Livro Engª Didática 2013

72
WAGNER MARCELO POMMER A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares SÃO PAULO 2013

Transcript of Livro Engª Didática 2013

Page 1: Livro Engª Didática 2013

WAGNER MARCELO POMMER

A Engenharia Didática em sala de aula: Elementos básicos e

uma ilustração envolvendo as Equações Diofantinas Lineares

SÃO PAULO

2013

Page 2: Livro Engª Didática 2013
Page 3: Livro Engª Didática 2013

WAGNER MARCELO POMMER

A Engenharia Didática em sala de aula: Elementos básicos e

uma ilustração envolvendo as Equações Diofantinas Lineares

SÃO PAULO

2013

Page 4: Livro Engª Didática 2013

AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE LIVRO ELETRÔNICO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E ENSINO, DESDE QUE CITADA A FONTE.

Catalogação

POMMER, Wagner Marcelo. A Engenharia Didática em sala de aula: Elementos básicos e uma

ilustração envolvendo as Equações Diofantinas Lineares, 2013. 72 p.

ils.: Tabs.

ISBN 978-85-914891-1-4

1. Ensino e Aprendizagem 2.Educação Matemática.

3. Engenharia Didática. 4. Teoria das Situações Didáticas.

5. Equações Diofantinas Lineares. 6. Jogos e Problemas.

Page 5: Livro Engª Didática 2013

SUMÁRIO

APRESENTAÇÃO 07

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 09

I.1- As origens da Engenharia Didática: A teoria das Situações Didáticas ........................ 10

I.2- O contexto dos elementos na teoria das Situações Didáticas: O triângulo didático .... 13

I.2.1- O papel do professor nas situações didáticas ......................................................... 13

I.2.2- O papel do aluno diante das situações didáticas .................................................... 15

I.2.3- O contexto do conhecimento/saber ........................................................................ 16

I.3- A Engenharia Didática ................................................................................................. 20

CAPÍTULO II- Uma Engenharia Didática aplicada as Equações Diofantinas Lineares 27

II.1- As Análises Preliminares da sequência didática ...................................................................... 28

II.2- A Concepção e a Análise a Priori da sequência didática ......................................................... 31

II.3- A sequência didática: 1ª sessão .......................................................................................... 32

II.3.1- Atividade 01: O Jogo do Sorvete ................................................................................... 33

II.3.2- Atividade 2: Quantos pacotes de café? ..................................................................... 34

II.4- A seqüência de aprendizagem: 2ª sessão ............................................................................ 34

II.4.1- Atividade 3: Dinarlândia ............................................................................................. 34

II.4.2- Atividade 4: Os saques no caixa eletrônico ......................................................... 36

II.5- A seqüência de aprendizagem: 3ª sessão ..................................................................... 39

II.5.1- Atividade 5: Quantos pacotes de café? ................................................................ 39

II.5.2- Atividade 6: CDs ou DVDs? ............................................................................... 40

II.5.3- Síntese ................................................................................................................. 41

Page 6: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 43

III.1- Descrição e Análise a Posteriori Local da 1ª sessão ...................................................... 43

III.1.1- Descrição da Atividade 1: O Jogo do sorvete ..................................................... 43

III.1.2- Análise a posteriori local da atividade 1 ............................................................. 45

III.1.3- Descrição da Atividade 2: Quantos pacotes de café ........................................... 46

III.1.4- Análise a posteriori local da atividade 2 ............................................................. 47

III.2- Descrição e Análise a Posteriori Local da 2ª sessão .................................................... 48

III.2.1- Descrição da Atividade 3: Dinarlândia ............................................................... 48

III.2.2- Análise a posteriori local da atividade 3 ............................................................. 49

III.2.3- Descrição da Atividade 4A: Saques no caixa eletrônico ..................................... 50

III.2.4- Análise a posteriori local da atividade 4A ........................................................... 50

III.2.5- Descrição da Atividade 4B: Saques no caixa eletrônico ..................................... 51

III.2.6- Análise a posteriori local da atividade 4B .......................................................... 51

III.2.7- Descrição da Atividade 4C: Saques no caixa eletrônico ..................................... 52

III.2.8- Análise a posteriori local da atividade 4C ........................................................... 52

III.3- Descrição e Análise a Posteriori Local da 3ª sessão ..................................................... 53

III.3.1- Institucionalização antecedendo a 3ª sessão ........................................................ 53

III.3.2- A Descrição da Atividade 5 ................................................................................. 59

III.3.3- Análise a Posteriori Local da Atividade 5 ........................................................... 59

III.3.4- A Descrição da Atividade 6 ................................................................................ 60

III.3.5- Análise a Posteriori Local da Atividade 6 ........................................................... 61

III.3.6- Análise a Posteriori ............................................................................................. 62

CONSIDERAÇÕES FINAIS 65

REFERÊNCIAS BIBLIOGRÁFICAS 67

ANEXO A 71

Page 7: Livro Engª Didática 2013

APRESENTAÇÃO

O oficio de professor traz inúmeros desafios, necessitando de permanente estado de atualização

de conhecimentos e estratégias de ensino. Um dos pressupostos fundamentais para o trabalho de sala

de aula é que o professor elabore e aplique seqüências de ensino, de modo que o próprio aluno se

insira numa dinâmica iterativa e autônoma para conquistar e promover a própria aprendizagem.

Para a elaboração de situações de aprendizagem, os aportes teóricos fundamentais são

Piaget&colaboradores, assim como Vygotsky. Para o campo da Educação, esses mentores

construtivistas foram os balisadores de importantes fundamentos que podem instrumentalizar o

professor para a elaboração de situações onde o aluno tenha um papel dinâmico, social e

participativo na própria aprendizagem.

Partindo das contribuições desses mentores, Brousseau (1996a, b) e Artigue (1996), dentre

outros pesquisadores da linha da Didática da Matemática, defendem a utilização de situações de

aprendizagem onde os alunos são colocados em ação diante de jogos e situações-problema, de

modo a mobilizar estratégias de base e conhecimentos anteriores para que sejam capazes de realizar

as operações de seleção, organização e interpretação de informações, representando-as de diferentes

formas e tomando decisões, de modo que o processo de construção do conhecimento matemático

efetivamente ocorra e, como consequência, haja a formação de sentido para o aluno.

Nesses moldes, um dos referenciais para viabilizar a intenção de colocar o ensino como um

projeto social se fortaleceu com a proposta da metodologia da Engenharia Didática, delineada por

Brousseau (1996a,b) e estruturada nos trabalhos de Artigue (1996). A Engenharia Didática foi

inicialmente concebida como uma forma de concretizar os ideais e pressupostos de investigação da

escola da Didática da Matemática Francesa. Nos primórdios da Didática da Matemática, OS IREMs

fomentavam a criação de recursos e meios para aprimorar o trabalho em sala de aula, que

posteriormente evoluiu para a estruturação em um quadro teórico mais amplo, de modo a possibilitar

a concepção de situações de aprendizagem e também servir como referencial metodológico para a

posterior análise do material empírico.

Nessa perspectiva, a Engenharia Didática possui dupla função: pode ser utilizada como

metodologia qualitativa de pesquisa na área de Matemática, mas também é extremante útil para a

elaboração de situações didáticas que configurem um quadro de aprendizagem significativa em sala

de aula. Neste livro, tomaremos como base as quatro fases presentes na Engenharia Didática, cuja

exposição permite prover o professor de referencial propício e motivador para conceber, aplicar e

posteriormente analisar algumas tarefas didáticas: introduzir um novo conceito e desenvolver

diversas estratégias, conforme sugere Brousseau (2006).

Page 8: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares 8

Entretanto, entre a teoria e a prática há um intervalo a ser superado. Para ilustrar os conceitos e

exemplificar um possível modo de aplicação da Engenharia Didática propusemos as Equações

Diofantinas Lineares como um tema propício para a explicação dos aportes desta metodologia.

Um primeiro motivo para a escolha desse assunto é a pouca ou quase inexistente menção

sobre este assunto nos livros didáticos, no âmbito do ensino básico. O tema das Equações

Diofantinas Lineares é usualmente abordado em curso superior em disciplinas como Matemática

Discreta ou Teoria dos Números. Porém, a abordagem dos manuais de ensino superior é

naturalmente formal e algoritmizado, de modo a que os licenciandos raramente consideram este

tema favorável a ser explorado no ensino básico.

Porém, uma análise mais profunda sobre este saber revela que o tema das Equações

Diofantinas Lineares propicia a articulação de diversas linguagens matemáticas, perpassando os

enfoques aritmético, gráfico, algébrico e funcional. A exploração desses vários quadros pode

fomentar o desenvolvimento de competências essenciais para os alunos do ensino básico, desde que

inserida numa metodologia de jogos e resolução de problemas.

Sob este aspecto, nossa proposta de investigação consistiu em revelar o potencial didático e

epistemológico presente deste assunto matemático, o que o torna uma ferramenta de uma

aprendizagem significativa. Para efetivar tal proposta, inserimos o tema das Equações Diofantinas

Lineares como um modo de ilustração das potencialidades da metodologia da Engenharia Didática

como fomentadora e enriquecedora de abordagens construtivistas. As Equações Diofantinas

Lineares é um assunto usualmente inserido na grade do ensino superior, e apresentado num viés

formal e algoritmizado. Em nosso parecer, se este tema matemático sofrer uma transposição

didática, de modo que articule e desenvolva diversas estratégias de resolução de problema, outros

assuntos da própria matemática do currículo básico são passíveis de enriquecimento didático de

abordagem, dentro de um quadro esclarecedor da Engenharia Didática.

Nesse sentido, apresentamos nesse livro eletrônico um relato de nossa pesquisa empírica, que

consistiu na elaboração, aplicação e análise de uma sequência didática, inspirada aos moldes da

Engenharia Didática. Esperamos que o breve relato que realizamos ilustre a viabilidade de aplicação

desta metodologia em sala de aula e em outros temas e contextos matemáticos.

Esta é a intenção desse livro. Devemos destacar que, em parte, mantivemos a escrita

acadêmica, fazendo referência aos autores e pesquisadores balizadores destas propostas. Deste

modo, tomando como base as diretrizes apontadas nesses renomados autores de uma importante

proposta. Relembramos que esta metodologia conta com inúmeros trabalhos acadêmicos em nível

mundial, com maior complexidade de apresentação, que podem aprofundar o entendimento deste

instrumento em várias áreas e conceitos da Matemática, o que enriquece o trabalho em sala de aula.

Page 9: Livro Engª Didática 2013

CAPÍTULO I: Pressupostos Metodológicos da Engenharia Didática

Certa vez, em um momento avaliativo de um curso de pós-graduação, surgiu uma discussão

com relação às possíveis contribuições que as disciplinas cursadas neste nível de ensino poderiam

propiciar na própria prática docente. Nesse momento de autoavaliação, as respostas de muitos

alunos convergiam para a seguinte ponderação: a bagagem teórica e metodológica, lentamente

amadurecida durante o desenvolvimento das diversas disciplinas, propiciou certa criticidade em

relação às próprias abordagens usualmente utilizadas em sala de aula, que, para muitos dos

presentes, eram demasiadamente influenciadas pelas propostas dos livros didáticos.

O referencial apreendido durante as leituras, as exposições e as vivências propiciadas pelas

aulas de pós-graduação serviam de suporte para uma reflexão sobre as intenções, as concepções

didáticas e epistemológicas não declaradas dos manuais escolares. Os conhecimentos das teorias e

metodologias contribuíam, para muitos colegas da pós-graduação, como referenciais de suporte

para repensar o encaminhamento do trabalho em sala de aula.

Essas referências norteadoras, conquistadas durante o trajeto acadêmico, configuraram mais

segurança e independência em relação ao material comercialmente disponível, ampliando o

horizonte de ação docente: agora, não dependíamos somente da experiência própria de cada

professor ou dos livros, mas tínhamos a disposição uma variedade de material, que foi testado e

discutido por uma vasta coletividade de pesquisadores e professores, o que permite ampliar o

campo de ação do docente.

Acreditamos que para muitos colegas a experiência propiciada pelas disciplinas e pela

assessoria dos orientadores em relação à pesquisa que estava em andamento resultou em vários

trabalhos na área de Educação Matemática, vivência que enriqueceu o repertório para melhorar a

qualidade do trabalho em sala de aula.

Nesse espírito de repartir com os colegas as boas contribuições que nos foram legadas pelos

professores dos cursos de pós-graduação, este texto se prontifica a relatar as possíveis contribuições

de dois importantes marcos da Educação Matemática: a Teoria das Situações Didáticas e a

Engenharia Didática.

Diante da profundidade e complexidade que configura um estudo envolvendo estes dois

marcos fundadores da Didática da Matemática da linha francesa - a teoria das Situações Didática, de

Brousseau (1996), um importante referencial teórico que se estende e desdobra na metodologia da

Engenharia Didática, descrita em Artigue (1996) - neste capítulo nos propusemos a traçar os

elementos principais e caracterizadores destes referenciais.

Page 10: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

10

Nesse sentido, buscamos uma exposição sintética que buscasse favorecer a compreensão dos

conceitos essenciais presentes nas abordagens citadas, de modo que fossem suficientes para prover

os professores do ciclo básico de um importante instrumento para conceber, aplicar e analisar

situações de aprendizagem em sala de aula, de modo autônomo e eficiente.

I.1- As origens da Engenharia Didática: A teoria das Situações Didáticas.

Dentro de uma abrangência mais geral, a origem etimológica do termo didática revela que

provém do grego didaktikós, fazendo referência ao estudo da técnica de dirigir ou orientar a

aprendizagem. Comenius, no livro Didactica Magna, do século XVII, não considerava os

componentes específicos dos conhecimentos de cada área do conhecimento.

A metodologia da Engenharia Didática surgiu como decorrência da vertente conhecida como

Didática da Matemática. Douady (1985) define a Didática da Matemática como a área da ciência

que estuda o processo de transmissão e aquisição de diferentes conteúdos no ensino básico e

universitário, propondo-se a descrever e explicar os fenômenos relativos ao ensino e a

aprendizagem específica da Matemática. Porém, a Didática da Matemática, segundo Douady

(1985), não se reduz a pesquisar uma boa maneira ou modelo de ensinar uma determinada noção

ou conceito particular.

A Engenharia Didática surgiu no transcorrer das discussões desenvolvidas no IREM (Instituto

de Investigação do Ensino de Matemática), na França, ao final da década de 1960. Em seus

primórdios, o IREM desenvolvia uma complementação na formação de professores de matemática e

na produção de meios materiais de apoio para a sala de aula, destacando-se o desenvolvimento de

jogos, brinquedos, problemas, exercícios e experimentos.

Posteriormente, analisando-se a validade das ações desenvolvidas, Brousseau, um dos

pesquisadores pioneiros da Didática da Matemática, “[...] propôs o estudo das condições nas quais

são constituídos os conhecimentos; o controle destas condições permitiria reproduzir e otimizar os

processos de aquisição de conhecimento escolar” (GÁLVEZ, 1996, p. 26).

Na perspectiva de Brousseau (1996a,b), a Didática da Matemática deveria se centrar nas

atividades didáticas que tem como objetivo o ensino naquilo que tem de específico: os saberes

matemáticos. Dentro desta concepção, a Didática da Matemática deve oferecer explicações,

conceitos e teorias, assim como meios de previsão e análise, incorporando resultados relativos aos

comportamentos cognitivos dos alunos (fazendo referência a certos aspectos da obra de Piaget),

além dos tipos de situações utilizadas e os fenômenos de comunicação do saber.

Page 11: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 11

D’Amore (2007) complementa como objetivo da Didática da Matemática “[...] a arte1 de

conceber e conduzir condições que podem determinar a aprendizagem de um conhecimento

matemático por parte de um sujeito” (p.3).

No contexto da época, as discussões no IREM sobre o ensino da Matemática se dirigiram para

a “[...] produção de conhecimento para controlar e produzir [...] ações sobre o ensino” (GÁLVEZ,

1996, p. 26). Nesse panorama, houve consenso por parte de pesquisadores da corrente da Didática

da Matemática para tomar como objeto de estudo as situações didáticas, proposta que estava sendo

desenvolvida por Guy Brousseau.

Guy Brousseau, um dos pesquisadores deste grupo, contribuiu com o desenvolvimento da

teoria das Situações Didáticas (1986)2. No momento histórico desta proposta, a visão dominante no

campo da Educação era essencialmente cognitivo, devido a Piaget e colaboradores, que evidenciou

o papel central da ação, a originalidade do pensamento matemático e as etapas de seu

desenvolvimento nas crianças.

Brousseau (1996a) considerava que as situações didáticas deveriam se situar na proposta

construtivista e contemplar os processos adaptativos e de equilibração delineados na obra de Piaget.

Porém, Brousseau (1996a) considera que Piaget não observou a particularidade da aprendizagem de

cada conhecimento matemático ao considerar a estrutura formal e a função da lógica como

fundamentais, ideias defendidas por alguns matemáticos formalistas da Matemática Moderna.

Para superar tais impedimentos, Brousseau (1996a) propôs uma retomada do contexto de

origem dos saberes e a importância do valor funcional das etapas que o saber percorre para ser

elaborado, o que equivale a resgatar a gênese epistemológico-cultural do saber. Neste ponto

Brousseau “[...] coloca que é preciso criar situações didáticas que façam funcionar o saber, a partir

dos saberes definidos culturalmente nos programas escolares” (GÁLVEZ, 1996, p. 32).

Para Brousseau (1996a,b), as situações didáticas são uma gênese artificial análoga àquela que

originou o conhecimento, de modo que a aprendizagem dos sujeitos agentes (os alunos) ocorre por

adaptação, assimilação e equilibração, tal como designou Piaget, originadas nas etapas de “[...]

selecionar, antecipar, executar e controlar as estratégias que aplica à resolução do problema

formulado pela sequência didática” (GÁLVEZ, 1996, p. 32).

1 Na Didática da Matemática, conforme D’Amore (2007), a ‘arte’ do professor tem raiz na concepção etimológica latina

‘ars’, termo que abrange a concepção de ‘arte’ e ‘artesanato’. Assim, a concepção de arte como o dom, a habilidade, o

jeito e a capacidade criadora do artista de expressar ou transmitir sensações ou sentimentos se amalgama com o

artesanato, entendido como o conjunto de objetos feitos através da realização de um ofício manual, mostrando que o ato

da criação pelo professor se funde com a confecção, aplicação e análise de situações de ensino.

2 As principais construções desta teoria foram desenvolvidas na tese de doutorado, de 1986: situação didática, situação

a-didática, contrato didático, devolução e milieu (antagonista e aliado).

Page 12: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

12

Segundo Brousseau (1986), as principais características das situações didáticas são:

(a) os alunos aceitam se responsabilizar pelo fazer e pela organização da situação-problema,

como um projeto pessoal;

(b) ela é elaborada para se obter certo conhecimento que é parcial ou totalmente possível de

ser alcançado pelo aluno;

(c) espera-se que o aluno tome decisões, teste-as e modifique-as quando necessário para

adequá-la a busca da resposta correta;

(d) existe uma estratégia de base disponibilizada pelo repertório de conhecimento dos alunos

que permita uma solução local ou uma solução parcial que inicie o desenvolvimento da atividade;

(e) a eficácia e a viabilidade dependem das variáveis didáticas de comando que o professor

convenientemente deve escolher e utilizar na concepção das atividades;

(f) envolvem uma socialização que pode ocorrer de três modos; comunicação e negociação

entre pares, com o jogo/problema e, eventualmente, em caso de extrema necessidade, com o

professor;

(g) é elaborada para que o aluno perceba que o novo conhecimento almejado é meio mais

eficaz para encaminhar e resolver a situação;

(h) permite a construção do conhecimento, o que equivale a formação de sentido para o aluno.

