta em 53,66 % em relação ao PI. Com relação aoundershoot, tanto o PI quanto o SM-PI

apresentaram o mesmo desempenho.

6.5 Conclusão

Nos três ensaios realizados para a verificação do desempenhodo controlador SM-PI e

PI, o SM-PI apresentou desempenho superior ao do controlador PI, o que implica em um

regulador automático de tensão robusto que se adapta as novas situações, minimizando

os efeitos das perturbações no gerador síncrono e mantendo os níveis de tensão regulados

e que contribui para a manutenção do funcionamento contínuodo sistema elétrico de

potência.

Page 75: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Capítulo 7

Conclusões

7.1 Conclusões Gerais

Nesta dissertação foi proposta uma estratégia de controle híbrida, integrando o con-

trolador linear PI com a estratégia SMC, denominada SM-PI, para o regulador automático

de tensão com o objetivo de minimizar o efeito de perturbações nos geradores síncronos

de pólos salientes conectados ao barramento infinito.

A estratégia de controle SM-PI foi implementada sem a necessidade de estimação

dos parâmetros da planta para o cálculo dos ganhos do controlador, pois o cálculo desses

ganhos são baseados no desempenho do sistema sendo o procedimento desses cálculos

similar aos realizados para o projeto de controladores convencionais. Além disso, existe

uma diminuição da carga computacional do método de controleSM-PI em comparação

com outros métodos de controle adaptativo, o que viabiliza asua implementação prática.

O desempenho do controlador SM-PI foi avaliado a partir de montagens experimen-

tais, nos quais resultados foram obtidos quanto a compensação dos efeitos das faltas a que

o sistema foi submetido. Por exemplo, mesmo sem a adição do sinal do PSS, o SM-PI

reduziu a oscilação de velocidade em 47,8% quando comparadoao PI convencional. O

SM-PI também regulou de maneira satisfatória os níveis de tensão durante faltas, redu-

zindo oovershootda tensão em 57,0 % em relação ao controlador PI.

O controlador SM-PI é indicado para garantir a estabilidadee desempenho do sis-

tema quando submetido a distúrbios transitórios e variações de carga. Os resultados ex-

perimentais comprovaram uma melhora significativa na regulação das tensões do gerador

bem como boa robustez do controlador durante distúrbios.

Page 76: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

CAPÍTULO 7. CONCLUSÕES 58

7.2 Trabalhos Futuros

Como continuação dos estudos realizados nesta dissertação, as seguintes propostas

de trabalhos futuros são sugeridas:

• Avaliar a estrutura de controle proposta (SM-PI) em conjunto com um PSS conven-

cional;

• Inserir informações do ângulo de carga na malha de realimentação do controlador

SM-PI;

• Implementação do modo dual do SM-PI, ou seja, utilizar o SM-PI durante os dis-

túrbios e o PI com ganhos fixos em regime permanente;

• Avaliar os problemas de estabilidade de tensão e angular ao utilizar os controladores

PI e SM-PI com o SEP funcionado próximo as suas condições limites.

Page 77: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Referências Bibliográficas

ABIDI, K.; SABANOVIC, A. Sliding-mode control for high-precision motion of a

piezostage.IEEE Transactions on Industrial Electronics, v. 54, n. 1, p. 629 –637, feb.

2007. ISSN 0278-0046.

AMAN, M. et al. Fast stability achievement through fuzzy logic based non-linear

excitation control of synchronous generator. In:IEEE Colloquium on Humanities,

Science and Engineering (CHUSER). [S.l.: s.n.], 2011. p. 431 –436.

ANDERSON, P. M.; FOUAD, A. A.Power System Control and Stability. 2. ed. [S.l.]:

Wiley-IEEE Press, 2002.

ANEEL, A. N. de E. E.Procedimentos de Distribuição de Energia Elétrica no Sistema

Elétrico Nacional - Prodist - Módulo 8 Qualidade de Energia Elétrica. [S.l.], Dezembro

de 2008.

ANEEL, A. N. de E. E. Dezembro de 2012. Disponível em:

<http://www.aneel.gov.br/aplicacoes/capacidadebrasil/OperacaoCapacidadeBrasil.asp>.

ASTROM, K. J.; WITTENMARK, B.Adaptive Control. 2. ed. [S.l.]: Prentice Hall,

1994. 580 p.

BA-MUQABEL, A.; ABIDO, M. Review of conventional power system stabilizer design

methods. In:GCC Conference (GCC), 2006 IEEE. [S.l.: s.n.], 2006. p. 1 –7.