Assim, de acordo com Gálvez (1996), a teoria de Brousseau (1996a,b) esclarece a integração

das dimensões epistemológicas, cognitivas e sociais no campo da Educação Matemática, permitindo

compreender as interações sociais que ocorrem na sala de aula entre alunos e professores, as

condições e a forma que o conhecimento matemático pode ser aprendido, sendo que o controle

destas condições permitiria reproduzir e otimizar os processos de aquisição de conhecimento

matemático escolar.

Almouloud (2007) indica como objetivo primordial da Didática da Matemática a

caracterização de um processo de aprendizagem por meio de uma série de situações reprodutíveis,

denominadas de situações didáticas, que estabelecem os fatores determinantes para a evolução do

comportamento dos alunos. Assim, “[...] o objeto central de estudo nessa teoria não é o sujeito

cognitivo, mas a situação didática, na qual são identificadas as interações entre professor, aluno e

saber” (ALMOULOUD, 2007, p. 32).

Ao propor um repensar na didática do ensino da matemática por meio das situações didáticas,

Brousseau (1996a,b) buscou caracterizar os papéis do aluno, do professor e do saber frente às

situações de aprendizagem em matemática.

Page 13: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 13

I.2- O contexto dos elementos na teoria das Situações Didáticas: O triângulo didático.

Para modelar a teoria das Situações Didáticas, Brousseau (1996a,b) propõe o sistema didático

stricto sensu ou triângulo didático (figura 1), que comporta três elementos - o aluno, o professor e o

saber, partes constitutivas de uma relação dinâmica e complexa, a relação didática, que leva em

consideração as interações entre professor e alunos (elementos humanos), mediadas pelo saber

(elemento não-humano), que determina a forma como tais relações irão se desenvolver.

O Saber

Professor Aluno

Figura 1: O Triângulo Didático

Conforme relatam Menezes; Lessa; Menezes (2006), o professor e o aluno possuem uma

relação assimétrica em relação ao saber. Nesse sentido, o que se espera da relação didática é mudar

este quadro inicial do aluno face ao saber. E isto confere ao professor um papel fundamental nessa

relação didática: iniciar o aluno no novo saber científico, que Brousseau (1996a) postula como

possível de se viabilizar através de situações de ensino propícias.

I.2.1- O papel do professor nas situações didáticas.

Para Brousseau (1996a), o modelo de pesquisa da Engenharia Didática requer do

pesquisador/professor a participação e análise das situações didáticas. Um elemento essencial da

situação didática é sua intencionalidade de ser construída para a aprendizagem do aluno.

Segundo a Didática da Matemática, cabe ao professor fazer um duplo papel cíclico:

(a) procurar situações de aprendizagem onde os alunos possam dar sentido ao conhecimento,

através da contextualização e personalização do saber, num movimento de vivenciar o

conhecimento pela ação do próprio aluno;

(b) ajudar os alunos no sentido inverso, ou seja, descontextualizando e despersonalizando os

conhecimentos, de modo análogo como fazem os matemáticos, o que conduz a tornar as produções

dos alunos fatos universais e reutilizáveis em outras situações e contextos.

Epistemologia

do professor

Relação pedagógica

Relação

aluno/saber

Page 14: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

14

Após o descontextualizar e despersonalizar do saber, novamente outras situações são

colocadas diante do aluno, para que mais uma vez ocorra um desequilíbrio que permita ao aluno

avançar em conhecimentos, contextualizando e descontextualizando. Este entendimento do modo de

ação do professor é importante, visto que é comum no professor “[...] a tentação de pular estas duas

fases e ensinar diretamente o saber como objeto cultural, evitando este duplo movimento. Neste

caso, apresenta-se o saber e o aluno se apropria dele como puder” (BROUSSEAU, 1996a, p. 49).

Brousseau (1996a) coloca que o professor deve inicialmente propor situações para colocar o

aluno de modo ativo diante de uma situação, de modo análogo ao ato de produzir de um

matemático. Para isso, nas situações elaboradas pelo professor:

[...] a resposta inicial que o aluno pensa frente à pergunta formulada não deve ser a

que desejamos ensinar-lhe: se fosse necessário possuir o conhecimento a ser

ensinado para poder responder, não se trataria de uma situação de aprendizagem

(BROUSSEAU, 1996a, p. 49).

Ainda, Brousseau (1996) afirma que a resposta inicial baseada em conhecimentos anteriores

permitirá ao aluno responder, em parte, a questão proposta. Ocorre, então, um desequilíbrio, que

impulsionará o aluno a buscar modificações na estratégia inicial através de acomodações em seu

sistema de conhecimentos, modificações estas provocadas pela situação e que serão o motor de sua

nova aprendizagem. Deste modo, o trabalho do professor é “[...] propor ao aluno uma situação de

aprendizagem para que elabore seus conhecimentos como resposta pessoal a uma pergunta, e os

faça funcionar ou os modifique como resposta às exigências do meio e não a um desejo do

professor” (BROUSSEAU, 1996a, p. 49).

Este modelo propõe uma ruptura referente ao padrão de aula com papéis estanques (modelo

Herbatiano3), onde o professor é encarregado da aula magna propiciada pela exposição dos

conteúdos, esperando que o aluno processe e assimile de modo passivo o objeto desenvolvido

unilateralmente pelo ininterrupto discurso docente.

Como um investigador dos saberes matemáticos e dos processos didáticos do ensino da

matemática, Brousseau (1996a,b) postula que o professor deverá ter sua autoria, efetuando as

transposições didáticas necessárias para a aprendizagem ativa do aluno, recontextualizando e

repersonalizando os saberes matemáticos ao propor ‘boas perguntas’, jogos e situações-problema

que promovam a adaptação do aluno às atividades propostas, ato que corresponde a recriar e

simular um ambiente de pesquisa, como se o aluno participasse de uma microsociedade científica.

3 Segundo Ferrari (2006), no modelo Herbatiano as ações didáticas do professor seriam: preparação da aula (relacionar

o novo conteúdo a conhecimentos anteriores dos alunos), a apresentação do tema (modelo verbalista), a associação

(comparações minuciosas com conteúdos prévios), a generalização (formulação de regras globais) e a aplicação.

Page 15: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 15

Em síntese, o papel do professor é oferecer um conjunto de boas situações de ensino, de modo

a aperfeiçoar a ação autônoma do aluno. Estas sequências de atividades devem permitir que o aluno

atue sobre a situação, com a mínima interferência explícita ou condução do professor. “Se uma

situação leva o aluno à solução como um trem em seus trilhos, qual é a sua liberdade de construir

seu conhecimento? Nenhuma” (BROUSSEAU, 1996a, p. 54).

Destacamos a importância do professor em assumir uma epistemologia, pois, “[...] ao mesmo

tempo que ensina um saber, o professor recomenda como usá-lo” (BROUSSEAU, 1996a, p. 59).

Em suma, devemos seriamente ponderar que a concepção epistemológica do professor interfere na

qualidade da aprendizagem dos conhecimentos dos alunos. Implicitamente e inconscientemente,

muito rapidamente o aluno se apropria da concepção didática do professor e, daí, surgem barreiras

para a aprendizagem.

I.2.2- O papel do aluno diante das situações didáticas

Na situação didática proposta por Brousseau (1996a), o aluno se defronta com situações

intencionalmente elaboradas pelo professor, situadas em um ambiente propício de jogos e

problemas, contexto este que deve propiciar o estímulo necessário e convidar os alunos a tomar a

iniciativa para a busca de conhecimento. Porém, os alunos inicialmente não devem perceber os

pressupostos didáticos envolvidos no objeto de estudo (o que está sendo ensinado e o que se

pretende que ele deva conhecer), a não ser pelo êxito de uma tarefa.

Para Brousseau (1996a), a devolução da situação didática (não do objeto de ensino) é uma

condição fundamental. A devolução significa o aceite do aluno pela responsabilidade na busca da

solução do jogo ou problema proposto, assim como pelo entendimento que o professor elaborou

uma situação passível de ser resolvida, pelo menos em parte, de acordo com os conhecimentos

anteriores que ele possuí. Assim, feita a devolução, a situação proposta se converte no problema do

aluno, o que situa uma condição essencial para que o aluno aprenda: o papel ativo e compromissado

do aluno diante de uma situação de aprendizagem.

Brousseau (1996a) coloca como ideia básica aproximar o trabalho do aluno num viés similar

ao modo como é produzida a atividade científica verdadeira, valorizando-se a proposição de

situações-problema desafiadoras. Neste contexto de desafio, a gênese proporcionada pela situação

didática permite que o aluno percorra algumas etapas desenvolvidas por um pesquisador.

Page 16: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

16

Isto envolve conhecimentos que enfatizem a etapa de coleta de dados, a busca por

informações, a iniciativa em efetuar comparações e selecionar as informações relevantes,

descartando as desnecessárias, num movimento de propor e testar conjecturas, formular hipóteses,

provar, construir modelos e conceitos, defender seus argumentos com os colegas e socializar os

resultados, o que configura uma construção de conhecimento.

Tais situações deverão favorecer a autonomia do aluno sobre o saber, que pode se transformar

em conhecimento. Deste modo, as situações didáticas abrem a possibilidade do aluno vivenciar uma

mudança do ponto de vista didático, o que favorece a construção de uma nova relação deste com o

saber, relação que coloca o aluno numa postura construtiva: o autor do próprio conhecimento.

Em suma, este modo de concepção proposto por Brousseau (1996a) instala no aluno a

capacidade de ‘aprender a aprender’, ao invés de postura passiva e especialista na rotina da

memorização e utilização de algoritmos específicos, algo extremamente desejável na nova

sociedade do conhecimento do século XXI.

I.2.3- O contexto do conhecimento/saber

O papel do conhecimento numa situação didática é permitir a antecipação. O conhecimento

surge, para Gálvez (1996), como uma resposta a uma adaptação da humanidade colocada diante de

jogos, situações-problema ou questões colocadas por certos indivíduos ou comunidades. Este

conhecimento sofre transformações para se relacionar aos outros conhecimentos, de modo a se

tornar objeto cultural. Se nessa transformação ocorrer a descontextualização e despersonalização,

então teremos um saber cultural, que pode ser incluído no sistema escolar.

Nos moldes da teoria das Situações Didáticas, Brousseau (1996a,b) coloca que o jogo ou

problema proposto na situação didática deve fornece informações e sanções que permitam ao aluno

mobilizar seus conhecimentos, ou seja, agir para adquirir novos conhecimentos. O jogo ou

problema deve proporcionar obstáculos adequados à ação da criança, de modo que os

conhecimentos anteriores do aluno sejam mobilizados como ferramenta implícita, de modo a

constituir progressivamente novos conhecimentos através de várias condicionantes estruturais, onde

as múltiplas interações entre o aluno e o ‘milieu’ provocam as mudanças necessárias.

Page 17: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 17

O termo ‘milieu’ é um conceito importante na Teoria das Situações Didáticas. O ‘milieu’

representa os vários recursos que permitem ao aluno interagir com o objetivo de vencer o jogo ou

resolver a situação-problema proposta, de modo a progredir em seus conhecimentos4. O ‘milieu’

pode abranger, dentre outros recursos, situações-problema, jogos, os conhecimentos dos colegas e

do professor, uma história contada, uma simulação ou uma experiência realizada.

O ‘milieu’ deve ser planejado e organizado pelo professor/pesquisador para que a

aprendizagem ocorra numa interação feita de desequilíbrios, assimilações e acomodações

(conforme propôs Piaget), permitindo ao aluno a reflexão sobre suas ações e retroações, impondo

restrições através de regras que devem ser respeitadas.

Brousseau (1996a) aponta que o ‘milieu’ deve possibilitar a interação autônoma do aluno em

relação às situações que interage e em relação ao professor. Outra característica que deve permear

o ‘milieu’ é a intencionalidade didática não revelada, de modo que o aluno não perceba os

pressupostos didáticos que o professor gerencia por meio da situação a-didática.

Um jogo/problema se caracteriza pelo confronto do aluno com o ‘milieu’. Brousseau (1996a)

aponta que a situação mais adequada para a aprendizagem ocorre quando o ‘milieu’ oferece a

resistência adequada ao aluno, sendo este denominado de ‘milieu’ antagonista. Se o ‘milieu’

antagonista for muito difícil, ou seja, se a distância entre os conhecimentos anteriores dos alunos e

os ‘novos’ conhecimentos for grande, o ‘milieu’ não terá funcionabilidade.

Em direção oposta, se o professor ajudar demais com informações que visem a diminuir esta

distância, como frequentemente ocorre no ensino, então a função antagonista do ‘milieu’ no jogo

cessará, e se instala um ‘milieu’ aliado. O ‘milieu’ aliado prejudica a participação e

responsabilização do aluno no processo de ensino-aprendizagem. Um ‘milieu’ adequado é aquele

onde à distância entre o conhecimento almejado e o anterior seja alcançável, pelo menos em parte,

através do esforço próprio do aluno, pois o aluno é o sujeito-pesquisador.

Brousseau (1996a,b) utiliza de Bachelard a ideia que um novo conhecimento se constrói a

partir de conhecimentos antigos e, também, contra esses. Isto permite a dominação de saberes

matemáticos, através da mobilização de conhecimentos como ferramentas. “O aluno aprende

adaptando-se a um meio que é um fator de contradições, de dificuldades, de desequilíbrios, um

pouco como faz a sociedade humana. Este saber, fruto da adaptação do aluno, manifesta-se através

de respostas novas, que são a prova da aprendizagem” (BROUSSEAU, 1996a, p. 49).

4 Não se deve confundir o termo ‘milieu’ com o conceito de meio presente em outras teorias cognitivas, pois nestas

concepções o meio não tem intenções didáticas, não permitindo a adaptação do aluno.

Page 18: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

18

Brousseau (1996a,b) propõe que o sentido de um conhecimento é construído autonomamente

pelos alunos, dentro de uma sequência de ensino, que apresenta fases, dialéticas ou situações:

situação de ação, situação de formulação e situação de validação.

Nas situações de ação ocorrem interações do aluno com o ‘milieu’, onde o aluno reflete e

simula tentativas para resolver o jogo ou problema, de modo a eleger um procedimento de

resolução, dentro de um esquema de adaptação. Nem sempre o esquema de resolução adotado é o

mais adequado, podendo ter eficácia para resolver parte do problema. Nesta fase, pode haver várias

tramas de raciocínios e reformulações nas estratégias, a esmo, simplesmente voltadas a ganhar ou

resolver localmente a situação, surgindo várias tentativas de tomar as decisões que faltam para

organizar a resolução do problema ou jogo.

Nas situações de formulação ocorre o uso de modelos implícitos e de relações mais ou menos

assumidas entre os componentes da situação. Nas situações de formulação, se instala intensa troca

de informação entre o aluno e o ‘milieu’, ocorrendo tentativas de utilização de uma linguagem mais

adequada para comunicação entre alunos, porém sem a obrigatoriedade do uso explícito de

linguagem matemática formal. Nesta situação poderá ocorrer certa ambigüidade, redundância, uso

de metáforas, criação de termos semiológicos novos, falta de pertinência e de eficácia na

mensagem, dentro de retro-ações contínuas. Deste modo, nas situações de formulação, os alunos

procuram modificar a linguagem que utilizam habitualmente, adequando-a as informações que

devem comunicar.

Complementando este enfoque, Brousseau (1996b) define o sentido de um conhecimento “[...]

não só pela coleção de situações em que o sujeito encontrou como meio de solução, mas também

pelo conjunto de concepções que rejeita, de erros que evita, de economias que procura e de

formulações que retoma” (CHARNAY, 1996, p. 37).

Nas situações de validação há o contexto de trama de provas e de formalizações, objetivando a

elaboração de uma linguagem mais rigorosa (prova) para convencimento dos interlocutores (pares).

O professor procura não intervir diretamente nestas três fases anteriores, limitando-se a orientações

quando julgar necessário, para evitar possíveis bloqueios.

Page 19: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 19

Segundo Brousseau (1996a), o contrato didático5 regula as intenções do aluno e do professor

frente à situação didática. A mobilização do aluno em enfrentar o problema e a conscientização de

que o professor não deverá intervir na transmissão explícita de conhecimentos para o aluno revelam

pleno aceite do contrato didático. Além disso, o aluno é sabedor que o professor elaborou uma

situação que ele tem condições e pode fazer, pelo menos em parte, pois esta é justificada pela lógica

interna e pelos conhecimentos anteriores dele, não sendo necessário recorrer a qualquer intervenção

didática do docente. Portanto, o aluno:

[...] só terá verdadeiramente adquirido [um] conhecimento quando for capaz de

aplicá-lo por si próprio às situações com que depara fora do contexto do ensino, e na

ausência de qualquer indicação intencional. Tal situação é chamada situação a-

didática (BROUSSEAU, 1996a, p. 49-50).

Por último, apresentamos a situação de institucionalização.

As situações a-didáticas são as situações de aprendizagem nas quais o professor

consegue fazer desaparecer sua vontade, suas intervenções, enquanto informações

determinantes do que o aluno fará: são as que funcionam sem a intervenção do

professor ao nível dos conhecimentos. Temos criado situações a-didáticas de todo o

tipo. [...] Tínhamos situações de aprendizagem no sentido dos psicólogos, e

podíamos pensar que havíamos reduzido o ensino a sucessões de aprendizagens.

Agora, estávamos obrigados a nos perguntar o que justificava certa resistência dos

professores a reduzir totalmente a aprendizagem aos processos que havíamos

pensado. Não se trata de julgá-los, nem a eles nem aos métodos, mas de

compreender o que legitimamente tinham necessidade de fazer e porque

necessitavam fazê-lo um pouco as escondidas dos pesquisadores (BROUSSEAU,

1996a, p. 55-56).

Nas situações de institucionalização o professor reassume um papel explícito, identificando,

sistematizando e conferindo valor aos objetos debatidos nas situações de validação. Nessa etapa de

institucionalização, o professor faz um fechamento das principais ideais ou conceitos mobilizados

pela situação didática, apontando quais conhecimentos dos alunos são relevantes e quais são

descartáveis, podendo inclusive introduzir novos conceitos, de modo a apresentar a teoria necessária

para consolidar o objeto de estudo.

Para Brousseau (1996a,b), a situação a-didática faz parte de uma situação mais vasta, sendo

que o professor está envolvido num jogo com as interações dos alunos, definida como situação

didática. Assim, uma situação didática é:

O conjunto de relações estabelecidas explicitamente e/ou implicitamente entre um

aluno ou grupo de alunos, certo milieu [...] e um sistema educativo (o professor)

para que esses alunos adquiram um saber constituído ou em vias de constituição

(BROUSSEAU, 1996a, p. 50).

5 Para Chevallard, Bosch e Gascón (2001), o contrato didático é um conjunto de normas ou cláusulas, geralmente

implícitas, que regulam as obrigações recíprocas do professor e dos alunos, em relação ao projeto de estudo de ambas as

partes, que evolui a medida que o processo didático avança.

Page 20: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

20

A Engenharia Didática

Inicialmente associada como metodologia para a análise de situações didáticas, a Engenharia

Didática foi concebida como um trabalho didático de modo análogo ao:

“[...] ofício do engenheiro que, para realizar um projeto preciso, se apóia sobre

conhecimentos científicos de seu domínio, aceita submeter-se a um controle de

tipo científico mas, ao mesmo tempo, se vê obrigado a trabalhar sobre objetos bem

mais complexos que os objetos depurados na ciência e, portanto, a enfrentar [...]

problemas que a ciência não quer ou não pode levar em conta” (ARTIGUE, 1996,

p. 193).

Segundo Artigue (1996), a Engenharia Didática é um processo empírico que objetiva

conceber, realizar, observar e analisar as situações didáticas. A autora pondera que a Engenharia

Didática possui dupla função, a qual pode ser compreendida como uma produção para o ensino

tanto como uma metodologia de pesquisa qualitativa.

Deste modo, a Engenharia Didática se caracteriza por propor:

[...] uma seqüência de aula(s) concebida(s), organizada(s) e articulada(s) no

tempo, de forma constante, por um professor-engenheiro para realizar um projeto

de aprendizagem para certa população de alunos. No decurso das trocas entre

professor e alunos, o projeto evolui sob as reações dos alunos e em função das

escolhas e decisões do professor (MACHADO, 2002, p. 198, apud DOUADY,

1993, p. 2).

A Metodologia representa um método, um caminho ou um meio adequado para se alcançar

determinada meta ou objetivo. A função da metodologia é mostrar como trilhar no ‘caminho das

pedras’ para a investigação de uma pesquisa ou para a prática de sala de aula, com a pretensão de

ajudar o pesquisador/professor a refletir e instigar um novo olhar sobre o mundo, um olhar que seja

organizador, dedutivo, curioso, indagador e criativo.

Pesquisar é um trabalho que envolve um planejamento análogo ao de um cozinheiro. Ao

preparar um prato, o cozinheiro precisa saber o que ele quer fazer, obter os ingredientes, assegurar-

se de que possui os utensílios necessários e cumprir as etapas requeridas no processo. Um prato será

saboroso na medida do envolvimento do cozinheiro com o ato de cozinhar e de suas habilidades

técnicas na cozinha. O sucesso de uma pesquisa também dependerá do procedimento seguido, do

seu envolvimento com a pesquisa e de sua habilidade em escolher o caminho adequado para

verificar os objetivos da pesquisa.

Pesquisar significa, de forma bem simples, procurar respostas para indagações propostas.

Pode-se considerar a pesquisa como uma atividade básica das ciências na sua indagação e análise da

realidade, uma prática permanente, que faz aproximações sucessivas da realidade que nunca se

esgota, numa combinação particular entre teoria e dados.

Page 21: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 21

Basicamente, a pesquisa se subdivide nas vertentes quantitativa e qualitativa.

Na Pesquisa Quantitativa, é pressuposto a existência de uma população de objetos de

observação comparável entre si, de modo a enfatizar indicadores numéricos e percentuais,

apresentando gráficos e tabelas, comparativas ou não, sobre determinado objeto/fenômenos

pesquisados.

Num outro viés, a Engenharia Didática se insere na vertente de Pesquisa Qualitativa. Lüdke;

André (1986) concebem a pesquisa qualitativa como tendo as seguintes características: coleta de

dados descritivos, obtidos diretamente na fonte (ambiente), através no contato do pesquisador com a

situação pesquisada, preocupando-se mais com o processo do que com o produto, de modo a retratar

as perspectivas dos participantes.

A Engenharia Didática se enquadra na perspectiva da pesquisa qualitativa, que inicialmente

teve como finalidade estudar problemas relativos à aprendizagem de conhecimentos específicos da

Matemática: diagnóstico de concepções, dificuldades e obstáculos, compreender os níveis de

desenvolvimento das estratégias dos alunos, a aprendizagem, introdução e construção de

conhecimentos específicos, a formação de professores, explicitar a relação entre temas da

matemática e outras áreas de conhecimento, dentre outras.

A Engenharia Didática emergiu nas discussões do IREM, tendo sido idealizada por Brousseau

como suporte metodológico para as pesquisas em Didática de Matemática. A metodologia da

Engenharia Didática foi desenvolvida e amplamente descrita em Artigue (1996), que posteriormente

se difundiu em nível mundial. No Brasil, autores brasileiros como Almoloud (2007), Machado

(2002) e Pais (2002) realizam várias pesquisas sobre o assunto.

Esta metodologia permite antecipar, na análise a priori, o que é possível de ocorrer na

aprendizagem, pela escolha conveniente das variáveis didáticas, o que orienta a evolução das

estratégias que o aluno pode desenvolver. As hipóteses assumidas podem ser validadas na análise a

posteriori, pela confrontação dos objetivos propostos com as manifestações dos alunos.

Artigue (1996) se reporta que a análise de uma situação didática aos moldes de Brousseau

necessita identificar as variáveis didáticas envolvidas e quais os domínios ou intervalos de

abrangência, estabelecendo os parâmetros determinantes para que ocorra a gênese do conhecimento

almejado. Dentre as variáveis de uma situação didática temos as variáveis de comando, que são

aquelas que o professor pode manipular para atingir suas metas de evolução do comportamento dos

alunos.

Page 22: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

22

O uso da Teoria das Situações Didáticas, de acordo com os pressupostos de Brousseau

(1996a), dentro da metodologia de Engenharia Didática vista como paradigma metodológico bem

definido, contribui para descrever a situação, estabelecendo problemas, questionários e observações,

propiciando significado do objeto de estudo para o aluno.

No contexto de sala de aula, as atividades a serem propostas devem ser concebidas como uma

situação de aprendizagem. Isto solicita do professor um mínimo de interferência, o encorajamento a

ação independente dos alunos para a busca das soluções e, principalmente, que os incentive ao uso

dos conhecimentos prévios como ferramentas.

A Engenharia Didática, como metodologia descrita por Artigue (1996), compreende quatro

fases: a 1ª fase, das análises preliminares, a 2ª fase, da concepção e da análise a priori, a 3ª fase, da

experimentação e a 4ª e última fase, da análise a posteriori e validação, conforme expresso na figura 2.

Figura 2: As quatro fases ou etapas da Engenharia Didática

É importante salientar que as quatro fases não ocorrem, geralmente, de forma linear e estanque.

A elaboração da Engenharia Didática necessita, em alguns momentos, da articulação, da antecipação

e até da superposição dos elementos caracterizadores destas quatro fases.

Descrevemos abaixo o trabalho realizado das fases da Engenharia Didática.

Page 23: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 23

Numa primeira fase, conhecida como Análises Preliminares, conforme descreve Machado

(2002), são feitas ponderações envolvendo o quadro teórico didático mais geral, como também

sobre os conhecimentos mais específicos envolvendo o tema da pesquisa.

Nesta análise preliminar é feita uma revisão bibliográfica envolvendo as condições e

contextos presentes nos vários níveis de produção didática6 e no ambiente onde ocorrerá a pesquisa,

assim como uma análise geral quanto aos aspectos histórico-epistemológicos dos assuntos do ensino

a serem trabalhados e dos efeitos por eles provocados, da concepção, das dificuldades e obstáculos

encontrados pelos alunos dentro deste contexto de ensino.

Vale ressaltar que um ponto de apoio das análises preliminares “[...] reside na fina análise

prévia das concepções dos alunos, das dificuldades e dos erros tenazes, e a engenharia é concebida

para provocar, de forma controlada, a evolução das concepções” (ARTIGUE, 1996, p. 202).

Em decorrência, o levantamento dos diversos obstáculos a serem considerados permitirá a

análise dos fatores que permitirão superar os problemas observados na aprendizagem, em

conformidade com os objetivos da pesquisa, o que viabiliza a etapa seguinte: a concepção da

sequência didática.

Numa segunda fase, ocorre a Concepção e Análise a Priori das situações didáticas. Nesta fase,

Machado (2002) ressalta que a pesquisa delimita as variáveis de comando, que são as variáveis

microdidáticas (ou locais) e macrodidáticas (ou globais) pertinentes ao Sistema Didático (professor/

aluno/saber) que podem ser consideradas pelo pesquisador/professor para que sejam abordadas as

várias sessões ou fases de uma Engenharia Didática.

Segundo Gálvez (1996), as variáveis didáticas são aquelas para as quais as escolhas de valores

provocam modificações nas estratégias de resolução de problemas, de modo a fazer evoluir o

desempenho dos alunos. Essa autora ressalta a importância da determinação dessas variáveis e de

seus intervalos para fundamentar a construção das seqüências didáticas, que permitirão o surgimento

do conhecimento almejado.

Dentre as variáveis didáticas, Machado (2002) indica que a pesquisa deve delimitar as

variáveis de comando. Estas representam as variáveis consideradas pelo pesquisador de modo a fazer

evoluir os comportamentos dos alunos, através da possibilidade de mudanças de estratégia na

resolução de problemas, sendo descritas e delimitadas nas várias sessões ou fases da Engenharia

Didática.

6 Segundo Parra e Saiz (1996), a Didática se encontra inserida em vários níveis de produção: (a) prescritivos: guias,

parâmetros e diretrizes curriculares (b) propositivos: materiais de apoio, manuais de ensino ou livros didáticos (c)

difusão: paradidáticos; (d) pesquisa de base: TCCs, dissertações de mestrado, teses de doutorado e de pós-doutorado.

Page 24: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

24

A análise a priori deve considerar dois tipos de variáveis de comando:

- as variáveis macrodidáticas ou globais, que dizem respeito à organização global

da engenharia;

- e as variáveis microdidáticas ou locais, que dizem respeito à organização local da

engenharia, isto é, à organização de uma sessão ou de uma fase, podendo umas e

outras ser, por sua vez, variáveis de ordem geral ou variáveis dependentes do

conteúdo didático cujo ensino é visado.

(ARTIGUE, 1988, p. 202).

Machado (2002) descreve que estas duas modalidades de variáveis de comando (variáveis

microdidáticas e macrodidáticas) são interdependentes. A escolha das variáveis globais

(macrodidáticas) precede a escolha das variáveis mais específicas (microdidáticas), esta última

ficando ligada a gestão e organização do meio mais imediato, ou seja, a gestão de cada sessão.

Nesses moldes, na segunda fase da Engenharia Didática a análise a priori:

[...] deve ser concebida como uma análise do controlo do sentido; muito

esquematicamente, se a teoria construtivista coloca o princípio do compromisso

do aluno na construção dos seus conhecimentos por intermédio das interações com

determinado meio, a teoria das situações didáticas que serve de referência à

metodologia de engenharia [didática], teve, desde sua origem a ambição de se

constituir como uma teoria de controle das relações entre sentido e situações.

(ARTIGUE, 1996, p. 205)

Ainda com relação a análise a priori, seu objetivo é:

[...] determinar de que forma permitem as escolhas efetuadas controlar os

comportamentos dos alunos e o sentido desses comportamentos. Para isso, ela

funda-se em hipóteses; será a validação destas hipóteses que estará, em princípio,

indiretamente em jogo no confronto, operado na quarta fase, entre a análise a priori e

a análise a posteriori (ARTIGUE, 1996, p. 205).

Para alcançar estes objetivos, Machado (2002) ressalta que a análise a priori deve comportar

um caráter descritivo e preditivo, sendo a análise vinculada às características da situação a-didática

desenvolvida e aplicada aos alunos. Para organizar o meio, a pesquisa deverá:

- descrever as variáveis locais ou globais e as características da situação a-didática criada com

base nestas variáveis;

- ponderar qual o grau de investimento que esta situação terá para o aluno em decorrência de

suas opções de escolhas de ação, de formulação, de controle e de validação na experimentação;

- prever os comportamentos possíveis e como a situação permitirá controlar o sentido desses

comportamentos em prol do desenvolvimento do conhecimento almejado.

Page 25: Livro Engª Didática 2013

CAPÍTULO I- Pressupostos Metodológicos da Engenharia Didática 25

Machado (2002) ressalta que na análise a priori o caráter descritivo e o caráter preditivo são

pertinentes dentro do papel do aluno. Porém, em se tratando do professor temos apenas a análise

descritiva, devido aos papéis assumidos pelo professor e aluno na concepção de Brousseau (1996a)

para a fase a-didática. Assim, o aluno é o ator principal, sendo que o papel do professor é

recuperado no contrato didático e nas situações de institucionalização.

Neste ponto, salientamos que tais considerações estão de acordo com a situação de ação

descrita em Brousseau (1996a,b), onde o aluno reflete e simula tentativas, de modo a eleger um

procedimento de resolução, dentro de um esquema de adaptação, através de uma interação com o

‘milieu’. Os alunos devem tomar as decisões que faltam para organizar a resolução do problema ou

do jogo a ser proposto.

A terceira fase da Engenharia Didática corresponde à experimentação. De acordo com

Machado (2002), consiste basicamente no desenvolvimento da aplicação da Engenharia Didática,

concebida a um grupo de alunos, objetivando verificar as ponderações levantadas na análise a priori.

Assim, a experimentação pressupõe:

- a explicitação dos objetivos e condições de realização da pesquisa a população de

alunos que participará da experimentação;

- o estabelecimento do contrato didático7;

- a aplicação do instrumento de pesquisa;

- o registro das observações feitas durante a experimentação.

(MACHADO, 2002, p. 206).

Segundo Brousseau (1996a), no contrato didático é essencial a consciência da não-interferência

explícita de conhecimentos, evitando-se explicações ou ‘dicas’ que facilitem as resoluções dos

alunos, propiciando assim condições que permitam a mobilização do aluno em enfrentar o problema

e em resolvê-lo, pelo menos em parte, através da lógica interna e dos conhecimentos anteriores.

Assim, o entendimento mútuo dos papéis - da não-intervenção do pesquisador e da ação

independente do aluno - e o respeito a estas condições, garantem condições para se caracterizar o

contrato didático nesta pesquisa.

Complementando, é importante frisar que a intenção de propiciar condições de situar o sujeito

em confronto com a situação da forma mais independente possível está de acordo com o conceito de

devolução descrito em Brousseau (1996a), que significa o aceite do aluno em enfrentar o desafio

intelectual de resolver as situações propostas, como se o problema fosse dele.

7 Segundo Chevallard, Bosch e Gascón (2001), o contrato didático é um conjunto de normas ou cláusulas, geralmente

implícitas, que regulam as obrigações recíprocas do professor e dos alunos, em relação ao projeto de estudo de ambas as

partes, que evolui à medida que o processo didático avança.

Page 26: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

26

Segundo Machado (2002), algumas vezes torna-se necessário a obtenção de dados

complementares, individuais ou em grupo, feitos durante a fase de experimentação. Deste modo, é

possível se obter esclarecimentos das respostas e comportamentos dos sujeitos da pesquisa, assim

como efetuar eventuais correções nas atividades subseqüentes.

A quarta fase, correspondendo a análise a posteriori e validação, de acordo com Artigue

(1996), se apóia sobre o conjunto de dados obtidos ao longo da experimentação pelas observações do

pesquisador, pelo registro sonoro ou através da produção escrita.

Segundo a autora, esta fase se caracteriza pelo tratamento dos dados colhidos e a confrontação

com a análise a priori, permitindo a interpretação dos resultados e em que condições as questões

levantadas foram respondidas. Assim, é possível analisar se ocorrem e quais são as contribuições

para a superação do problema, caracterizando a generalização local que permitirá a validação interna

do objetivo da pesquisa.

A contribuição da Engenharia Didática para a sala de aula, como campo metodológico, diz

respeito à possibilidade de prover a fundamentação teórica para que o professor conheça o

significado e amplie o leque de opções, formando elo de ligação entre a teoria e a prática de sala de

aula. Pais (2002) destaca que a Engenharia Didática representa uma forma de compreensão entre

teoria e prática, metodologia que permite se estabelecer vínculo com a questão da formação de

conceitos matemáticos.

Um importante elemento que fica caracterizado nesta metodologia é a necessária revisão

bibliográfica com relação ao conhecimento (dimensão epistemológica). A busca das origens dos

conhecimentos de matemática permite ao professor aprimorar a relação com o saber, o que

incrementa a crítica com relação aos materiais didáticos disponíveis e pode fomentar o trabalho em

sala de aula.

Outro aspecto é que o domínio dos aspectos metodológicos pode imprimir uma rotina criativa

e autônoma para o aluno, algo pouco trabalhado no ensino de matemática. Ao conhecer os

fundamentos que regem as etapas de análise preliminar, concepção e análise a priori, o professor

obtém um domínio da formulação das situações de aprendizagem, o que aprimora a relação dos

alunos com o conhecimento.

No próximo capítulo ilustramos os fundamentos da Engenharia Didática com um assunto

pouco explorado no ensino básico: as Equações Diofantinas Lineares.

Page 27: Livro Engª Didática 2013

CAPÍTULO II: A Sequência Didática: A Análise Preliminar e a Análise a Priori

Para colocar em prática os pressupostos apresentados no capítulo anterior escolhemos como

mote exemplificar uma sequência didática envolvendo o tema das Equações Diofantinas Lineares,

um tema não pertencente ao currículo básico.

Friso que tal afirmação ‘não’ significa que estamos a defender a inclusão das equações

diofantinas lineares como objeto de estudo em nível curricular, mas sim propomos a utilização de

situações-problema envolvendo contextos situados nas equações diofantinas lineares no ensino de

Matemática do ciclo básico.

A pertinência desta escolha fica vinculada a existência de situações de simples compreensão

envolvendo números inteiros, que permitem a articulação com vários conceitos presentes no

currículo do ensino de Matemática Elementar, permitindo explorar a idéia de rede de significados,

conforme descrito em Machado (1995).

Alia-se ainda a possibilidade de colocar o aluno um papel ativo, possibilitando-o explicitar

diversas estratégias de resolução de problemas, o que se configura em mais possibilidade de

favorecer a articulação Aritmética e Álgebra.

As Equações Diofantinas Lineares representam um tema matemático que remonta aos antigos

povos egípcio, mesopotâmico, grego e hindu. Um estudo dos fatores histórico-epistemológicos

revela importantes conexões internas e externas aos próprios conhecimentos matemáticos.

De modo mais amplo, uma equação diofantina é definida como uma forma “[...] algébrica

com uma ou mais incógnitas e coeficientes inteiros, para a qual são buscadas soluções inteiras. Uma

equação deste tipo pode não ter solução, ou ter um número finito ou infinito de soluções”

(COURANT; ROBBINS, p.59, 2000).

As Equações Diofantinas Lineares são expressões algébricas do tipo polinomial, da forma

ax1 + bx2 + cx3 +...+ k.xk = n, n Z e com coeficientes e soluções inteiras. Escolhemos realizar a

ilustração da metodologia da Engenharia Didática assumindo um recorte, considerando a equação

diofantina linear a duas incógnita, representada por ax + by = c, com a, b e c inteiros.

Historicamente, porém, foi Brahmagupta, um matemático hindu que viveu em d.C. 628 , na

Índia central, o primeiro a explicitar uma solução geral da equação linear do tipo ax + by = c, onde a,

b e c são inteiros.