BARAKAT, A. et al. Monovariable and multivariable voltage regulator design for a

synchronous generator modeled with fixed and variable loads. IEEE Transactions on

Energy Conversion, v. 26, n. 3, p. 811 –821, sept. 2011. ISSN 0885-8969.

BASLER, M.; SCHAEFER, R. Understanding power system stability. In: Pulp and

Paper Industry Technical Conference, 2007. Conference Record of Annual. [S.l.: s.n.],

2007. p. 37 –47. ISSN 0190-2172.

59

Page 78: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

REFERÊNCIAS BIBLIOGRÁFICAS 60

BAZANELLA, A. S.; JR, J. M. G. da S.Sistemas de controle: princípios e métodos de

projeto. [S.l.]: UFRGS, 2005.

BEKIROGLU, E.; BAYRAK, A. Automatic synchronization unit for the parallel

operation of synchronous generators. In:EUROCON 2009, EUROCON ’09. IEEE. [S.l.:

s.n.], 2009. p. 766 –771.

BERA, P.; DAS, D.; BASU, T. Design of p-i-d power system stabilizer for multimachine

system. In:India Annual Conference, 2004. Proceedings of the IEEE INDICON 2004.

First. [S.l.: s.n.], 2004. p. 446 – 450.

BHAT, S. Discussion of "bibliography on the fuzzy set theoryapplications in power

systems (1994-2001)".IEEE Transactions on Power Systems, v. 19, n. 4, p. 2117 – 2118,

nov. 2004. ISSN 0885-8950.

BOIKO, I. et al. Analysis of chattering in systems with second-order sliding modes.

IEEE Transactions on Automatic Control, v. 52, n. 11, p. 2085 –2102, nov. 2007. ISSN

0018-9286.

CASTRUCCI, P. B. L.; CURTI, R.Sistemas Não-Lineares. [S.l.]: Edgar Blucher, 1981.

DEMELLO, F.; CONCORDIA, C. Concepts of synchronous machinestability as

affected by excitation control.IEEE Transactions on Power Apparatus and Systems,

PAS-88, n. 4, p. 316 –329, april 1969. ISSN 0018-9510.

EMELYANOV, S. V. Theory of variable structure systems. [S.l.]: Nauka, 1970.

FAN, W.; LIAO, Y. Impacts of flickers, harmonics and faults onsynchronous generator

operations. In:44th Southeastern Symposium on System Theory (SSST). [S.l.: s.n.], 2012.

p. 220 –225. ISSN 0094-2898.

FARSI, M.; ZACHARIAH, K.; FINCH, J. Adaptive control of turbo generator excitation.

In: Adaptive Controllers in Practice - Part Two (Digest No: 1996/060), IEE Colloquium

on. [S.l.: s.n.], 1996. p. 2/1 –2/5.

FLYNN, D. et al. A self-tuning automatic voltage regulator designed for an industrial

environment.IEEE Transactions on Energy Conversion, v. 11, n. 2, p. 429 –434, jun

1996. ISSN 0885-8969.

FUSCO, G.; RUSSO, M. Adaptive voltage regulator design for synchronous generator.

IEEE Transactions on Energy Conversion, v. 23, n. 3, p. 946 –956, sept. 2008. ISSN

0885-8969.

Page 79: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

REFERÊNCIAS BIBLIOGRÁFICAS 61

GHAZIZADEH, M.; SAIDY, M.; HUGHES, F. Predictive analogue generator excitation

controller.Generation, Transmission and Distribution, IEE Proceedings-, v. 144, n. 3, p.

271 –278, may 1997. ISSN 1350-2360.

HA, Q. et al. Dynamic output feedback sliding-mode control using pole placement and

linear functional observers.IEEE Transactions on Industrial Electronics, v. 50, n. 5, p.

1030 – 1037, oct. 2003. ISSN 0278-0046.

HASSAN, L.; MOGHAVVEMI, M.; MOHAMED, H. Power system stabilization based

on artificial intelligent techniques; a review. In:International Conference for Technical

Postgraduates (TECHPOS). [S.l.: s.n.], 2009. p. 1 –6.

HE, J.; MALIK, O. An adaptive power system stabilizer based on recurrent neural

networks.IEEE Transactions on Energy Conversion, v. 12, n. 4, p. 413 –418, dec 1997.

ISSN 0885-8969.