Page 28: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

28

Para que essa equação tenha soluções inteiras, o máximo divisor comum de a e b

deve dividir c; e Brahmagupta sabia que se a e b são primos entre si, todas as

soluções da equação são dadas por x = p + mb; y = q – ma, onde m é um número

inteiro arbitrário [sendo p e q uma solução inteira particular]. (...) Brahmagupta

merece muito louvor por ter dado todas as soluções inteiras da equação linear

diofantina, enquanto que Diofante de Alexandria tinha se contentado em dar uma

solução particular de uma equação indeterminada (BOYER, 1991, p. 161).

Passamos, a seguir, a descrever as quatro fases (Análises preliminares; Concepção e Análise a

priori; Experimentação; Análise a posteriori e validação) da Engenharia Didática que aplicamos a

um grupo de dez alunos do Ensino Médio, em uma escola pública da cidade de São Paulo.

II.1- As Análises Preliminares da sequência didática

Como prerrogativa de uma Engenharia Didática, a 1ª fase (das análises preliminares) deve

apresentar as considerações que justifiquem nossa hipótese da pertinência das Equações Diofantinas

Lineares para o ensino básico, levando-se em conta os pressupostos necessários deste nível de

ensino e as contribuições que tal inserção possa promover.

Um fundamento essencial presente na hipótese se situa na revisão teórica, que apontam para o

uso de temas das Equações Diofantinas Lineares como articulador de competências e conhecimentos

matemáticos, um item primordial a ser levado em consideração no ensino da Matemática.

Nesse sentido, este tema propicia uma conjunção entre a Teoria Elementar dos Números1 e a

Álgebra. Vale destacar que nas investigações de Educação Matemática envolvendo:

[...] o ensino e aprendizagem da Álgebra e da Teoria Elementar dos Números, em

níveis de ensino superiores e entre professores do Ensino Básico, têm tido uma

atenção crescente por parte dos pesquisadores. A importância desses estudos

repousa no fato de que a Álgebra e a Teoria dos Números são subjacentes a quase

todos os domínios da Matemática, e até mesmo de outras áreas. (MARANHÃO;

MACHADO; COELHO, p. 11, 2005).

Estas ponderações estão em conformidade com os PCNEM, Brasil (1998), que enfatizam a

necessidade de contemplar estudos matemáticos envolvendo os números, suas operações e

propriedades, tanto na Aritmética como na Álgebra.

1 A Teoria Elementar dos Números remete ao estudo dos Números Inteiros, que na Matemática do ciclo básico pode

situar os seguintes temas: operações e propriedades, princípio da indução finita; divisibilidade, algoritmo da divisão,

máximo divisor comum, mínimo múltiplo comum, algoritmo de Euclides, números primos, o teorema Fundamental da

Aritmética e as equações diofantinas lineares.

Page 29: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 29

Considerando-se os PCNEF, Brasil (1997) e PCNEM, Brasil (1998), estes propõem um

currículo preocupado no domínio de competências básicas pelos alunos, através do apoio a

contextualização e interdisciplinaridade do conhecimento escolar, bem como no incentivo do

raciocínio do aluno e de sua capacidade em aprender a aprender.

No nível básico, os documentos oficiais destacam que no ensino é importante haver espaço

para o desenvolvimento de capacidade de pesquisar, buscando, selecionando e analisando

informações, de modo a criar e formular hipóteses. Com relação às atividades algébricas, os

referidos documentos mencionam que estas deverão ser abordadas e ampliadas através da resolução

de situações-problema, que permite ao aluno reconhecer os vários aspectos da Álgebra, dentre os

quais se destaca o estabelecimento de relação entre duas grandezas e generalização da aritmética.

Autores como Campbell; Zazkis (2002) e Ferrari (2002) citam que a Teoria dos Números

oferece oportunidades no entendimento e desenvolvimento de conceitos matemáticos,

principalmente ligados a explorações da resolução de problemas no campo dos números inteiros.

Lorenzato e Vila (1993), no artigo ‘Século XXI: qual Matemática é recomendável? A posição

do The National Council of Supervisors of Mathematics’, expõe como este importante órgão

pondera que o pensamento algébrico é uma competência imprescindível aos estudantes do nosso

atual século.

Para Fiorentini, Miorim e Miguel (1993), as concepções usuais de Educação Algébrica

tomam como ponto de partida a existência de uma álgebra simbólica já constituída. Isto reduz o

ensino da Álgebra ao transformismo algébrico, o que desconsidera a dialética presente no par

pensamento e linguagem.

Essa relação de subordinação do pensamento algébrico à linguagem algébrica

desconsidera o fato de que, tanto no plano histórico quanto no pedagógico, a

linguagem é, pelo menos a princípio, a expressão de um pensamento (FIORENTINI;

MIORIM; MIGUEL, 1993, p.85).

O pensamento algébrico pode ser expresso, dentre suas várias formas, através de linguagem

natural, linguagem aritmética e linguagem algébrica, sendo que esta “[...] se potencializa a medida

que, gradativamente, o estudante desenvolve uma linguagem mais apropriada a ele” (IBIDEM,

1993, p. 89).

No desenvolvimento progressivo do aluno ao longo da sua educação algébrica, o papel

desempenhado pela linguagem simbólica determina um papel fundamental:

[...] na constituição do pensamento algébrico abstrato, uma vez que ela fornece um

simbolismo conciso por meio do qual é possível abreviar o plano de resolução de

uma situação-problema, o que possibilita dar conta da totalidade e da estrutura da

organização (FIORENTINI; MIORIM; MIGUEL, 1993, p. 89).

Page 30: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

30

Os referidos autores propõem que uma primeira etapa do trabalho a ser desenvolvido no ciclo

básico deve se sustentar em situações-problema, de modo a garantir o funcionamento dos elementos

caracterizadores do pensamento algébrico. Com relação aos problemas, é também essencial:

[...] buscar problemas que permitam mais de uma solução, que valorizem a

criatividade e admitam estratégias pessoais. [...] O trabalho com problemas redefine

assim os valores educativos da Educação Matemática. O desenvolvimento dessas

habilidades o capacita a melhor enfrentar os desafios do mundo contemporâneo

(PAIS, 2002, p. 30).

Inserida nos pressupostos apresentados anteriormente, as Equações Diofantinas Lineares do

tipo ax + by = c, pela própria concepção epistemológica, admite nenhuma, uma, várias ou infinitas

soluções. Ainda, tal temática naturalmente viabiliza o uso de diversas estratégias de solução, a partir

da tentativa e erro, pois perpassa dois enfoques:

- o enfoque aritmético: a condição necessária e suficiente para que exista solução para esse

tipo de equação é que o máximo divisor comum de a e b divida c;

- o enfoque algébrico: a representação algébrica desse tipo de equação permite desenvolver o

pensamento algébrico e a representação de uma linguagem generalizante, viabilizado pelo uso da

escrita algébrica como condição otimizadora das condições dadas no enunciado.

A importância do uso de estratégias diversificadas foi apontada por Amerom (2003). A autora,

ao pesquisar meios didáticos que capacitassem o estudante a realizar uma transição propícia da

Aritmética para a Álgebra, aplicou uma seqüência didática a duas classes de alunos na faixa de 10 a

12 anos. Amerom (2003) constatou que os alunos, partindo das estratégias próprias, informais por

natureza, utilizam o equacionamento para estruturar o problema, facilitando a transição para a

Álgebra.

Passamos a delineares o quadro-síntese das ponderações que permearam a primeira fase,

conhecida como Análises Preliminares, que foi embasada:

- no quadro didático, desenvolvido de acordo com a Teoria das Situações Didáticas de

Brousseau (1996);

- nos conhecimentos mais específicos envolvendo as Equações Diofantinas Lineares,

embasado na Teoria dos Números, cujo desenrolar forneceu subsídios para entender sua relevância e

lugar no ensino básico, seja pelo fato dos conhecimentos envolvidos se situarem dentro do programa

oficial de ensino básico, assim como pela possibilidade de exploração de variadas estratégias de

resolução de problemas;

Page 31: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 31

- as várias concepções metodológicas e conceituais encontradas no decurso do

desenvolvimento histórico das Equações Diofantinas Lineares e da relação com as possíveis

resoluções em situações-problema contextualizadas. Assim, a exploração de problemas envolvendo

as equações diofantinas lineares possibilita uma contribuição para a formação matemática do aluno

do ciclo básico conforme sugerem Brolezzi (1996) e Jurkiewicz (2004);

- pesquisas que constatam a escassa exploração de situações-problema no livro didático de

Ensino Médio envolvendo implicitamente as equações diofantinas lineares, descrita na pesquisa de

Oliveira (2006), bem como na utilização preferencial pelos professores entrevistados por Costa

(2007) pela estratégia de tentativa e erro. Esse último fato parece revelar a pouca valorização destes

professores para a utilização de outras estratégias facilitadoras ou mais eficazes na busca das

soluções inteiras em situações-problema envolvendo essas equações;

- os possíveis entraves, que se situam na utilização pelos alunos de habilidades como a

interpretação e a busca de heurísticas para a resolução de problemas contextualizados em valores

monetários, através da utilização de conceitos da teoria Elementar dos Números e do

reconhecimento de padrões;

- das dificuldades na compreensão e percepção por alunos do Ensino Médio da especificidade

de problemas algébricos que envolvem só a solução com números inteiros, observada na pesquisa de

Lopes Júnior (2005);

- das ponderações sobre a possibilidade e importância do reinvestimento dos conceitos de

múltiplos, divisores e máximo divisor comum entre números inteiros, presentes na Teoria Elementar

dos Números e voltados para o Ensino Básico, observados em Campbell e Zazkis (2002).

II.2- A Concepção e a Análise a Priori da sequência didática

Na segunda fase, denominada concepção e análise a priori, foram determinadas as variáveis

macrodidáticas que permitiriam a caracterização e concepção da seqüência didática envolvendo as

Equações Diofantinas Lineares, a saber: a adoção de alguns aspectos da teoria das Situações

Didáticas de Brousseau (1996a,b); a utilização de jogos e situações-problema como recursos

didáticos; a escolha de situações-problema contextualizadas em quantias monetárias; o conjunto dos

números inteiros positivos; a realização das atividades em duplas ou trios, que viabiliza a

comunicação entre os sujeitos com uma escolaridade equivalente, para a possível utilização de

conhecimentos como ferramenta para a resolução do jogo.

Page 32: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

32

Nessa fase, a partir das variáveis macrodidáticas descritas, foram realizadas algumas escolhas

didáticas: a caracterização e seleção do tipo de escola, dos sujeitos de pesquisa e dos meios que

pudessem viabilizar a elaboração e aplicação da seqüência didática.

Deste modo, providenciamos as autorizações necessárias para a aplicação da pesquisa, assim

como planejamos o número de sessões, as datas e o horário das mesmas e o local da sua realização,

de acordo com as disponibilidades oferecidas.

Nesses pressupostos, encaminhamos a elaboração dos instrumentos da pesquisa com base nas

análises preliminares, das teorias já mencionadas e dados referentes às escolhas anteriores.

Na análise a priori de cada questão determinamos o objetivo, avaliamos as variáveis didáticas

envolvidas e previmos as estratégias de resolução. Ressaltamos que, após cada sessão, fizemos uma

análise a posteriori local objetivando verificar se era necessário uma ‘correção de rota’ na elaboração

da sessão seguinte.

Nesta pesquisa, foram abordadas as variáveis microdidáticas ou locais, que são aquelas

relacionadas “[...] a organização local da Engenharia, isto é, à organização de uma sessão ou de uma

fase” (MACHADO, 2002, p. 203).

As escolhas das variáveis microdidáticas para a elaboração das atividades constantes da

situação didática visaram utilizar e enfatizar a mudança entre os quadros aritméticos e algébrico,

abordados dentro de contextos em quantias monetárias, que incentivaram e estimularam os alunos a

motivação necessária e permitem a conjectura, a busca de soluções. Também, as variáveis

microdidáticas situam o trabalho em duplas, a socialização de resultados em cada situação-

problema, bem como a exploração de regularidades entre os diversos problemas, objetivando a

introdução de uma parte conceitual e algorítmica para a busca de possíveis soluções de uma

Equação Diofantina Linear.

Passamos, a seguir, a descrever as considerações presentes nas três sessões realizadas.

II.3-A sequência didática: 1ª sessão

O objetivo da 1ª sessão foi propiciar aos alunos contato com jogo e situações-problema

contextualizadas em quantias monetárias que envolveram várias possibilidades, nenhuma solução e

variado número finito de soluções inteiras, da ordem de uma dezena, o que permite aos alunos

vivenciar esta característica das equações diofantinas lineares. Esperava-se que o aluno utilizasse a

tentativa e erro no decorrer das atividades e percebesse as limitações desta ferramenta, iniciando a

busca por outros meios.

Page 33: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 33

As estratégias que previmos, em ordem decrescente de probabilidade, foram:

E1: A utilização de estimativa ou cálculo mental, através da tentativa e erro.

E2: A busca das soluções utilizando cálculos explícitos, através da tentativa e erro.

E3: O equacionamento do problema para a busca das soluções.

II.3.1- Atividade 01: O Jogo do Sorvete.

As variáveis didáticas envolvidas nesta 1ª atividade foram:

- os preços dos sorvetes de casquinha, pertencendo ao domínio dos números naturais e pares,

de fácil manuseio em cálculos mentais ou escritos;

- os valores gastos na compra de sorvetes de casquinha, revelado ao aluno ao retirar uma carta,

sendo números naturais e pares, que permite um número de soluções finito e de ordem das unidades;

- a relação entre os preços dos sorvetes de casquinha e os valores a serem gastos, que permite a

existência de mais de uma solução;

- o número de soluções previstas para as quatro rodadas: três ou quatro (ver quadro 1).

Gastos (R$) 8,00 12,00 10,00 14,00

Soluções

esperadas

4 b.s2.

2 b.d.

2 b.s. e 1

b.d.

6 b.s.

3 b.d.

2 b.s. e 2 b.d.

4 b.s. e 1 b.d.

5 b.s.

1 b.s. e 2 b.d.

3 b.s. e 1 b.d.

7 b.s.

5 b.s. e 1 b.d.

3 b.s. e 2 b.d.

1 b.s. e 3 b.d.

Quadro 1: Respostas esperadas da atividade 1.

As regras do jogo do Sorvete estão expostas no quadro 2, mostrado abaixo.

Jogo nº 1: Convidamos vocês a participarem do jogo do sorvete. As regras são:

O jogo transcorre em quatro rodadas de, no máximo, 2 minutos cada.

O jogo será disputado entre duas duplas da mesma série.

Cada dupla registra seus resultados na folha entregue para tal.

Cada quadra de alunos, das duas duplas, recebe quatro cartas fechadas com os seguintes

valores: R$ 8,00; R$ 10,00; R$ 12,00; R$ 14,00.

Cada carta corresponde ao valor que deve ser gasto em sorvetes.

São 2 opções de sorvetes de casquinha: bola simples (R$ 2,00) e bola dupla (R$ 4,00).

Existem muitos sabores disponíveis para os pedidos.

Inicia o jogo a dupla que ganhar na disputa par ou ímpar.

A dupla vencedora retira a carta de cima e a mostra para todos.

A dupla oponente registra o valor da carta e todas as possibilidades de compra de

sorvetes de casquinha, sem as revelar à dupla adversária.

O jogo continua até o término das cartas, invertendo os papéis das duplas a cada rodada.

De comum acordo, cada resultado vale 1 ponto e ganha o jogo quem tiver mais pontos.

Quadro 2: As regras do jogo do Sorvete da Atividade 1

2 Simbologia empregada: b.s.= sorvete de bola simples (R$ 2,00) e b.d.= sorvete de bola dupla (R$ 4,00).

Page 34: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

34

Para a organização para o registro de respostas e resultados das duplas, delineamos uma tabela

(que pode ser reproduzida, com maior espaçamento), conforme o quadro 3.

Valor da carta sorteada Descreva as possibilidades de compra

R$ ________

Quadro 3: Tabela para organização das respostas

II.3.2- Atividade 2: Quantos pacotes de café?

Uma loja de conveniência trabalha com diversas marcas de café. Num determinado mês, um

comprador desta loja comprou dois tipos de café – tipo A (normal) e tipo B (descafeinado).

Sabendo-se que ele gastou exatamente R$ 58,00, quais são as diversas maneiras que ele pode

adquirir os pacotes do tipo A e do tipo B? O preço do pacote da marca A é R$ 2,00 e do pacote da

marca B, R$ 3,00.

As variáveis didáticas foram:

- os valores dos preços dos pacotes de café, números naturais, primos entre si, sendo valores de

fácil manuseio em cálculos mentais ou escritos;

- o valor a ser gasto na compra dos pacotes de café, que permite um número de soluções finito

e que exige organização e persistência na busca das nove soluções;

- a relação entre os valores dos pacotes de café e o gasto em Reais, que permite existir mais de

uma solução, além de viabilizar a distinção entre grandezas discretas e contínuas para a escolha das

soluções inteiras;

- o número de soluções previstas: nove, conforme exposto no quadro 4.

02 - A

18 - B

05 - A

16 - B

08 – A

14 - B

11 - A

12 - B

14 - A

10 - B

17 - A

08 - B

20 - A

06 - B

23 - A

04 - B

26 - A

02 - B

Quadro 4: As nove soluções esperadas para a aquisição de café do tipo A e do tipo B

II.4- A seqüência de aprendizagem: 2ª sessão.

II.4.1- Atividade 3: Dinarlândia

Esta atividade objetivou que o aluno percebesse que uma situação pode ou não ter solução e

limita o uso da tentativa e erro, incentivando-o a busca de outras estratégias facilitadoras, assim

como estabelecer conjecturas envolvendo a relação entre os valores das cédulas deste ‘reinado’ e as

possíveis operações monetárias usuais do dia-a-dia.

Page 35: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 35

A situação-problema Dinarlândia propôs o texto conforme o quadro 5:

Em um reinado distante, de regime monarquista parlamentarista, existem cédulas de 1, 2, 5,

10, 20 e 50 dinares, que permitem pagar e receber troco. Como Dinarlândia é um lugar muito

simples, estas notas são suficientes para grande parte das transações comerciais do dia-a-dia do

povo. As operações com valor maior que 50 dinares são raras e realizadas por comerciantes,

envolvendo outro tipo de moeda.

O rei, excêntrico por natureza, resolveu, por decreto, extinguir as cédulas existentes,

retirando-as de circulação. Então, instituiu operações de pagar e receber troco, somente com

duas cédulas: 4 dinares e 6 dinares. Sua justificativa para a redução do número de cédulas é que

estas simplificariam a vida do povo de Dinarlândia, economizaria na produção de cédulas e

poderia cobrir qualquer valor das cédulas antigas (1, 2, 5, 10, 20 e 50 dinares).

(a) O primeiro-ministro contra-argumenta a posição do rei, afirmando que a utilização de

cédulas de 4 e 6 dinares é inadequada.

Você concorda ou discorda do primeiro-ministro? _______________

Explique, embasando seus argumentos associado a algum comentário ou cálculo

matemático, que exemplifique a posição assumida por vocês.

(b) Agora, cada grupo deverá expor seu argumento ao adversário. Terminada a exposição,

cada grupo terá que apresentar um veredicto quanto ao argumento do adversário:

( ) Argumento correto ou ( ) Argumento incorreto

Se assinalou argumento incorreto, descreva abaixo o motivo.