HIYAMA, T.; UEKI, Y.; ANDOU, H. Integrated fuzzy logic generator controller for

stability enhancement.IEEE Transactions on Energy Conversion, v. 12, n. 4, p. 400

–406, dec 1997. ISSN 0885-8969.

HUERTA, H.; LOUKIANOV, A.; CANEDO, J. Multimachine power-system control:

Integral-sm approach.IEEE Transactions on Industrial Electronics, v. 56, n. 6, p. 2229

–2236, june 2009. ISSN 0278-0046.

IEEE. Ieee recommended practice for excitation system models for power system

stability studies.IEEE Std 421.5-2005 (Revision of IEEE Std 421.5-1992), 2006.

IEEE. Ieee guide: Test procedures for synchronous machinespart i– acceptance and

performance testing part ii-test procedures and parameterdetermination for dynamic

analysis.IEEE Std 115-2009 (Revision of IEEE Std 115-1995), p. 1 –0, 7 2010.

IOANNOU, P.; IOANNOU, P. A.; SUN, J.Robust Adaptive Control. 2. ed. San

Francisco: Prentice Hall, 1996.

ITKIS, U. Control Systems of Variable Structure. [S.l.]: Wiley, 1976.

KIM, K.; SCHAEFER, R. Tuning a pid controller for a digital excitation control system.

In: Pulp and Paper Industry Technical Conference, 2004. Conference Record of the 2004

Annual. [S.l.: s.n.], 2004. p. 94 – 101. ISSN 0190-2172.

KUNDUR, P.Power System Stability and Control. [S.l.]: McGraw-Hill, 1994.

Page 80: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

REFERÊNCIAS BIBLIOGRÁFICAS 62

LEVANT, A. Higher order sliding modes and arbitrary-order exact robust differentiation.

European Control Conference, p. 996–1001, 2001.

LIMEBEER, D.; KASENALLY, E. H ∞ optimal control of a synchronous turbo-

generator. In:25th IEEE Conference on Decision and Control. [S.l.: s.n.], 1986. v. 25, p.

62 –65.

LOUKIANOV, A. et al. High-order block sliding-mode controller for a synchronous

generator with an exciter system.IEEE Transactions on Industrial Electronics, v. 58,

n. 1, p. 337 –347, jan. 2011. ISSN 0278-0046.

LOUKIANOV, A. et al. Discontinuous controller for power systems: sliding-mode block

control approach.IEEE Transactions on Industrial Electronics, v. 51, n. 2, p. 340 – 353,

april 2004. ISSN 0278-0046.

LOWN, M.; SWIDENBANK, E.; HOGG, B. Adaptive fuzzy logic control of a turbine

generator system.IEEE Transactions on Energy Conversion, v. 12, n. 4, p. 394 –399, dec

1997. ISSN 0885-8969.

Lü, Q.; SUN, Y.; MEI, S.Nonlinear Control Systems and Power System Dynamics. 1. ed.

[S.l.]: Springer, 2001.

MACHOWSKI, J. et al. Excitation control system for use with synchronous generators.

IEE Proceedings - Generation, Transmission and Distribution,, v. 145, n. 5, p. 537 –546,

sep 1998. ISSN 1350-2360.

MAO, C. et al. An adaptive generator excitation controller based on linear optimal

control. IEEE Transactions on Energy Conversion, v. 5, n. 4, p. 673 –678, dec 1990.

ISSN 0885-8969.

MOUNI, E.; TNANI, S.; CHAMPENOIS, G. Synchronous generatoroutput voltage

real-time feedback control via strategy.IEEE Transactions on Energy Conversion, v. 24,

n. 2, p. 329 –337, june 2009. ISSN 0885-8969.

OKABE, T.; FUKUOKA, T.; IWAMOTO, S. A new pss design using gain scheduling

and anti-windup control theories. In:Transmission and Distribution Conference and

Exposition, 2008. IEEE/PES. [S.l.: s.n.], 2008. p. 1 –6.

PADIYAR, K. R. Power System Dynamics Stability and Control. 2. ed. [S.l.]: BS

Publictions, 2008.

Page 81: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

REFERÊNCIAS BIBLIOGRÁFICAS 63

PEREZ, S.; MORA, J.; OLGUIN, G. Maintaining voltage profilesby using an adaptive

pss. In:Transmission Distribution Conference and Exposition: Latin America, 2006.

TDC 06. IEEE/PES. [S.l.: s.n.], 2006. p. 1 –5.

RIBEIRO, R. L. de A.; AZEVEDO, C. C. de; SOUSA, R. M. de. A robust adaptive control

strategy of active power filters for power-factor correction, harmonic compensation, and

balancing of nonlinear loads.IEEE Transactions on Power Electronics, v. 27, n. 2, p. 718

–730, feb. 2012. ISSN 0885-8993.

SAIDY, M. A unified approach to voltage regulator and power system stabiliser design

based on predictive control in analogue form.International Journal of Electrical Power

& Energy Systems, v. 19, p. 103 – 109, 1997.

SAIDY, M.; HUGHES, F. M. A predictive integrated voltage regulator and power system

stabilizer. In:Elect. Power Energy Syst. [S.l.: s.n.], 1995.

SEN, P. C.Principles of Electric Machines and Power Electronics. 2. ed. [S.l.]: John

Wiley & Sons, 1997.

SWIDENBANK, E. et al. Neural network based control for synchronous generators.

IEEE Transactions on Energy Conversion, v. 14, n. 4, p. 1673 –1678, dec 1999. ISSN

0885-8969.

TARANTO, G. N. Tecnologia facts: Dinâmica e controle. In:XI Congresso Brasileiro de

Automática. [S.l.: s.n.], 1996. v. 2, p. 1071–1076.

UTKIM, V. I. Sliding Modes in Control and Optimization. [S.l.]: Springer-Verlag, 1992.

UTKIN, V. I.; GULDNER, J.; SHIN, J.Sliding Mode Control in Electromechanical

System. [S.l.: s.n.], 1999.

WU, Q.; HOGG, B. Robust self-tuning regulator for a synchronous generator.IEE

Proceedings D Control Theory and Applications, v. 135, n. 6, p. 463 – 473, nov 1988.

ISSN 0143-7054.

ZHANG, S.; LUO, F. L. An improved simple adaptive control applied to power system

stabilizer.IEEE Transactions on Power Electronics, v. 24, n. 2, p. 369 –375, feb. 2009.

ISSN 0885-8993.

Page 82: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Apêndice A

Ensaios laboratorial

Os ensaios laboratorial foram realizados para a obtenção dos parâmetros do ge-

rador síncrono, necessários para efetuar todo o controle dogerador síncrono.

A.1 Equipamentos Utilizados para o Ensaio Laborato-

rial

Os equipamentos utilizados para o ensaio no laboratório foram:

• Máquina de corrente contínua (motor);

• Máquina síncrona de polos salientes (gerador);

• Osciloscópio Agilent;

• Amperímetros;

• Taco gerador.

Os dados de placa da máquina de corrente contínua são sumarizados na Tabela A.1.

Tabela A.1: Parâmetros da máquina de corrente contínua.

eacc = 220 V nmcc= 1800 RPM

iacc = 13,6 A Pmcc= 3 kW

Page 83: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 65

Os dados de placa da máquina síncrona são sumarizados na Tabela A.2:

Tabela A.2: Parâmetros de placa da máquina síncrona de polossalientes.

esnomY = 380/220 V ωr = 600 RPM

isnom = 7,6 A cosφ = 0,8

Sgs= 5 kVA fs= 60 Hz

Os ensaios foram obtidos com a bancada de ensaios ligada conforme o esquema da

Figura A.1,no qual a máquina síncrona é acionada pela máquina de corrente contínua até

a velocidade síncrona. Em seguida, os ensaios de curto-circuito e de circuito aberto foram

realizados.

K1

GSMCC

A A A A

A

V

e a

e fde exc

U1 V1 W1

U2 V2 W2

N

RPM

Figura A.1: Esquema de ligação da plataforma experimental.

A.2 Ensaio de Circuito Aberto

A característica de circuito aberto de uma máquina síncronaé uma relação entre a ten-

são terminal de armadura com a corrente de campo, com a máquina girando à velocidade

nominal.

No ensaio de circuito aberto varia-se a corrente de excitação de campo (i f d) e mede-

se a tensão terminal (es) dos enrolamentos do estator. A relação entre as tensões terminais

Page 84: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 66

(es) e corrente de excitação de campo (i f d) permite traçar à curva de circuito aberto, que

fornece as características da máquina síncrona em vazio.