(c) O rei, descontente com o primeiro-ministro, mas não podendo demiti-lo, resolve

estabelecer um duelo a nível nacional para resolver a questão de quais deveriam ser as duas

moedas nacionais. O rei aposta que este concurso o ajudaria a desacreditar o primeiro-ministro,

comprovando o mérito de seu decreto.

O rei assim proclama:

“Hoje e somente hoje, abro inscrições para os súditos reais que desejam colaborar com o

Tesouro Nacional. Será paga a quantia de mil peças de ouro aos súditos que me mostrarem

quais são as maneiras que podem ser estabelecidas duas - e não mais do que duas - cédulas

necessárias para dar ou receber qualquer quantia monetária, até 100 dinares. Ainda, dentre as

várias maneiras, os súditos deverão argumentar e comprovar qual seria a mais cabível dentre

todas, de modo a promover o bem estar monetário das transações monetárias até 50 dinares. A

regra única é que as cédulas deverão ser números naturais menores que 7 dinares. A única

exceção a esta regra é a impossibilidade de emissão de cédula de 1 dinar”.

Como súditos leais e devotos a seu rei, convido todos a buscar, encontrar e encaminhar ao

Tesouro Nacional a melhor solução para nosso reinado de Dinarlândia.

Quadro 5: O texto da situação desafio Dinarlândia.

As variáveis didáticas foram:

- as cédulas de 1, 2, 5, 10, 20 e 50 dinares, anteriores ao decreto do rei;

- a escolha de uma história, que propicie ao aluno uma situação fictícia e que o desvincule do

usualmente estabelecido, possibilitando um repensar desta realidade;

- a escolha de situação-problema desafiadora, que permite ao aluno interpretar os dados

relevantes, a reflexão para o levantamento de hipóteses, expor e ouvir os argumentos dos adversários

para a tomada de decisão e o debate;

Page 36: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

36

- a situação hipotética do enunciado em relação às duas cédulas, pois em geral um país não

apresenta somente duas cédulas para as transações comerciais usuais. As novas cédulas de 4 e 6

dinares, estabelecidas por decreto-lei, impossibilitam o pagamento de algumas quantias, como 1

dinar, 3 dinares, dentre vários outros ímpares;

- os valores das possíveis cédulas a serem escolhidas, que visa estimular em que condições é

possível pagar qualquer valor: se for possível pagar um dinar, é possível pagar qualquer valor. A

opção mais simples é escolher cédulas de 2 e 3 dinares, mas há outras combinações possíveis (2 e 5;

2 e 7; 3 e 5; 3 e 7; 5 e 7). A escolha de 7 dinares como valor limite visa restringir os cálculos para

facilitar as reflexões acerca das possíveis combinações;

As estratégias que previmos ocorrer, em ordem decrescente de probabilidade, foram:

E1: Por tentativa e erro, o aluno ensaia várias possibilidades, para a busca de possíveis valores de

pagamento, utilizando cálculos mentais ou explícitos.

E2: A utilização de propriedades dos números, como o uso do múltiplo e divisores como ferramenta

facilitadora.

II.4.2- Atividade 4: Os saques no caixa eletrônico

A atividade 4 objetivou que os alunos vivenciassem uma situação-problema que envolvesse

uma maior quantidade de soluções em relação as atividades anteriores e cálculos com números de

maior ordem de grandeza, de modo a dificultar a determinação de todas as soluções inteiras pela

tentativa e erro, o que favoreceria a busca de outras alternativas.

O enunciado da situação ‘Saques no caixa eletrônico’3 se encontra no quadro 6.

Usualmente, um caixa eletrônico de banco pode dispor de cédulas (notas) para

atender eventuais solicitações de saques. Eventualmente, um caixa pode não ter notas

disponíveis, por acabar o estoque delas e não haver a reposição.

Atividade 4A: Um usuário deseja fazer um saque e decide utilizar um caixa

eletrônico que emite somente cédulas de R$ 5,00 ou R$ 10,00. Consulta o seu saldo e

verifica que possui em conta, no momento, R$ 61,00. Indeciso, resolve efetuar um

saque, mas não deseja zerar o saldo.

Registre todos os possíveis saques, em ordem crescente de valor, que poderiam ser

realizados pelo usuário. Explique seu raciocínio.

Quadro 6: Enunciado da atividade 4A.

Esta atividade objetivou que o aluno percebesse a vantagem na utilização dos múltiplos ou

divisores como ferramenta facilitadora para a busca de soluções inteiras, reforçando o abandono

gradual do método da tentativa e erro.

As variáveis didáticas foram:

3 Esta situação-problema foi composta de três etapas.

Page 37: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 37

- o valor limite do saque (R$ 61,00), que permite cálculos rápidos para a determinação das

soluções, assim como possibilita ao aluno formular hipóteses;

- a relação entre os valores das cédulas disponíveis no caixa eletrônico e o valor do saque em

Reais, expressa pelo m.d.c. (5,10) = 5, que possibilita ao aluno a percepção dos múltiplos de 5 como

ferramenta facilitadora para a resolução da situação-problema;

- o número de soluções previstas: treze possíveis valores de saques;

- a solicitação da representação das respostas em forma de uma seqüência numérica, que

permite ao aluno conceber e organizar as respostas e elaborar conjecturas.

As estratégias que previmos ocorrer, em ordem decrescente de probabilidade, foram:

E1: Utilização de propriedades dos múltiplos ou divisores, obtendo treze soluções, representados na

seqüência (0, 5, 10,15, 20, 25, 30, 35, 40, 45, 50, 55, 60).

E2: Por tentativa e erro, o sujeito ensaia várias possibilidades, organizadas ou não, para a busca das

doze soluções, utilizando cálculos numéricos mentais ou explícitos.

Esperava-se que, com as vivências das situações anteriores, os alunos utilizem os múltiplos ou

divisores como ferramenta, não necessitando testar um-a-um os valores.

A seguir, apresentamos o enunciado da situação ‘Saques no caixa eletrônico’, no quadro 7.

Atividade 4B: Um segundo usuário entra no banco e deseja sacar R$ 145,00 num

outro caixa eletrônico, que, no momento, está disponibilizando notas de R$ 5,00,

R$ 10,00, R$ 20,00 ou R$ 50,00.

Preencha a 2ª coluna da tabela abaixo, indicando uma das possíveis respostas:

SIM (SIM, é possível efetuar tal saque com as notas indicadas) ou

NÃO (NÃO é possível efetuar tal saque com as notas indicadas).

Se for possível realizar o saque, escreva na 3ª coluna uma das possíveis

maneiras de serem emitidas as notas para o pagamento dos R$ 145,00.

Notas emitidas pelo

caixa eletrônico

É possível?

(Sim ou Não)

Escreva uma das possíveis maneiras de

efetuar o saque, se for possível.

R$ 5,00 e R$ 10,00

R$ 5,00 e R$ 20,00

R$ 5,00 e R$ 50,00

R$ 10,00 e R$ 20,00

R$ 10,00 e R$ 50,00

R$ 20,00 e R$ 50,00

Justifique abaixo a escolha do NÃO para a 2ª coluna:

Quadro 7: Enunciado da atividade 4B.

Esta atividade objetivou a utilização dos múltiplos ou divisores como estratégia preferencial

em relação a tentativa e erro, através de tomada de decisão dos alunos quanto as possíveis maneiras

de emissão das cédulas frente a um saque pré-fixado.

Page 38: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

38

As variáveis didáticas foram:

- o valor total do saque (R$ 145,00), que permite cálculos mentais;

- os valores das cédulas que o caixa eletrônico pode emitir (R$ 5,00; R$ 10,00, R$ 20,00 e

R$ 50,00), números de fácil manuseio em cálculos e que permite a combinação de 6 modos de

dispor as cédulas para saque;

- a relação entre o valor de saque e os valores das cédulas, que pode favorecer a utilização e a

formação de conjectura do múltiplo como ferramenta facilitadora;

- o número de possibilidades: é possível efetuar o saque quando o m.d.c. das cédulas é igual a 5

(SIM) e não é possível efetuar o saque quando o m.d.c. é igual a 10 (NÂO), conforme exposto no

quadro 8.

Notas emitidas É possível?

R$ 5,00 e R$ 10,00 Sim

R$ 5,00 e R$ 20,00 Sim

R$ 5,00 e R$ 50,00 Sim

R$ 10,00 e R$ 20,00 Não

R$ 10,00 e R$ 50,00 Não

R$ 20,00 e R$ 50,00 Não

Quadro 8: Respostas esperadas

- a representação das respostas em forma de tabela, propiciando a visualização dos resultados

para o favorecimento de conjecturas.

As estratégias que previmos ocorrer, em ordem decrescente de probabilidade, foram:

E1: A utilização dos múltiplos como ferramenta facilitadora para encontrar as soluções.

E2: Por tentativa e erro, o sujeito ensaia várias possibilidades, organizadas ou não, para a busca de

possíveis soluções, utilizando cálculos mentais ou explícitos.

O enunciado da parte C dos ‘Saques no caixa eletrônico’ se encontra no quadro 9.

Atividade 4C:

Um terceiro cliente entra na agência com serviço de caixa eletrônico específico,

indicado na tabela abaixo. Ele deseja fazer um saque de R$ 1060,00. Indique na 3ª

coluna, escrevendo SIM ou NÃO, qual (is) o(s) caixa(s) eletrônico(s) do banco que

permite(m) tal saque. Justifique.

Caixa eletrônico Cédulas emitidas Saque de R$ 1060,00

Caixa 1 5 e 10

Caixa 2 10 e 20

Caixa 3 20 e 50

Caixa Especial 2 e 10

Justificativa:

Quadro 9: Enunciado da atividade 4C.

Page 39: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 39

Esta atividade objetivou que o aluno utilizasse o múltiplo ou o divisor como estratégia

preferencial para a tomada de decisão em relação à possibilidade de saque solicitado4, assim como

estabelecesse relações entre as cédulas emitidas e o valor do saque.

Assim, as variáveis didáticas foram:

- os valores das cédulas, representados por R$ 2,00, R$ 5,00, R$ 10,00, R$ 20,00 e R$ 50,00,

que permitem cálculos mentais e com m.d.c. entre eles igual a 2, 5 ou 10;

- o valor do saque, que reforça a busca de uma estratégia mais eficiente;

- a combinação das possíveis cédulas, perfazendo quatro possibilidades;

- o número de possibilidades: é possível (Sim) efetuar o saque ou não é possível (Não) efetuar

o saque de R$ 1060,00;

Cédulas Grupo G1

Caixa 1 5 e 10 Sim

Caixa 2 10 e 20 Sim

Caixa 3 20 e 50 Não

Caixa 4 2 e 10 Sim

Quadro 10: Resultados esperados na atividade 4C.

- a representação em forma de tabela, de modo a organizar as respostas, permite ao aluno a

elaboração de conjecturas.

As estratégias que prevemos ocorrer, em ordem decrescente de probabilidade, são:

E1: A utilização de propriedades dos múltiplos como ferramenta facilitadora para encontrar as

soluções.

E2: Por tentativa e erro, o sujeito ensaia várias possibilidades, utilizando cálculos mentais ou

explícitos.

II.5- A seqüência de aprendizagem: 3ª sessão.

II.5.1- Atividade 5: Quantos pacotes de café?

O objetivo do problema ‘Quantos pacotes de café?’ foi propiciar condições para que o aluno

representasse a situação por meio de uma equação.

As variáveis didáticas foram:

4 Isto se viabiliza pela mudança da variável de comando representada pelo aumento na ordem de grandeza do valor pré-

fixado do saque, que pretende definitivamente bloquear o uso da tentativa e erro pelo aluno.

Page 40: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

40

- a provocação propiciada pela institucionalização, que visou sistematizar os conhecimentos até

então obtidos e favorecer a generalização do pensamento algébrico;

- a escolha de uma situação-problema já trabalhada anteriormente na 1ª sessão, que propiciou

aproveitar a vivência dos alunos, suas tentativas e resultados encontrados.

O enunciado da situação-problema proposta é:

Uma loja de conveniência trabalha com diversas marcas de café. Num determinado mês, um

comprador desta loja comprou 2 tipos de café – tipo A (normal) e tipo B (descafeinado). O preço do

pacote da marca A é R$ 2,00 e do pacote da marca B, R$ 3,00.

Sabendo-se que ele gastou exatamente R$ 58,00, qual a equação que representa as diversas

maneiras que ele pode adquirir os pacotes do tipo A e do tipo B?

Atividade 5: ‘Quantos pacotes de café?’

As possíveis estratégias de solução deste problema, indicadas por Ei, para i = 1, 2, são:

E1: O aluno escreve diretamente a sentença algébrica .5832 yx

E2: O aluno escreve as várias sentenças numéricas, indicando os cálculos.

II.5.2- Atividade 6: CDs ou DVDs?

O objetivo foi propiciar condições para que o aluno escrevesse a equação algébrica que

representa esta situação-problema e a utilizasse para verificar a inexistência de solução.

As variáveis didáticas foram:

- os valores dos CDs e dos DVDs (R$ 12,00 e R$ 16,00), que pertencem ao domínio natural,

sendo de fácil manuseio em cálculos;

- o valor disponível para gastos (R$ 70,00), de fácil manuseio em cálculos;

- a relação entre os valores do CD e DVD (R$ 12,00 e R$ 16,00) e o gasto (R$ 70,00), que

podem propiciar a simplificação da equação e a utilização de propriedades dos números;

- o número de soluções previstas: nenhuma solução.

O enunciado desta situação-problema proposta é:

Uma aluna, Bianca, fã de música, reserva num certo mês uma certa quantia para a compra de CDs ou

DVDs. Se um CD custa R$ 12,00 e um DVD R$ 16,00, quais são as várias possibilidades de aquisição de

um deles ou de ambos, gastando-se exatamente R$ 70,00? E qual a equação que representa este problema?

Atividade 6: ‘CDs ou DVDs?’

Page 41: Livro Engª Didática 2013

Capítulo II: A Sequência Didática: A Análise Preliminar e a Análise a Priori. 41

As possíveis estratégias, indicadas por Ei, para i = 1, 2, 3, são:

E1: Por tentativa e erro, ensaia várias possibilidades, organizadas ou não, para a busca de possíveis

soluções utilizando cálculos numéricos explícitos, mas não encontra solução.

E2: O aluno escreve a sentença algébrica 70 16y 12x e não consegue determinar as soluções por

substituições e cálculos.

E3: O aluno escreve a sentença algébrica 70 16y 12x e a simplifica, obtendo 35, 8y 6x

verificando que não tem solução, pois a soma de dois números pares no primeiro membro nunca

resulta um número ímpar no segundo membro.

II.5.3- Síntese

O objetivo desta síntese foi que, num primeiro momento, os alunos registrassem e

organizassem a produção realizada nas duplas, com a mínima intervenção do professor/pesquisador.

Num segundo momento, o professor/pesquisador poderia estender a discussão para a classe. Isto

propiciaria condições para ocorrer trocar idéias entre todos os alunos. Dentre as inúmeras

ponderações dos alunos cabe ao professor promover a seleção das conjecturas válidas, através das

comparações entre os resultados dos alunos.

Esta etapa de síntese foi inspirada na Didática da Matemática. O termo institucionalização foi

utilizado por Brousseau (1996 a,b) para designar um momento da dialética da situação didática onde

o papel do professor se re-estabelece explicitamente5. Na institucionalização, o professor reconhece

os conhecimentos desenvolvidos pelos alunos, organizando-os e classificando-os (em pertinentes ou

não) com relação ao contexto objetivado. Caso os alunos não consigam formular ou validar os

conhecimentos, seria conveniente repensar se a situação de aprendizagem está devidamente

embasada, quando se estuda as considerações preliminares para a elaboração das atividades.

Nesta pesquisa, esperava-se que os alunos percebessem que os problemas tratam de dados

relativos a números inteiros (utilizaram as grandezas discretas como soluções, descartando as de

natureza contínua), envolvendo quantias monetárias, com variado número de soluções inteiras, e que

a existência de solução depende dos dados do enunciado.

Ainda, esperava-se que os alunos mobilizassem a estratégia mais básica – a da tentativa e erro

– e evoluíssem para o uso de propriedades dos números inteiros. Durante os debates entre colegas,

mediados pelo professor, alguns alunos puderam conjecturar que exista relação entre os três dados

5 Durante a seqüência de aprendizagem, o papel do professor fica implícito e restrito a mínima intervenção, cabendo aos

alunos a interação e evolução das estratégias de resolução, de modo que os alunos possam formular hipóteses,

conjecturar e evoluir, na interação com a situação proposta.

Page 42: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

42

numéricos dos enunciados das situações-problema, de modo a perceber que estão envolvidos os

múltiplos ou divisores.

Previa-se que a utilização da escrita algébrica como otimizadora dificilmente seria percebida

pela maioria dos alunos. Deste modo, a abertura dos debates poderia permitir que algum aluno

pudesse expor as considerações desenvolvidas na atividade 5. Estes argumentos poderão ser

valorizados pelo professor, que poderá encaminhar um fechamento para escolher todos os

conhecimentos matemáticos, no campo aritmético e algébrico, que envolvem as equações

diofantinas lineares. O enunciado proposto para a Síntese esta exposto no quadro 11.

Você irá retomar os problemas anteriores, preenchendo a tabela abaixo.

Assim, procure o título dos problemas, quantas e quais foram as soluções encontradas,

assim como escreva as equações correspondentes a cada situação-problema apresentada.

Retome os problemas anteriores e preencha o quadro abaixo.

Situação-

problema Título Soluções Escreva a equação

correspondente Quantas? Quais?

1

2

3

4

...

Observando o quadro acima, como você descreveria um critério para se prever quando

uma equação diofantina linear tem ou não solução.

Quadro 11: Organização proposta para registro e discussão dos resultados da situação de aprendizagem.

As estratégias que prevemos ocorrer, em ordem decrescente de probabilidade, são:

E1: O aluno não formula critério.

E2: O aluno percebe e descreve alguma propriedade da Teoria Elementar dos Números, como

paridade, múltiplo ou divisor entre os dados do enunciado, mas não estabelece critério.

E3: O aluno conjectura acerca do máximo divisor comum entre os coeficientes da equação diofantina

linear e o termo independente: Existe solução se m.d.c (a,b)/c, onde ax + by = c, com a, b, c

inteiros.

Page 43: Livro Engª Didática 2013

CAPÍTULO III: A Sequência Didática: A Análise a Posteriori e Conclusões

Considerando-se as seis atividades propostas nas duas sessões da sequência didática

tematizadas nas Equações Diofantinas Lineares propostas no capítulo II, neste presente capítulo

apresentamos alguns dos resultados da pesquisa realizada, seguida da análise posteriori.