O procedimento para a realização desse ensaio segundo a norma IEEE (2010) é da

seguinte maneira:

a) Medir 6 valores de tensão terminal com valor abaixo de 60% da tensão nominal,

inclusive com excitação zero;

b) Entre 60% e 110% da tensão nominal fazer 10 medições da tensão terminal;

c) Acima de 110% da tensão nominal, medir 2 valores da tensão terminal sendo uma

medição com valor de aproximadamente 120% da tensão nominal;

d) As medições devem ser feitas com tensão terminal (tensão de linha) de todas as

três fases para verificar o balanço de fase. Podem ser usadas as tensões de linha

ou a média das três tensões para cada valor de corrente de excitação. As medições

devem ser feitas com o mesmo voltímetro sob condições de velocidade e excitação

constante.

As medições para o levantamento desta curva devem ser feitascom excitação de

campo crescente. Este método permite energização segura damáquina que será ensai-

ada. Se durante o ensaio for necessário diminuir a corrente de excitação de campo, ela

deve ser reduzida a zero e em seguida aumentada para o valor desejado, para remover os

efeitos da histerese nos resultados.

Para cada medição da tensão terminal e da corrente de campo deve-se aguardar a

velocidade da máquina estabilizar no valor nominal de modo que não ocorra erro causado

pela variação de velocidade e de corrente de campo.

Os resultados obtidos nesse ensaio são mostrados na Figura A.2.

A.3 Curva do Entreferro

Segundo a norma IEEE (2010), a curva do entreferro é obtida a partir da curva de

saturação em circuito aberto estendendo esta curva até a origem. Se a parte inferior da

curva de saturação de circuito aberto não for linear, a curvade entreferro é desenhada

como uma linha reta de inclinação máxima possível através daorigem tangente à curva

de saturação de circuito aberto.

Page 85: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 67

0 1,0 2,0 3,0 4,0 5,0

100

200

300

400

500

1,0

2,0

3,0

4,0

5,0

0

e =220sn

e (V)s i (A)cc

i (A)fd

i =1,64cc

EntreferroCircuito abertoCurto-circuito

Figura A.2: Curvas do entreferro, curva de circuito aberto ecurva de curto-circuito.

A.4 Ensaio de Curto-circuito

A característica de curto-circuito de uma máquina síncronaé uma relação entre a

corrente de armadura em curto-circuito e a corrente de campo, com a máquina síncrona

girando a velocidade nominal.

Segundo a norma IEEE (2010), a curva de saturação de curto-circuito é obtida acio-

nando a máquina que será ensaiada à velocidade nominal. Em seguida, os enrolamentos

da armadura são curto-circuitados e mede-se a corrente de curto-circuito da armadura e a

corrente de campo. Normalmente, medições das correntes de armadura são feitas para os

valores de 125%, 100%, 75%, 50% e 25% da corrente nominal de excitação (i f d).

Devem ser medidas as três correntes de curto-circuito da armadura para verificar o

balanço de corrente. Essas medições devem ser feitas de tal maneira que a corrente de

excitação de campo forneça o maior valor de corrente de curto-circuito do ensaio. Com

isso, o primeiro ponto de medição deverá ser a maior correntede curto-circuito para que

a temperatura do enrolamento permaneça constante durante todo o ensaio. O resultado

desse ensaio é mostrado na Figura A.2.

Page 86: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 68

A.5 Ensaio de Escorregamento para Determinação dexd

e xq

O ensaio de escorregamento é feito acionando a máquina síncrona a uma velocidade

próxima à velocidade síncrona com o campo em aberto e a armadura energizada por

tensões trifásicas com frequência nominal e sequência de fase positiva. A tensão trifásica

aplicada deverá ser um pouco menor do que o ponto em que a curvade saturação em

circuito-aberto desvia-se da curva do entreferro. O esquema de ligação para a realização

deste ensaio é mostrado na Figura A.3.

GSMCC

A A A A

V

ea

e exc

U1 V1 W1

U2 V2 W2

N

RPM

Varivolt

Figura A.3: Esquema de ligação para o ensaio de escorregamento.

A corrente de armadura, a tensão de armadura e a tensão do enrolamento de campo

em circuito aberto devem ser medidas. A tensão de campo deve ser medida por um

voltímetro e a corrente e tensão de armadura por um osciloscópio. Podem ser medidas

qualquer tensão e corrente de linha. Os picos das formas de onda são modeladas pela

saliência dos polos da maquina síncrona. As formas de onda obtidas desse ensaio são

mostradas na Figura A.4.

Page 87: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 69

Ch2

Ch1

Figura A.4: Ensaio de escorregamento.