III.1- Descrição e Análise a Posteriori Local da 1ª sessão

Para a aplicação da pesquisa, fizemos algumas considerações fundamentais com os sujeitos de

pesquisa:

- o pesquisador não poderia fornecer informações ou dicas para a interpretação, o

encaminhamento e a resolução das atividades propostas;

- as duplas ou trios deveriam resolver as atividades conjuntamente e, por isso, era não só

permitido, mas desejado que se comunicassem;

- a distribuição das folhas referentes às diversas atividades das sessões seria de forma

seqüencial, após o recolhimento das atividades já realizadas em cada etapa;

- o pesquisador se incumbiria de trazer e distribuir canetas de tinta azul, assim como papel

sulfite (tamanho A4) na cor branca, para possíveis rascunhos, sendo vedada a utilização de qualquer

outro tipo de papel;

- as duplas ou trios receberiam uma folha com os enunciados da atividade e espaço para

registrar as resoluções com caneta de tinta azul;

- os alunos deveriam deixar todo e qualquer procedimento registrado por escrito, mesmo

aqueles que eles considerassem um erro ou algo inadequado para a solução. Caso isto acontecesse,

não deveriam riscar os procedimentos errados, mas somente prosseguir na resolução, pois isto

permitiria a leitura pelo pesquisador dos caminhos percorridos pelos alunos para a resolução das

atividades, conforme observação de Borin (1995).

III.1.1- Descrição da Atividade 1: O Jogo do sorvete

Para o jogo introdutório, o pesquisador formou três grupos (G1, G2 e G3). Cada grupo recebeu

duas folhas, sendo previsto um tempo de execução em torno de 25 minutos.

Page 44: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

44

A primeira folha da atividade 1 continha as regras do jogo e a segunda estava designada para o

registro dos resultados obtidos. Estas duas folhas foram entregues seqüencialmente, conforme o

andamento da sessão e recolhidas ao final, de modo a permitir a utilização das regras e dos registros

durante a realização da atividade.

Havíamos planejado cinco minutos para a leitura, reflexão e discussão das regras do jogo, a fim

de propiciar o entendimento destas, conforme sugestão de Borin (1995).

Após entregar a folha contendo as regras do ‘Jogo do sorvete’, observamos uma grande

atenção na leitura destas regras e uma intensa comunicação entre os participantes, principalmente no

grupo G1, revelando o empenho e a necessidade em compreendê-las. No grupo G2 ocorreu a leitura

individual, com algumas trocas de esclarecimentos.

Findo este tempo, iniciou-se o jogo onde cada dupla recebeu a segunda folha e um jogo de

quatro cartas para sorteio dos valores de compra de sorvetes. Constatamos que o grupo G1 não teve

dificuldade quanto à etapa de sorteio e distribuição das cartas. Porém, em certo momento, o grupo

G2 estava prestes a reutilizar as cartas já sorteadas anteriormente e efetuar um novo sorteio. Ao

perceber isto, orientamos o grupo para simplesmente distribuir as duas cartas restantes.

Cada dupla dispôs de até dois minutos para resolução de cada rodada, perfazendo um total de

aproximadamente oito minutos. Os alunos começaram a leitura da folha de registro de respostas e

por várias vezes releram as regras para compreender como seria o andamento do jogo. Deste modo,

os cinco minutos previstos se estenderam por outros cinco minutos.

A seguir, apresentamos a síntese dos resultados obtidos pelos jogadores. Representamos as

respostas dos dois grupos em tabelas separadas, de modo a possibilitar um quadro geral das

produções, ressaltando os resultados corretos e as soluções faltantes.

G1 G2 G3

Gasto (R$) Gasto (R$) Gasto (R$)

8,00 12,00 10,00 14,00 12,00 14,00

Soluções

corretas

2 2 2 4 1 1

4 b.s1.

2 b.d.

6 b.s.

3 b.d.

5 b.s.

1 b.s. e 2 b.d.

7 b.s.

5 b.s. e 1 b.d.

3 b.s. e 2 b.d.

1 b.s. e 3 b.d.

2 b.s. e 2 b.d. 3 b.s. e 2 b.d.

Soluções

faltantes

1 2 1 0 3 3

2 b.s. e 1 b.d. 2 b.s. e 2 b.d.

4 b.s. e 1 b.d. 3 b.s. e 1 b.d. 0

6 b.s.

3 b.d.

4 b.s. e 1 b.d.

7 b.s.

5 b.s. e 1 b.d.

1 b.s. e 3 b.d.

Quadro 12: Respostas dos Grupos G1, G2 e G3 no ‘Jogo do Sorvete’.

1 Simbologia empregada: b.s.= sorvete de bola simples (R$ 2,00) e b.d.= sorvete de bola dupla (R$ 4,00).

Page 45: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 45

III.1.2- Análise a posteriori local da atividade 1

Conforme a analise a priori, esperavamos que os alunos percebessem a existência de várias

possibilidades de compra de sorvetes de casquinha, vivenciando assim uma situação que

implicitamente representava tal característica das equações diofantinas lineares.

No entanto, somente no primeiro grupo G1, de alunos da 3ª série do Ensino Médio, houve essa

percepção conforme manifestação oral de aluna2 da dupla D1:

Você tem R$ 14,00 e verificará quantas formas existem para comprar, entendeu? É

possível comprar 7 sorvetes de R$ 2,00, assim como 2 sorvetes de R$ 4,00 e o resto

de R$ 2,00, de modo a resultar R$ 14,00.

No grupo G3, de alunos da 1ª série, no início, todos deram apenas uma solução, porém

perceberam que haveria mais de uma solução somente em um segundo momento. Esse tipo de

reação dos elementos desse grupo pode ser reflexo do contrato didático, onde os alunos acreditam

que existe somente uma solução para problemas matemáticos.

É importante ressaltar que todos os alunos deram respostas no âmbito dos números inteiros, o

que parece indicar que perceberam tratar-se de um problema de Matemática Discreta.

É importante destacar que todos os alunos utilizaram a estratégia que indicamos como E1, que

foi considerada a mais provável, ao utilizar cálculo mental para a determinação das soluções inteiras,

associado ao uso do método da tentativa e erro.

Ao preencher a segunda folha da atividade 1, apenas a dupla G2 representou corretamente todas

as soluções inteiras para o gasto de R$ 14,00. Excetuando-se este acerto, para as outras cartas

sorteadas, os alunos se contentaram com uma ou duas soluções, o que parece apontar para uma falta

de organização mais efetiva dos dados, motivo pelo qual não favoreceu a formação de conjecturas.

É interessante notar que as soluções encontradas pela dupla G1 envolviam somente a compra

de um tipo de sorvete, revelando uma provável interpretação do ‘ou’ exclusivo.

Ressaltamos que no ‘jogo do sorvete’ ocorreu uma grande comunicação entre os pares, de

modo a viabilizar a ação independente dos alunos para a busca das soluções. Considerei isso uma

mostra do envolvimento, caracterizando a etapa de devolução do jogo, de acordo com Brousseau

(1996 a, b).

2 Esta citação, assim como as demais deste capítulo, foram obtidas pela transcrição das gravações de áudio, onde

ocorreu um tratamento de linguagem. Deste modo, foram retirados os vícios e redução de linguagem dos alunos desta

pesquisa, segundo as normas de ortografia e sintaxe, mantendo-se o mais fiel possível e preservando o texto quanto às

quantidades numéricas envolvidas, os termos e as idéias.

Page 46: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

46

Consideramos que o objetivo da atividade foi atingido, pois os sujeitos da pesquisa

participaram ativamente do jogo, nesse primeiro contato com a situação-problema envolvendo um

certo número de soluções inteiras, o que possibilitou a explicitação e utilização da tentativa e erro

como estratégia preferencial.

Vale observar que, no ‘jogo do sorvete’, nenhum dos grupos se preocupou em equacionar as

situações-problema (estratégia E3), parecendo evidenciar que os alunos preferem resolver situações-

problema através de cálculos numéricos e pela estratégia da tentativa e erro. Este tipo de preferência

não reflete a ênfase que o ensino de Álgebra apresenta nos manuais escolares, a partir do 8º ano do

Ensino Fundamental, o que vale a pergunta: Será que a transição da Aritmética para a Álgebra está

sendo efetiva nos nossos alunos? Se estivesse resolvida esta transição, por que os alunos ainda

parecem preferir tal estratégia?

Esta constatação, esperada pela nossa análise a priori, foi incorporada na situação didática que

aplicamos. Dentro deste enfoque, nas atividades posteriores, procuramos incluir valores numéricos

para as variáveis didáticas que gradualmente desestimulassem o aluno a usar a estratégia da tentativa

e erro, procurando outras estratégias mais eficazes.

III.1.3- Descrição da Atividade 2: Quantos pacotes de café?

Para a atividade 2, o pesquisador manteve a formação dos grupos. Inicialmente, entregamos a

folha da atividade 2 para cada um dos agrupamentos, que continha o enunciado da situação-

problema e espaço para a busca e registro das soluções. Foi previsto um tempo de execução em torno

de 15 minutos.

Os alunos rapidamente se mobilizaram para a busca das soluções. No quadro abaixo sintetizei

os resultados obtidos pelos três grupos.

02 - A

18 - B

05 - A

16 - B

08 – A

14 - B

11 - A

12 - B

14 - A

10 - B

17 - A

08 - B

20 - A

06 - B

23 - A

04 - B

26 - A

02 - B

G1 (2,18) (5,16) (8,14) (11,12) (14,10) (17,8) (20,6) (23,4) (26,2)

G2 (2,18) (5,16) - - (14,10) - - - -

G3 - - - - - - - - -

Quadro 13: Resultados obtidos na atividade 2 pelos três grupos.

Page 47: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 47

III.1.4- Análise a posteriori local da atividade 2

De acordo com a análise a priori, esperava que os sujeitos de pesquisa percebessem a

existência de vários modos de aquisição de café de dois tipos e organizassem seus resultados, de

modo a viabilizar a determinação de todas as soluções inteiras, vivenciando uma situação que

implicitamente representava tal característica das equações diofantinas lineares.

A dupla G1, após obter uma das soluções através de cálculos explícitos e o método da tentativa

erro, obteve acerto total, tendo organizado os resultados em ordem crescente de pacotes de café de

R$ 3,00, utilizando assim a estratégia E2.

Porém, a dupla G2 utilizou exclusivamente o método da tentativa e erro, conforme revela a

transcrição dos alunos.

Com 14 pacotes de R$ 2,00 resulta R$ 28,00, sendo o restante obtido com pacotes de

R$ 3,00.

Como assim?

Será possível comprar 14.2 = 28 Reais, e sobra quanto?

De 58? Resulta 30, que dividido por 3 nos fornece 10 pacotes de R$ 3,00.

Após encontrar três soluções inteiras, a dupla G2 encerrou as buscas, revelada nas

manifestações orais como falta de referências: para que procurar mais respostas? Vale notar que a

dupla G2 utilizou a estratégia E1, ao ensaiar várias possibilidades através de cálculos explícitos por

tentativa e erro, sem organizar um encaminhamento mais eficaz para a procura por soluções.

Definitivamente, o grupo G3 não compreendeu o problema. Houve discussões, porém

encaminhadas para uma interpretação errônea e o uso aleatório das operações básicas, conforme

destaca o relato abaixo:

58 por 2, quanto resulta?

29. Mas 29 não é divisível por 3. Acho que é subtração. Só pode ser!

Acho que o exercício solicita quantos pacotes do tipo A são possíveis de serem

adquiridos com R$ 58,00 e, também, quantos pacotes do tipo B são possíveis com

este valor.

É, pode ser isto também. Utiliza-se a operação de multiplicar, de modo a verificar o

total de possibilidades de cada pacote em separado, não dos dois juntos. Agora

subtrai o valor de cada um.

58. Oh! Deu o valor, veja.

A falta de sentido deste problema para os alunos, explicitada nos encaminhamentos, indica o

efeito do Contrato Didático conhecido na Didática da Matemática por ‘Problema da Idade do

Capitão’3, revelando a crença pelos alunos que os problemas matemáticos são resolvidos aplicando-

se aos dados alguma(s) das operações matemáticas elementares.

3 Pesquisadores franceses, nos anos 80, propõem a crianças de 7 a 10 anos o ‘Problema da Idade do Capitão’, cujo

enunciado é: ‘Em um barco, há sete cabras e cinco ovelhas. Qual a idade do capitão?’ Os pesquisadores verificaram que

Page 48: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

48

Todos os alunos reconheceram e utilizaram o caráter discreto das grandezas envolvidas para o

encaminhamento das soluções, conforme se verifica no relato de uma aluna da dupla D2.

Quanto é 58 dividido por 2?

29.

É possível comprar 29 pacotes de 2 Reais. E quanto é 58 dividido por 3?

58 dividido por 3, não é possível.

Resulta 19 pacotes de R$ 3,00 e sobra 1 Real.

De modo geral, pelas manifestações dos sujeitos de pesquisa, consideramos que ocorreu a

percepção de que a situação-problema apresenta mais de uma solução, permitindo ser vivenciada

esta característica das Equações Diofantinas Lineares. Também, se caracterizou que os alunos

souberam operacionalizar o uso das grandezas discretas, contrapondo as de natureza contínua na

etapa de cálculos, durante a aplicação do método da tentativa e erro, o que permitiu a obtenção das

soluções inteiras.

Quanto à busca pela organização dos dados, somente uma das duplas percebeu sua importância

como facilitador para a determinação de todas as soluções, configurando uma primeiro uso de

estratégia alternativa em relação a tentativa e erro. Tal como ocorreu na primeira atividade desta

sessão, os sujeitos de pesquisa não se preocuparam em equacionar o problema (estratégia E3) e usá-

la como estratégia preferencial de resolução.

III.2- Descrição e Análise a Posteriori Local da 2ª sessão

III.2.1- Descrição da Atividade 3: Dinarlândia

Para as atividades da 2ª sessão, o pesquisador formou dois grupos (G1 e G2). Após a leitura, os

alunos redigiram argumentação e puderam expô-la, de modo que o outro grupo pôde verificar a

validade dos posicionamentos do oponente. As respostas dos grupos estão representadas no quadro

síntese abaixo.

Grupo G1 Grupo G2

Posição Concordam com o 1º ministro Concordam com o 1º ministro

Argumento São poucas as possibilidades de compra e venda

de 4 e 6 dinares, por serem valores baixos.

E quando custar 1 ou 5 dinares?

Não seria possível comprar algo mais

barato e nem de 5 dinares

Quadro 14: Resultados obtidos na atividade 3 pelos grupos G1 e G2.

a maior parte dos alunos respondeu ao problema utilizando operações aleatórias, como, por exemplo, o valor de 7.5= 35

anos. Tais fatos foram relacionados a efeitos advindos do contrato didático.

Page 49: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 49

III.2.2- Análise a posteriori local da Atividade 3

De acordo com a análise a priori, esperávamos que os alunos utilizassem propriedades da

Teoria dos números (múltiplos ou divisores) como estratégia preferencial.

Nos grupos G1 e G2 ocorreu argumentação, através da busca de valores particulares de solução,

utilizando implicitamente o conceito de paridade para a busca de possíveis valores de pagamento, de

acordo com a estratégia E1, conforme transcrição abaixo:

G1: Não será possível comprar nada de R$ 1,00, assim como com R$ 5,00, mas será

possível com 2, 4, 6, 8, 20 e 50 Reais.

Na exposição dos argumentos, os grupos se limitaram a repetir o que tinham escrito. Então,

interferimos, para propiciar reflexão, solicitando aos grupos que novamente explicassem o que

haviam entendido. O grupo G2 insistiu na releitura do que haviam escrito. Porém, o grupo G1 fez uma

menção importante, ao explicitar que números como 5 ou 7 estariam impossibilitados por serem

ímpares. Deste modo, o grupo G1 atingiu o objetivo ao explicitar a paridade, de acordo com a

estratégia E2, enquanto que o grupo G2 se limitou a exemplos particulares, através da tentativa e erro,

não atingindo o objetivo.

Na 2ª parte (item b), houve poucos argumentos dos alunos e uma resposta rápida, sem

aprofundamento ou maior discussão. As respostas dos grupos estão sintetizadas no quadro abaixo.

Grupo G1 Grupo G2

2, 3, 5, 7 dinares. Com essas notas eu posso negociar qualquer valor monetário

2 e 6 (não justificaram)

Quadro 15: Resultados obtidos na atividade 3 pelos grupos G1 e G2.

Na 3ª parte, foi apresentado um desafio. O grupo G1 não entendeu a atividade proposta, que

solicitava as maneiras de se estabelecer duas cédulas, descrevendo quatro cédulas em operações de

‘dar’ e ‘receber’ troco, conforme mostra o quadro síntese.

No grupo G2, após algumas discussões e utilizando cálculos mentais, os alunos escreveram

como resposta as cédulas de R$ 2,00 e R$ 6,00. Assim, inicialmente o grupo G2 não percebeu que a

soma de dois pares é sempre par, conforme discutido na etapa de argumentação da 1ª parte, o que

impossibilitaria a troca de valores monetários ímpares.

Após ter desligado os gravadores, quando estava prestes a recolher as produções dos grupos, os

alunos espontaneamente iniciaram um debate muito intenso. O Grupo G1 chegou à conclusão que as

duas cédulas válidas são as de R$ 2,00 e R$ 3,00, argumentando que elas pagariam qualquer quantia

em operações de ‘dar’ e ‘receber’ troco, devido ao fato de uma delas ser par e a outra ímpar. Ainda, o

Page 50: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

50

grupo pediu permissão para marcar os resultados deste debate extraordinário, o que foi permitido,

logo após o registro das anotações já realizadas, indicado no protocolo 2 mostrado a seguir.

Quadro 16: Correção efetuada pelo grupo G1 relativo ao resultado do grupo G2, na atividade Dinarlândia.

Porém, não comentaram sobre as outras possíveis combinações, como as cédulas de R$ 2,00 e

R$ 5,00, de R$ 4,00 e R$ 5,00, de paridade distinta, nem as cédulas de R$ 3,00 e R$ 5,00, com

mesma paridade.

Então, considerando-se estas deliberações finais, o grupo G1 atingiu o objetivo ao explicitar o

conceito de paridade de forma operacional para a resolução da atividade 10. Porém, o grupo G2 não

conseguiu tal meta, devido à insistência na utilização exclusiva da estratégia da tentativa e erro,

através de valores numéricos particulares.

III.2.3- Descrição da Atividade 4A: Saques no caixa eletrônico

Sintetizamos a seguir as respostas dos grupos G1 e G2.

Seqüência de valores de possíveis saques Justificativa

Grupo G1 (5, 20, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) Todos os números divisíveis por 5 até o 60.

Grupo G2 (5, 20, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60) Todos os números divisíveis por 5

Quadro 17: Resultados obtidos na atividade 4A pelos grupos G1 e G2

III.2.4- Análise a posteriori local da Atividade 4A

De acordo com a análise a priori, esperávamos que os sujeitos de pesquisa percebessem a

vantagem na utilização dos múltiplos ou divisores como ferramenta facilitadora para a busca de

soluções inteiras, reforçando o abandono gradual do método da tentativa e erro.

Pela observação das manifestações escritas, os dois grupos atingiram rapidamente o objetivo,

realizando inicialmente cálculos numéricos e, na maior parte do tempo, utilizando explicitamente o

conceito de divisor, caracterizando-se a utilização da estratégia E1. Ilustrei tal fato em fala do grupo

G1.

G1: São possíveis saques com os números que são divisíveis por 5, até o 60.

G1: Todo número que termina em 0 e 5 é divisível por 5. Então, é possível utilizar os

números da seqüência (5, 10, 15, 20, 25, 40, 30, 35, 40, 45, 50, 55, 60). [grifo meu]

Page 51: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 51

Podemos notar que o grupo G1 explicitou o uso dos números divisíveis por 5. Deste modo, os

dois grupos atingiram o objetivo, utilizando a estratégia E2, ao explicitar a relação entre os saques

possíveis e o fato destes serem todos divisíveis por 5.