Com essas duas formas de onda, as reatâncias de eixo direto e em quadratura a podem

ser encontradas por:

xd =esmax

ismin

, xq =esmin

ismax

. (A.1)

Da Figura A.4, obtêm-se os valores de tensão e corrente mostrados na Tabela A.3 :

Tabela A.3: Valores da tensão e corrente do ensaio de escorregamento.

esmax = 288 V esmin = 248 V

ismax = 7,84 A ismin = 5,76 A

Substituindo os dados da Tabela A.3 nas equações A.1, obtêm-se os valores para as

reatâncias de eixo direto e em quadratura e, consequentemente, as indutâncias direta e de

quadratura mostradas na Tabela A.4:

Tabela A.4: Parâmetros da máquina síncrona eixo: d e q.

xd = 50Ω xq = 31,6ΩLd = 132 mH Lq = 83,8 mH

Page 88: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE A. ENSAIOS LABORATORIAL 70

Os valores das indutâncias de magnetização dos eixos d e q sãodeterminadas utili-

zando as seguintes relações:

Ld = Lmd+La, (A.2)

Lq = Lmq+La, (A.3)

Com isso, tem-se os dados sumarizados na Tabela A.5.

Tabela A.5: Parâmetros da máquina síncrona:Lmd eLmq.

Lmd = 117,6 mH Lmq = 69,4 mH

Na Tabela A.6 estão resumidos todos os parâmetros do geradorsíncrono, tantos os de

placa, quanto os parâmetros obtidos nos ensaios.

Tabela A.6: Parâmetros do Gerador Síncrono.

S= 5 kVA es = 380 V r f = 1,2 Ω fs= 60 Hz

L f = 79 mH Lmd =117,62 mH Lmq=69,4 mH P= 6

xd= 50Ω xq= 31,6Ω x′d=196,42Ω H = 0,09

Page 89: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Apêndice B

Descrição da Plataforma Experimental

Neste Apêndice é feita uma descrição detalhada da plataforma experimental que foi

desenvolvida e construída no LEPER. Essas estruturas experimentais foram construídas

em paralelo com os estudos desenvolvidos, tendo levado bastante tempo para ser cons-

truídos.

B.1 Bancada Experimental para Implementação dos Con-

troladores

A bancada experimental para implementação dos controladores, foi desenvolvida para

a execução do controle do gerador síncrono e do motor de corrente contínua. Sendo

composta pelos seguintes elementos:

B.1.1 Sensores de Tensão e de Corrente

Nas medições de corrente e tensão são utilizados sensores deefeitoHall (LAH 25-NP

e LV20-P). A medição da tensão é realizada com o uso de um resistor de potência utilizado

para limitar a corrente de entrada do sensor. Os sensores utilizados nos experimentos,

além de fornecerem medições precisas, têm a capacidade de medir sinais em uma ampla

faixa de frequência. Os sensores possuem isolação galvânica entre os circuitos de alta e

de baixa potência.

Os sensores de tensão e de corrente também foram construídosno laboratório, além

do projeto elétrico dos sensores os circuitos impressos dossensores foram prototipados na

Page 90: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE B. DESCRIÇÃO DA PLATAFORMA EXPERIMENTAL 72

LPKF no próprio laboratório. A soldagem dos componentes dossensores também foram

realizadas no laboratório. Foram feitas de três a quatro configurações dos sensores até ser

obtida a configuração final dos sensores, que proporcionaramboas medições das tensões

e correntes do sistema.

B.1.2 DSP

O DSP é o modelo 320F28335 da Texas Instruments de ponto flutuante equipado

com uma placa de aquisição de dados com conversores A/D de 12 bits. A configuração

do DSP e montagem dostart-kit foram realizadas também no laboratório, sendo que a

configuração do DSP foi bastante trabalhosa visto a necessidade de configurar as I/O’s e

toda os elementos necessários para que o algoritmo de controle fosse implementado de

maneira correta.

B.1.3 Conversores Estáticos

Os dois conversores estáticos (VSIs) são compostos por seischaves do tipo IGBT e

trêsdrivers(SKHI-23 Semikron), além de quatro capacitores de 2200µF que constituem

o barramento capacitivo. Osdriversrecebem os sinais de comando das chaves, a partir de

placas que convertem o sinal óptico enviado pelo DSP em sinalelétrico.

A foto da bancada experimental é mostrada na Figura B.1.

Page 91: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE B. DESCRIÇÃO DA PLATAFORMA EXPERIMENTAL 73

Sensores

VSI 1VSI 2

Figura B.1: Bancada experimental desenvolvida no laboratório.