III.2.5- Descrição da Atividade 4B: Saques no caixa eletrônico

Os dois grupos rapidamente se mobilizaram na resolução desta situação-problema, conforme se

observa no quadro síntese das respostas dos grupos G1 e G2.

Grupo G1 Grupo G2

É possível o saque de R$

145,00 com as cédulas de:

R$ 5,00 e R$ 10,00

R$ 5,00 e R$ 20,00

R$ 5,00 e R$ 50,00

R$ 5,00 e R$ 10,00

R$ 5,00 e R$ 20,00

R$ 5,00 e R$ 50,00

‘Não’ e possível o saque de

R$ 145,00 com as cédulas de: R$ 10,00 e R$ 20,00

R$ 10,00 e R$ 50,00

R$ 20,00 e R$ 50,00

R$ 10,00 e R$ 20,00

R$ 10,00 e R$ 50,00

R$ 20,00 e R$ 50,00

Justificativa Não, pois não há nota de R$ 5,00 para

a soma de R$ 145,00. Porque são números inteiros.

Quadro 18: Resultados obtidos na atividade 4B pelos grupos G1 e G2

III.2.6- Análise a posteriori local da Atividade 4B

De acordo com a análise a priori, esperávamos que os sujeitos de pesquisa utilizassem os

múltiplos ou divisores como estratégia preferencial em relação ao método da tentativa e erro, através

de tomada de decisão quanto as possíveis maneiras de emissão das cédulas frente a um saque pré-

fixado.

As manifestações revelam que os dois grupos rapidamente encontraram a solução. No grupo G1,

observamos que os alunos partiram de cálculos mentais, utilizando a estratégia da tentativa e erro, e,

posteriormente, fazem relação dos valores das cédulas e a paridade, conforme se observa na

transcrição abaixo.

G1: No caixa que libera cédulas R$ 5,00 e R$ 10,00 é possível sacar R$ 145,00.

G1: Sim, é fácil até fazer os cálculos de cabeça. Se utilizarmos 14 cédulas de R$ 10,00

mais uma cédula de R$ 5,00, resulta R$ 145,00.

G1: Com o caixa que emite cédulas de R$ 10,00 e R$ 20,00 não será possível o saque,

pois R$ 145,00 termina em cinco.

G1: Também não será possível sacar com o caixa que emite as cédulas de R$ 10,00 e

R$ 50,00, pois neste caixa não tem cédulas com número ímpar.

G1: É exatamente, pois nestes caixas somente existem cédulas com números pares:

cédulas de R$ 10,00, R$ 20,00 e o R$ 50,00.

O grupo G2 também encontrou todas as soluções corretas. Em particular, este grupo forneceu

uma concepção particular para o termo ‘inteiro’. Ao questionar os alunos, tiveram dificuldades em

Page 52: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

52

explicar a concepção do termo ‘inteiro’ como, por exemplo, na fala ‘o número 10 seria o inteiro e 5 a

metade’ ou ‘as cédulas de 10 e 20 Reais não cabem dentro de 145’, denotando, em certo sentido, que

eles operacionalizam o divisor de um número.

Assim, de modo geral, consideramos que os dois grupos atingiram o objetivo, ao utilizarem

inicialmente o método da tentativa e erro (estratégia E2), porém evoluindo para a operacionalização

de conceitos da Teoria Elementar dos Números, como a paridade, o múltiplo e o divisor, para

resolver o problema (estratégia E1).

III.2.7- Descrição da Atividade 4C: Saques no caixa eletrônico

Os dois grupos rapidamente se mobilizaram na resolução desta situação-problema, sem

questionamentos. As respostas dos grupos estão representadas no quadro síntese abaixo.

Cédulas Grupo G1 Grupo G2

Caixa 1 5 e 10 Sim Sim

Caixa 2 10 e 20 Sim Sim

Caixa 3 20 e 50 Sim Sim

Caixa 4 2 e 10 Sim Sim

Justificativa - Sim, pois todos os

números são pares. Todos os números são

inteiros, menos o 2.

Quadro 19: Resultados obtidos na atividade 4C pelos grupos G1 e G2

III.2.8- Análise a posteriori local da Atividade 4C

De acordo com a análise a priori, esperávamos que os alunos utilizassem os múltiplos ou

divisores como estratégia preferencial para a tomada de decisão em relação à possibilidade de saque

solicitado, assim como estabelecessem relações entre as cédulas emitidas e o valor do saque.

Os dois grupos resolveram corretamente o problema, determinando os caixas que podem emitir

R$ 1060,00, diferindo somente nas justificativas utilizadas.

O grupo G1 relatou que existiam somente números pares, porém, não observaram que o número

5 é ímpar. Quanto ao grupo G2, este utilizou novamente a palavra ‘inteiro’, no sentido já mencionado

anteriormente.

Os alunos alcançaram os objetivos propostos, ao operacionalizar o múltiplo como estratégia

preferencial, assim como apresentaram indícios de perceber relação entre as cédulas dos quatro caixas

eletrônicos e o valor a ser sacado.

Page 53: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 53

Em síntese, a atividade 4 possibilitaram aos sujeitos da pesquisa, implicitamente, vivenciarem

algumas características das equações diofantinas lineares, pela operacionalização de estratégias

envolvendo conceitos das Teoria Elementar dos Números, como a divisibilidade e a paridade,

mostrando indícios de evolução a partir da estratégia da tentativa e erro. Assim, descobriram diversas

soluções inteiras presentes nas situações-problema propostas.

III.3- Descrição e Análise a Posteriori Local da 3ª sessão

As atividades desenvolvidas na 3ª sessão constaram de uma institucionalização inicial, seguida

da etapa da experimentação, onde foram desenvolvidas as análises a priori, as descrições das sessões

e as análises a posteriori e, por último, desenvolvida uma institucionalização para finalizar a sessão.

III.3.1- Institucionalização antecedendo a 3ª sessão

Iniciando as atividades da 3ª sessão, fez-se necessário um momento de institucionalização,

basicamente em vista de dois fatores.

Um primeiro fator surgiu quando observamos a não utilização da escrita algébrica pelos

alunos, durante a 1ª e 2ª sessões desta pesquisa, preferindo a utilização de linguagem numérica para

a busca das soluções inteiras. Este resultado já era em parte esperado, pelas dificuldades apontadas

na pesquisa de Lopes Junior (2005), em relação à utilização da escrita algébrica pelos alunos do

Ensino Médio.

Em vista dessa reflexão inicial, a institucionalização objetivou prover os alunos de recurso que

os possibilitassem escrever as sentenças em linguagem algébrica, relativamente às equações que

representavam as situações-problema encaminhadas nesta 3ª sessão, assim como que as utilizassem

como ferramenta vantajosa para encontrar, de forma organizada, as possíveis soluções inteiras.

A segunda intenção foi proporcionar oportunidade para que os próprios alunos desvelassem

quais os conhecimentos envolvendo as equações diofantinas lineares que eles tinham sido

aprendidos nas duas sessões anteriores.

Assim, utilizamos como suporte para a discussão, as próprias produções dos alunos em

relação às situações-problema da 1ª e 2ª sessões, questionando-os quanto às características em

comum dos dados e das soluções, possibilitando elementos para a evolução da escrita algébrica a

partir das estratégias desenvolvidas pelos próprios alunos na 1ª e 2ª sessão, favorecendo o uso desta

ferramenta para a busca das soluções.

Page 54: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

54

Em relação às situações-problema apresentadas na 1ª e 2ª sessões, almejávamos que os alunos

percebessem:

- que solicitavam o total de possibilidades de aquisição envolvendo espécies;

- que quantificavam duas espécies (bens ou produtos), cuja natureza era discreta;

- que podem ter várias soluções inteiras ou não existir solução.

Como procedimento, preparamos uma apresentação baseada em algumas explanações

entrecortadas com questionamentos que atuariam como provocações, de modo a favorecer a

explicitação por parte dos próprios alunos das características em comum das situações-problema

propostas, a partir da reflexão da produção dos alunos nas sessões anteriores, da comunicação entre

eles e da intervenção do pesquisador.

As questões básicas que nortearam a institucionalização foram:

- O que representam os dados nos enunciados dos problemas?

- Como o procedimento numérico que eles utilizaram no método de tentativa e erro poderia

evoluir para uma escrita algébrica das situações propostas?

Como estratégia para favorecer o entendimento destas características, reutilizei uma das

situações-problema da 1ª sessão intitulada ‘Quantos pacotes de café?’, de modo que os alunos

explicitassem os procedimentos e soluções que encontraram.

Antes do início da 3ª sessão, tínhamos afixado na lousa seis folhas de papel craft, duas já

previamente preenchidas e quatro delas sem anotações, para registro das ponderações dos alunos

frente às provocações colocadas pelo pesquisador. Os papéis já preenchidos foram cobertos, de

modo que os alunos visualizassem seis papéis craft sem registros escritos, para não desviar a

atenção dos procedimentos iniciais.

No 1º papel craft representamos o gráfico nº de pacotes do café tipo B versus o nº de pacotes

do café tipo A, sem indicar as coordenadas das soluções do problema, conforme a figura 3. Na 2ª

folha craft, expressamos, em forma de tabela, as nove soluções deste problema, já organizadas em

ordem crescente dos pacotes do tipo B, conforme se observa abaixo.

Page 55: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 55

0

5

10

15

20

0 10 20 30

pacotes de A

paco

tes d

e B

Nº de pacotes do tipo A

Nº de pacotes do tipo B

Gasto R$

26 2 58,00

23 4 58,00

20 6 58,00

17 8 58,00

14 10 58,00

11 12 58,00

8 14 58,00

5 16 58,00

2 18 58,00

Figura 3: Gráfico representando o

nº de pacotes de B x nº de pacotes de A.

Tabela 1: Tabela representando o

nº de pacotes de B x nº de pacotes de A.

Ao iniciar a institucionalização, introduzimos o questionamento da relação entre as situações-

problema utilizadas nas duas sessões anteriores com a Matemática. Os alunos apontaram que tais

questões tratavam do total de possibilidades envolvidas.

A seguir, questionamos os alunos em relação a estes tipos de possibilidades presentes na

pesquisa e as espécies de bens utilizados, através da colocação: Quais foram os bens que vocês se

depararam nas sessões anteriores?

Os alunos se lembraram dos dois tipos de bolas de sorvetes e dos dois tipos de café.

Em seguida, entregamos para cada grupo a folha contendo o enunciado do problema ‘Quantos

pacotes de café?’. Esta situação foi propositalmente reutilizada, porém com outra pergunta. Na 1ª

sessão, eram questionadas quais as possíveis soluções, sendo que agora era solicitada a equação

algébrica que representava o fenômeno.

Um aluno voluntário fez a leitura do enunciado da situação-problema em voz alta. Indagamos

aos alunos quais eram os resultados obtidos por eles na ocasião. A intenção era que os alunos

explicitassem os procedimentos realizados e relacionassem os dados do enunciado, de modo que os

próprios alunos percebessem as características das equações diofantinas lineares implícitas à

situação. Com esse procedimento, os alunos poderiam organizar seus resultados, de modo a

possibilitar o reconhecimento das incógnitas e o desenvolvimento da escrita algébrica.

De início, alguns alunos relembraram resultados, descrevendo principalmente os modos

utilizados e registrados pelas diversas tentativas advindas de tal procedimento.

Page 56: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

56

Durante esse processo, eles mencionaram o descarte de resultados que não envolviam

quantidades inteiras, conforme se observa na transcrição4 abaixo.

Aluno: Somei de dois em dois Reais até certa quantidade e o restante representei os

pacotes de três Reais. Também, percebi que não é possível dividir R$ 58,00 por 3,

de modo a resultar um valor exato.

Depois, como naturalmente não se lembravam de todos os resultados, começaram a reelaborar

as tentativas, tal como haviam feito na 1ª sessão, explicitando alguns resultados:

Aluno: Encontramos 2 pacotes de R$ 3,00. Daí sobrou R$ 52,00, que repartimos

para os pacotes de R$ 2,00.

Pesquisador: E como você procedeu para determinar a quantidade de pacotes de R$

2,00?

Aluno: Dividi 52 por 2.

À medida que os alunos explicitaram alguns resultados, descobrimos as duas folhas de papel

craft, contendo a figura 3 e a tabela 1. A seguir, indicamos as soluções como par ordenado no gráfico

cartesiano que representava o número de pacotes do café tipo B versus o número de pacotes do café

tipo A. O procedimento que adotamos em anotar os resultados em forma de par ordenado e

relacioná-los com o gráfico tinha por objetivo contribuir para o entendimento das variáveis

envolvidas.

Para explorar os resultados numéricos apontados pelos alunos prevendo que posteriormente

pudessem generalizar para a escrita algébrica, provocamos os alunos para escreverem uma sentença

numérica para o resultado apontado.

Pesquisador: Mas como você escreveria isto numa sentença numérica [apontei para

o par ordenado que acabávamos de discutir].

Aluno: 52 + 3.2 = 58.

Neste momento, denominamos esta escrita correspondendo a uma das soluções da situação-

problema como sentença numérica. Para dar sentido a esta escrita, questionamos os alunos a respeito

do significado dos números que compunham estas sentenças numéricas, de modo que os alunos

fizessem relação entre os números presentes na sentença matemática e os dados presentes no

enunciado.

Por exemplo, ao indagá-los a respeito dos números presentes na sentença, 58, 3.2 52

descrita acima, os alunos relataram que:

Aluno: Esta sentença representa 26 pacotes de R$ 2,00, pois multipliquei 26 por 2,

que resulta 52 e mais 2 pacotes de R$ 3,00 Reais.

4 Nas citações desta 3ª sessão, obtidas a partir de transcrição de registros sonoros, foi realizado o tratamento da

linguagem dos alunos e do pesquisador, pois utilizei aproximações com uma linguagem mais cotidiana. Assim, o texto

foi preservado quanto às quantidades numéricas envolvidas, os termos e as idéias principais.

Page 57: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 57

A medida que o aluno explicava o significado da expressão, fomos registrando a expressão

58. 3.2 2.26 Ao serem questionados a respeito do significado dos números presentes nessa

expressão, os alunos indicaram corretamente que os números 2 e 3 são os preços do café do tipo

A e B, respectivamente, assim como os números 26 e 2 são, respectivamente, as quantidades a

serem adquiridas destes dois tipos de café.

Observamos, a seguir, na fala das alunas a respeito da sentença 58, 3.2 2.26 ressurgir a

questão do uso do conectivo ‘e’ e ‘ou’, utilizados nos enunciados das situações-problema, questão

muito debatida entre as alunas da 3ª série, nas duas sessões anteriores.

Pesquisador: Na situação, o conectivo ‘e’ indica simultaneidade, ou seja, os dois

pacotes devem fazer parte da solução.

Aluno: Mas somente com pacotes de R$ 3,00 não resulta valor exato.

Aluno: Mas no enunciado aparece a letra ‘e’. Daí serão consideradas soluções

quando aparecem as quantidades dos dois tipos de café.

Neste ponto, percebendo que os alunos entenderam o uso do conectivo ‘e’, voltamos a indagá-

los como expressariam as outras soluções. Como resposta, eles perceberam que as quantidades

envolvidas eram relativas aos preços e as quantidades de café do tipo A e B.

Aluno: Uma possibilidade seria 6 pacotes de R$ 3,00 e 20 pacotes de R$ 2,00.

Pesquisador: Como você escreveria a sentença?

Aluno: 6.3=18, mais 20.2, 40, que resulta 58.

[simultaneamente a fala da aluna, escrevi a frase 58]. 20.2 6.3

A partir deste momento, fizemos uma pergunta para provocar uma forma de ligação das

sentenças numéricas com a escrita da expressão algébrica da referida situação-problema.

Pesquisador: Vocês já encontraram este tipo de sentença em algum tema da

Matemática?

Os alunos não souberam relacionar com nenhum assunto da matemática. Em seguida, introduzi

a seguinte questão: Estas sentenças estão relacionadas com as equações? Se sim, como?

Após breve silêncio, ao perceber que ocorreu um impasse, indagamos o que eles entendiam

como uma equação? As respostas dos alunos indicam que suas concepções acerca das equações é

que tem que aparecer a letra ‘x’ e ‘alguma coisa’ para calcular.

Aluno: Uma equação, para mim, é quando eu quero descobrir um valor, que é

representado por ‘x’.

Pesquisador: Neste problema, quais são os valores que estamos querendo descobrir?

Aluno: São as possibilidades de aquisição de cafés do tipo A e B, gastando-se R$

58,00.

Aluno: Então, neste problema, os números 20 e 6 são os valores procurados?

Aluno: Isso. Na verdade, para mim eles seriam o ‘x’, pois eu os achei depois.

Pesquisador: E o que significa o 58?

Aluno: É o resultado, ou seja, é o valor da igualdade, que deve ser 58.

Page 58: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

58

Neste ponto, com a associação que as alunas fizeram entre as sentenças representando as

soluções da situação-problema e uma equação, continuamos a questioná-los para que eles

percebessem que as situações-problema apresentavam duas incógnitas.

Pesquisador: Na situação-problema ‘Quantos pacotes de café?’, quais seriam os

valores a serem descobertos?

Aluno: Os valores seriam: 2, 5, 8, 11 e 14.

Pesquisador: Vamos escrever esses valores. Como você determinou esses valores?

Aluno: Não deveriam ser ‘x’ e ‘y’?

Aluno: As quantidades de pacotes de café do tipo A que podem ser compradas.

Pesquisador: Então, estes números representam as possíveis aquisições de café?

Aluno: Não, estão faltando os pacotes do café B.

Pesquisador: E quais seriam os valores dos pacotes de B?

Aluno: 2, 4, 6, 8, 10, etc.

Nota-se que, os alunos perceberam que se tratava de duas quantidades envolvidas nas

sentenças numéricas discutidas. Ao indicar estes valores no gráfico, à medida que os alunos

argumentavam, os outros alunos que não estavam participando do diálogo foram percebendo e

comentando - algo que estava explícito no papel craft, mas que eles não haviam percebido - que os

valores indicados no eixo horizontal do gráfico eram as quantidades de café do tipo A, assim como

os valores indicados no eixo vertical eram as quantidades de café do tipo B.

Indagamos, então: Qual é a denominação de ‘x’, quando se trata de equação? Os alunos logo

responderam que se denominavam incógnitas. Uma delas disse: Eu pensaria que as minhas

incógnitas seriam os números ‘x’ e ‘y’.

Pesquisador: Então, ‘x’ e ‘y’ são as incógnitas. Na situação-problema, o que

corresponderia a ‘x’?

Aluno: O ‘x’ seria o A.

Pesquisador: Mais especificamente, o ‘x’ corresponderia a quantidade de pacotes de

café do tipo A. E com relação a ‘y’?

Aluno: Seria o número de pacotes do café do tipo B.

Por último, sintetizamos com os alunos os encaminhamentos e sucessos obtidos.

Vocês perceberam que esta situação apresenta duas incógnitas, ou seja, dois valores

que não conhecemos. Note que no gráfico cartesiano os pontos estão todos

alinhados. Na verdade, vocês não poderiam unir os pontos, pois não é possível

encontrar um número inteiro de pacotes entre estes indicados. Este tipo de problema

recai em uma equação denominada diofantina linear, em homenagem a Diofante,

matemático grego. Já o termo linear está graficamente associado ao alinhamento dos

pontos.