B.2 Conjunto Motor de Corrente Contínua e Gerador

Síncrono

O conjunto motor de corrente continua e o gerador síncrono noinício do trabalho

encontrava-se sem funcionar, com isso precisou-se deslocar o conjunto até uma oficina

para realizar a manutenção. Após a manutenção foram realizados testes no conjunto e

observou-se a boa qualidade desses elementos.

O gerado síncrono (GS) é do tipo pólos salientes de 12 polos com 5 kVA de potência.

O motor de corrente continua (MCC) possui 3 kW de potência, noqual o circuito de ex-

citação do motor é alimentado por uma fonte adicional independente da fonte de corrente

continua que alimenta a armadura.

A foto mostrada na Figura B.2 o conjunto motor de corrente continua e o gerador

síncrono.

Page 92: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE B. DESCRIÇÃO DA PLATAFORMA EXPERIMENTAL 74

Figura B.2: Conjunto máquina de corrente continua e geradorsíncrono.

B.3 Emulador do Sistema Elétrico de Potência

O emulador do sistema elétrico de potência com simulador de distúrbios foi cons-

truído no laboratório com o objetivo de simular de forma reduzida o comportamento de

um sistema elétrico de potência.

A estrutura metálica foi projetada de forma que o calor provocado pelo aquecimento

dos resistores e indutores fosse retirada de forma satisfatória. Os componentes do emula-

dor também foram projetados no laboratório.

O emulador do sistema elétrico de potência com simulador de distúrbios é composto

por resistênciasrs e indutânciasls que representam o comportamento de uma linha de

transmissão (LT) de 100 km dividida em dois trechos de 50 km. No ponto central da linha

de transmissão é conectada uma carga linear, composta por uma associação em série de

resistênciasr l com indutânciasl l . O simulador de distúrbios é composto por chaves de

by-passe resistências para simular faltas de circuito aberto e de curto circuito. Na Tabela

B.1 são apresentados os parâmetros do sistema.

Tabela B.1: Parâmetros da linha e simulador de distúrbios.

rs= 0,1 Ω ls= 2 mH

r l = 10 Ω l l = 60 mH

r f 1 = 5 Ω r f 2 = 250Ω

Page 93: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE B. DESCRIÇÃO DA PLATAFORMA EXPERIMENTAL 75

Na Figura B.3 é apresentada uma visão geral do emulador do sistema elétrico de

potência com simulador de distúrbios

Simuladorde Falta

Linha deTransmissão

Cargas

Figura B.3: Emulador de sistema de potência com simulador dedistúrbios.

Page 94: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

APÊNDICE B. DESCRIÇÃO DA PLATAFORMA EXPERIMENTAL 76

B.4 Dificuldades Encontradas

Nessa seção são citadas algumas dificuldade encontradas para a realização desse pro-

jeto.

Inicialmente foram encontradas muitas dificuldades na configuração do DPS, já que

o mesmo pode ser configurado com linguagemassembly. No entanto, por meio de pes-

quisas nainternetdescobriu-se que o DSP poderia ser configurado com o softwarePSIM

e o pacote SimCoder de forma bem mais fácil quando comparado aforma utilizando a

linguagemassembly.

Outra dificuldade encontrada está relacionada com a construção dos sensores de ten-

são e de corrente, nos quais projetos foram elaborados até a confecção final dos sensores

para que pudessem atender as necessidades do sistema, tais como, os níveis de corrente

suportados pelas trilhas do sensor e os níveis de tensão medidos. Para isso, o projeto

elétrico foram refeitos para contemplar os níveis dos sinais medidos.

Pode-se citar também como dificuldade as montagens da bancada experimental e do

emulador do sistema de potência, devido a elaboração dos projetos elétricos e estruturais

para que interferência eletromagnéticas não afetassem o desempenhos do DSP e dos sinais

medidos pelos sensores.

Antes da realização dos testes dos controladores SM-PI e PI necessitou-se elaborar o

algoritmo para a sincronização automática do gerador síncrono com o sistema de potência.

No momento em que foram realizados os ensaios descritos no capítulo 6 o emulador

do sistema de potência e a bancada experimental para a implementação dos controladores

apresentados no apêndice B ainda não haviam sido totalmentefinalizados. Com isso, as

faltas que foram realizadas não contemplaram toda a capacidade do emulador, visto que

o DSP perdia a comunicação com o computador quando haviam variações elevadas de

carga. Com isso, não era possível armazenar os resultados nocomputador.

Outra dificuldade a ser destacada é que apenas uma variável pode ser armazenado

no computador em cada ensaio, por conta de até o momento não ser possível a criação

de umbuffer para armazenar as variáveis. Essa limitação dificultou bastante a obtenção

dos resultados, visto que necessitava-se realizar os ensaios diversas vezes para colher as

variáveis que se desejava avaliar.

Page 95: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Apêndice C

Operações Aritméticas para a

Implementação dos Controladores

Nesse Apêndice é tratada a quantidade de operações aritméticas necessária para a

implementação das estratégias de controle, para comparar acomplexidade de implemen-

tação de três estratégias de controle, o controlador PI o SM-PI e o VS-APPC.

Na Tabela C.1 são mostradas as operações aritméticas necessárias para a implemen-

tação da rotina de controle.

Tabela C.1: Operações aritméticas necessárias para a implementação das estratégias de

controle.

Oper. Aritmética PI SM-PI VS-APPC

+ 2 3 5

- 1 2 4

× 3 4 15

÷ 0 1 2

De acordo com a Tabela C.1, o PI apresenta menor número de operações aritméticas,

visto que não possui nenhuma divisão para a implementação darotina de controle. O

SM-PI apresenta uma divisão e possui uma complexidade menorquando comparado ao

VS-APPC que possui duas divisões, visto que é uma rotina de controle adaptativa indireta

na qual é necessária a estimação dos parâmetros da planta para o ajuste dos ganhos do

controlador. Portanto, de acordo com a Tabela C.1, o PI possui menor complexidade de

implementação, seguido do SM-PI e o VS-APPC.

Page 96: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

Índice Remissivo

Alocação de pólos, 40

Amortecimento das oscilações, 53

Barramento infinito, 2, 13, 20, 55

Carga computacional, 8, 55

Chattering, 10

Complexidade de implementação, 9, 10

Controlador convencional, 48

Controlador MRAC, 9

Controlador PI, 4, 7, 28

Controlador PID, 3, 7, 28

Controlador VS-APPC, 10

Controle a estrutura variável, 10, 36

Controle adaptativo, 9, 10, 33

Controle adaptativo direto, 34

Controle adaptativo indireto, 34

Controle convencional, 3, 7, 10, 28, 29, 38

Controle não-convencional, 3

Controle por modo deslizante, 9, 10, 36

Conversão de energia, 1, 2

DSP, 4, 48, 72

Equação Diofantina, 40

Estabilidade de ângulo, 3

Estabilidade de Lyapunov, 39

Estabilidade de tensão, 3

Estabilidade do sistema de potência, 7

Estabilizadores do sistema de potência, 3,

28, 30, 38

Estimação de parâmetros, 9, 10, 33, 55

Estrutura híbrida de controle, 10, 55

Filtro Washout, 31

Gerador síncrono, 2, 13, 27, 28, 40, 48, 55

Gerador síncrono de polos lisos, 2

Gerador síncrono de polos salientes, 2

Hidrelétrica, 1, 2

Identificação de parâmetros, 8

Incertezas paramétricas, 10

Lógica fuzzy, 3, 8, 31

Linearização do modelo, 7

Margem de estabilidade, 4, 10, 31

Modelo de Heffron e Phillips, 20, 22

Modelo linearizado do sistema, 3, 31

Modelos linearizados do sistema, 29

Modo de oscilação do sistema, 7

Oscilação inter-área, 7, 30

Oscilação intra-planta, 7

Oscilação local, 7, 30

Oscilação torsionais, 30

Oscilações de baixa frequência, 9

Oscilações eletromecânicas, 30

Oscilações mecânicas, 10, 11

Perda de sincronismo, 29

Perturbações, 3, 9

Polinômio mônico Hurwitz, 41

78

Page 97: Regulador Automático de Tensão Robusto Utilizando … · polos salientes - Dissertação. 3. Sistema de potência - estabilizador - Disserta-ção. 4. Superfície deslizante - Dissertação.

ÍNDICE REMISSIVO 79

Ponto de operação, 8, 10, 22, 29, 31

Redes neurais artificiais, 8

Região de instabilidade, 3

Regulador automático de tensão, 3, 9, 28

Sinal estabilizante, 3

Sincronismo, 2, 3

Sistema de distribuição, 1

Sistema de geração, 1

Sistema de transmissão, 1

Sistema elétrico de potência, 1, 9, 20

Superfície de deslizamento, 36

Técnica de controle robusto, 8

Termelétricas, 2

Transitório, 2, 3

Variações paramétricas, 3, 9