Em seguida, propusemos o início das atividades da 3ª sessão.

Agora, vocês deverão escrever, por conta própria, a equação que representa o

problema 1. Observe que, ao escrever esta sentença [apontei para uma das sentenças

aritméticas representadas no papel craft], você está descrevendo algo que tem como

solução os valores que vocês encontraram, porém para equacionar vocês deverão

utilizar explicitamente as incógnitas ‘x’ e ‘y’.

Page 59: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 59

Com estes encaminhamentos realizados, tendo ocorrido a percepção do significado algébrico e

da quantidade de incógnitas da equação por parte dos alunos, os convidei a responder a pergunta

proposta no problema inicial da 3ª sessão. Finalizou-se, então, a institucionalização.

III.3.2- A Descrição da Atividade 5

Para a atividade 2 da 2ª sessão o pesquisador manteve a formação da atividade anterior.

Neste problema, os dois grupos já estavam de posse da folha contendo o enunciado e espaço

para resolução da situação-problema ‘Quantos pacotes de café?’. Os dois grupos registraram a

equação algébrica, conforme se observa no quadro abaixo.

Grupo G1 Grupo G2

Equação 2x+ 3y = 58 2x+ 3y = 58

2.26 + 3.2 = 58

Quadro 20: Resultados obtidos na atividade 5 pelos grupos G1 e G2

O grupo G1, além de escrever a equação algébrica, apresentou um procedimento antecedendo

a resposta, conforme se observa no protocolo 3.

Quadro 21: Escrita inicial do grupo G1 na atividade 5, da 3ª sessão.

III.3.3- Análise a Posteriori Local da Atividade 5

Conforme a analise a priori, esperávamos que os alunos representassem a situação por meio

de uma equação.

O grupo G1 inicialmente escreveu a equação algébrica associando-a a cada resultado

encontrado. Isto pareceu revelar que, inicialmente, as alunas sentem a necessidade de justificar a

equação, verificando algumas respostas na forma de uma expressão numérica. Porém, a discussão

prossegue e as alunas percebem que somente é necessária a escrita algébrica, denotando a evolução

da estratégia E2 para a estratégia E1, conforme se observa na transcrição abaixo.

G1: O problema pede a equação com todos as possibilidades, não é?

G1: Então, é melhor escrevermos três equações.

G1: Não, é para representar os valores numa só equação.

Page 60: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

60

Quanto ao grupo G2, observamos que não estava conseguindo chegar a um consenso. Em vista

disso, retomamos algumas ponderações feitas na institucionalização que iniciou a 3ª sessão de

forma mais particular para este grupo, de modo a não provocar um bloqueio, assim possibilitando

uma nova abertura para que o grupo entendesse e escrevesse a equação solicitada.

Pesquisador: Na 1ª sessão, vocês já se mobilizaram para descobrir as soluções. No

início desta sessão, vocês esboçaram estas tentativas e me explicaram como vocês

conseguiram tais soluções. Esta situação-problema inicial solicita a equação que

representa estas soluções. Para isso, vocês chegaram a algumas conclusões. Estes

problemas são representados por equações, com duas incógnitas, ‘x’ e ‘y’,

representando dois tipos de bens, no caso, as quantidades de café dos tipos A e B,

relativas aos preços unitários R$ 2,00 e R$ 3,00. Também, a equação tem que ter

uma igualdade, que neste caso é o gasto total de R$ 58,00.

A partir destas explicações, o grupo G2 escreveu a equação na forma algébrica, e em seguida

registrou a sentença numérica abordada na etapa de institucionalização, conforme se observa no

quadro-síntese. Do modo como estão registradas a equação e a verificação, não é possível

discriminar se o grupo compreende qual é a equação, denotando uso das estratégias E1 e E2.

Sintetizando, os grupos G1 e G2 atingiram o objetivo ao escrever a equação que representa a

situação-problema.

III.3.4- A Descrição da Atividade 6

O objetivo foi propiciar condições para que o aluno escrevesse a equação algébrica que

representa esta situação-problema e a utilizasse para verificar a inexistência de solução.

As variáveis didáticas foram:

- os valores dos CDs e dos DVDs (R$ 12,00 e R$ 16,00), que pertencem ao domínio natural,

sendo de fácil manuseio em cálculos;

- o valor disponível para gastos (R$ 70,00), de fácil manuseio em cálculos;

- a relação entre os valores do CD e DVD (R$ 12,00 e R$ 16,00) e o gasto (R$ 70,00), que

podem propiciar a simplificação da equação e a utilização de propriedades dos números;

- o número de soluções previstas: nenhuma solução.

O enunciado desta situação-problema proposta é:

Uma aluna, Bianca, fã de música, reserva num certo mês uma certa quantia para a compra de CDs ou

DVDs. Se um CD custa R$ 12,00 e um DVD R$ 16,00, quais são as várias possibilidades de aquisição de

um deles ou de ambos, gastando-se exatamente R$ 70,00? E qual a equação que representa este problema?

Atividade 6: ‘CDs ou DVDs?’

Page 61: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 61

As possíveis estratégias, indicadas por Ei, para i = 1, 2, 3, são:

E1: Por tentativa e erro, ensaia várias possibilidades, organizadas ou não, para a busca de possíveis

soluções utilizando cálculos numéricos explícitos, mas não encontra solução.

E2: O aluno escreve a sentença algébrica 70 16y 12x e não consegue determinar as soluções por

substituições e cálculos.

E3: O aluno escreve a sentença algébrica 70 16y 12x e a simplifica, obtendo 35, 8y 6x

verificando que não tem solução, pois a soma de dois números pares no primeiro membro nunca

resulta um número ímpar no segundo membro.

Os dois grupos receberam a folha contendo o enunciado e espaço para a resolução da

atividade ‘CDs ou DVDs?’. Os grupos rapidamente determinaram a equação que representa a

situação, porém utilizaram maior quantidade de tempo na tentativa de encontrar solução.

O quadro-síntese abaixo indica as produções dos dois grupos.

Grupo G1 Grupo G2

Equação 12 x + 16 y = 70 12 x + 16 y = 70

Soluções Não há possibilidades -

Quadro 22: Resultados obtidos pelos grupos G1 e G2 na atividade 6.

III.3.5- Análise a Posteriori Local da Atividade 6

Conforme a analise a priori, esperávamos que os alunos escrevessem a equação algébrica que

representa este problema e a utilizassem para verificar a inexistência de solução.

O grupo G1, após as várias tentativas através do método da tentativa e erro, concluíu que não

há possibilidades, porém seus argumentos não foram suficientes para sustentar esta afirmação,

conforme se observa na transcrição.

G1: Para saber a quantidade máxima de DVDs vamos fazer 16 vezes 2, 16 vezes 3,

16 vezes 4, 64. Não, não é possível.

G1: Vamos começar pelo CD. Qual número vezes 12 que resulta 70?

G1: Não, não vai dar, nem pelo de R$ 12,00, nem pelo de R$ 16,00.

O grupo G2, após escrever a escrita algébrica da equação que representa a situação-problema,

realizou algumas tentativas esporádicas para a busca de solução inteira, pelo método da tentativa e

erro, mas não respondeu a questão.

Page 62: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

62

Deste modo, os dois grupos não atingiram o objetivo, se limitando ao uso da estratégia E2,

escrevendo a equação algébrica e buscando as soluções por tentativa e erro, não se mobilizando

para encontrar outras estratégias para verificar a inexistência de solução.

Os dois grupos receberam a folha contendo o enunciado e espaço para a resolução da situação

‘Saques no banco’.

O primeiro quadro abaixo sintetiza as produções dos dois grupos.

Grupo G1 Grupo G2

Atividade Soluções corretas

Equação Soluções corretas

Equação

5 9 2x + 3y = 58 1 2x + 3y = 58 2.26+3.2=58

6 Não há

possibilidades 12x + 16 y = 70 - 12x + 16 y = 70

Quadro 23: Síntese dos resultados obtidos pelos grupos G1 e G2

O segundo quadro abaixo descreve a conjectura dos grupos para se prever quando uma

equação diofantina linear tem solução.

Grupo Critério

G1 Procuramos verificar se os valores são divisíveis pelo valor estimado pelo

professor. Se ele não for divisível, a equação não terá solução. G2 -

Quadro 24: Critério formulado pelos grupos G1 e G2

III.3.6- Síntese

Conforme a análise a priori realizada, esperávamos que os alunos registrassem e organizassem

a produção obtida por eles, estabelecendo relações entre as situações-problema apresentadas nesta 3ª

sessão, de modo a descrever um critério para se verificar quando uma equação diofantina linear tem

ou não solução.

O grupo G1 organizou as respostas de modo correto, sabendo distinguir as soluções particulares

da equação na forma algébrica. Na discriminação das soluções, no registro sonoro, o grupo concebeu

corretamente as quantidades envolvidas, porém se limitou a escrever as sentenças na forma

numérica, não registrando em linguagem natural as respostas.

Page 63: Livro Engª Didática 2013

CAPÍTULO III- A Sequência Didática: A Análise a Posteriori e Conclusões 63

Em contrapartida, o grupo G2 descreveu de forma incompleta as soluções das duas atividades,

ao representar somente a resposta que foi discutida na etapa inicial de institucionalização. Também,

na atividade 5, o grupo G2 não diferenciou a solução numérica e a forma algébrica, conforme se

observa no quadro síntese. Na atividade 6, o grupo G2 apresentou resposta correta e organizada,

sabendo distinguir as soluções numéricas e a escrita algébrica.

Quanto a atividade 7, os dois grupos escreveram a equação, porém somente o grupo G1 afirmou

não haver possibilidades.

Quanto à formulação de um critério para se prever quando uma equação diofantina tem ou não

solução, o grupo G1 percebeu relação entre os valores dados nos enunciados e o conceito de

divisibilidade, porém não houve verificação e aprofundamento da afirmação desta conjectura,

revelando uso da estratégia E2. Quanto ao grupo G2, este não registrou justificativa, por escrito e

nem deliberou, de forma oral, se caracterizando uso da estratégia E1.

Assim, consideramos que o objetivo desta atividade não foi atingido pelos sujeitos de pesquisa,

pois somente o grupo G1 formulou conjectura, ao afirmar, de forma vaga, a existência de relação de

divisibilidade entre os dados dos bens e o valor total disponível nas situações-problema da 3ª sessão,

porém não realizou tentativas e procedimentos para validar estes resultados.

Ao final desta 3ª sessão, agradecemos novamente a presença dos alunos e ressaltamos a

importância da participação deles nesta pesquisa.

Page 64: Livro Engª Didática 2013
Page 65: Livro Engª Didática 2013

CONSIDERAÇÕES FINAIS

Saliento que a Teoria das Situações Didáticas de Guy Brousseau, concebida como suporte

teórico, associada a Engenharia Didática, como metodologia, podem contribuir significativamente

para a construção de conhecimentos em sala de aula. Assim, os elementos teóricos apresentados por

Brousseau propiciam um enriquecimento que permite responder a questão: como e por que proceder

a transformação dos saberes matemáticos em conhecimentos matemáticos?

No processo usual de ensino algoritmos são apresentados pelo professor e modelos são

expostos, esperando-se que naturalmente os alunos se apropriem do conhecimento. A seqüência de

aprendizagem que propomos inverte este tipo de apresentação: a partir da importante estratégia de

tentativa e erro, os alunos podem desenvolver outras estratégias como recurso para a resolução dos

problemas. No caso presente, o uso dos múltiplos como ferramenta e a introdução da escrita

algébrica potencializam a aprendizagem. Este tipo de proposta pode ser complementada,

permitindo ao professor explicar a origem do algoritmo1 de resolução das equações diofantinas

lineares para a busca das possíveis soluções inteiras.

A utilização de uma seqüência de aprendizagem, onde a atuação do aluno se intensifica pela

possibilidade de auto-regulação e pelo confronto com as situações propostas, possibilita uma

evolução de estratégias, potencializando a cognição dos alunos. Isto se constitui uma maneira de

desenvolver uma cultura do pensar na sala de aula que constitui prioridade e atenção para a

aprendizagem escolar.

Existe a necessidade de se construir, nas salas de aula, uma cultura do pensar, que

propicie aos alunos: a) uma forma de explicitar, desde cedo, modalidades de

pensamento, tornando-as, assim, passíveis de ser compartilhadas; b) um estímulo ou

motivação para pensar, de forma a alcançar decisões acertadas; c) a coragem para

enfrentar situações novas; d) a transferência de estratégias e conhecimentos gerados

em um dado contexto para outros. Um aspecto central na implementação de uma

cultura do pensamento é desenvolver habilidades metacognitivas, pois é por meio

delas que se torna possível a elaboração de conhecimentos e formas de pensar que

assegurem maior possibilidade de sucesso e generalização, bem como a aquisição da

autonomia na gestão da aprendizagem e na construção de uma auto-imagem de

aprendiz competente (DAVIS; NUNES; NUNES, 2005, p. 5).

A escolha da temática da seqüência didática nas equações diofantinas lineares, assunto

normalmente veiculado no Ensino Superior, fica delineada pelo potencial deste assunto para a

utilização de várias linguagens - verbal, aritmética, gráfica e algébrica. Esta natural possibilidade

mostra-se promissora para que os alunos entendam o papel de cada uma dessas linguagens e o papel

da escrita algébrica como ferramenta otimizadora e organizadora na busca das soluções inteiras.

1 Colocamos em anexo o algoritmo e as condições de existência de uma equação diofantina linear.

Page 66: Livro Engª Didática 2013

A Engenharia Didática em sala de aula: Elementos básicos e uma ilustração envolvendo as Equações Diofantinas Lineares

66

Também, a seqüência de atividades cria uma oportunidade de explicitação do pensamento

algébrico, através da institucionalização realizada pelo professor, assim como pelas manifestações

orais e escritas que podem ocorrer na etapa de síntese.

Acrescentamos que a utilização de contextos envolvendo quantias e situações monetárias

permitem uma apresentação enriquecedora aos alunos, pois possibilita o uso das várias linguagens

matemáticas e permite articular competências essenciais: a capacidade de compreensão, ao tomar

contato com as situações; a capacidade de argumentação, ao possibilitar o raciocínio e o exame de

situações matemáticas em diferentes pontos de vista e estratégias diversas; a capacidade de decisão,

ao realizar as possíveis escolhas no universo econômico; a capacidade de contextualização,

possibilitada pela inserção em situações cotidianas e de fácil compreensão, situadas em um entorno

próximo ao aluno.

A evolução de estratégias possibilitadas pela seqüência de atividades proposta constitui em uma

natural transição e imbricação entre o campo da Aritmética e da Álgebra, o que permite aprimorar o

pensamento algébrico dos alunos. A exemplificação apresentada neste texto se configura em uma das

possíveis articulações presentes no par pensamento e linguagem, mostrando como esta importante

relação dialética pode estar presente na disciplina de Matemática.

A seqüência de atividades envolvendo as equações diofantinas lineares revela uma possibilidade

de atualização temática do currículo, pela articulação do par conhecimento&competências, num

movimento intramatemático e pela exploração de diversas linguagens matemáticas do ciclo básico.

A elaboração de situações de ensino que permitam ao estudante reconstruir, pelo menos em

parte, o caminho ocorrido na criação do conhecimento envolvendo as equações diofantinas lineares,

permite dar significado ao próprio currículo da escola elementar.

Este exemplo de percurso que ilustramos permite aos alunos se situarem no modo como os

conhecimentos se relacionam uns em relação aos outros, num movimento de rede. Com o passar do

tempo esperamos que fique claro a verdadeira posição do par conteúdos&competências no ambiente

escolar: a necessidade de se estabelecer uma cultura de propostas de situações de aprendizagem.

Para os profissionais que se imbuírem em empreender uma jornada na aplicação dos conceitos

apresentados, inicialmente deverá ocorrer uma busca das situações-problema e jogos que possuam

as características adequadas para a aplicação das situações fundamentais. Uma observação

importante se refere à redução das mediações do professor e a valorização da interação do aluno

interaja com um ‘milieu’ antagonista, na ‘medida certa’ para que o obstáculo seja transponível. Este

é o sutil tempero a ser dosado pelo professor interessado em aplicar tais princípios a sua dinâmica

de aula. Isto requer um trabalho reflexivo e coletivo, onde a dialética da teoria com a prática possa

contribuir para formar um cidadão com uma cultura matemática mais significativa.

Page 67: Livro Engª Didática 2013

REFERÊNCIAS BIBLIOGRÁFICAS

ALMOULOUD, S. A. A Teoria das Situações Didáticas. São Paulo: PUC-SP, 2004.

__________________. Fundamentos da Didática da Matemática. Paraná: UFPR, 2007.

AMEROM, B. A. Von. Focusing On Informal Strategies When Linking Arithmetic To Early

Algebra. Educational Studies in Mathematics. Holanda, v. 54, 2003, p. 63-75.

ARTIGUE, M. Engenharia Didática. In: BRUN, J. Didática das Matemáticas. Tradução de:

Maria José Figueiredo. Lisboa: Instituto Piaget, 1996. Cap. 4. p. 193-217.

BORIN, J. Jogos e Resolução de Problemas: Uma Estratégia para as aulas de Matemática. São

Paulo: CAEM, IME-USP, 1995. v.6.

BOYER, C. B. História da Matemática. 9. ed. São Paulo: Editora Edgard Blücher, 1991.

______. Secretaria de Educação e Tecnologia do Ministério da Educação. Parâmetros

Curriculares Nacionais para o Ensino Fundamental. Brasília: SEMT/MEC, 1997.

______. Secretaria de Educação e Tecnologia do Ministério da Educação. Parâmetros

Curriculares Nacionais para o Ensino Médio. Brasília: SEMT/MEC, 1998.

BROLEZZI, A. C. A Tensão entre o Discreto e Contínuo na História da Matemática e no

Ensino da Matemática. 1996. Tese (Doutorado em Educação), Universidade de São Paulo, São

Paulo.

BROUSSEAU, G. A Teoria das Situações Didáticas e a Formação do Professor. Palestra. São

Paulo: PUC, 2006.

_______________. Fundamentos e Métodos da Didáctica da Matemática. In: BRUN, J. Didática

das Matemáticas. Tradução de: Maria José Figueiredo. Lisboa: Instituto Piaget, 1996a. Cap. 1. p.

35-113.

_______________. Os diferentes papéis do professor. In: PARRA, C.; SAIZ, I. Didática da

Matemática: Reflexões Psicopedagógicas. Tradução de: Juan Acuña Llorens. Porto Alegre:

ArtMed, 1996b. Cap. 4. p. 48-72.

CAMPBELL, S.; ZAZKIS, R. Toward Number Theory as a Conceptual Field. In: CAMPBELL,

S.; ZAZKIS, R. (org.). Learning and Teaching Number Theory. London: Ablex Publishing,

2002. Cap. 1. p. 1-14.

CHARNAY, R. Aprendendo com a resolução de problemas. In: PARRA, C.; SAIZ, I. Didática

da Matemática: Reflexões Psicopedagógicas. Tradução de: Juan Acuña Llorens. Porto Alegre:

ArtMed, 1996. Cap. 3. p. 36-47.

CHEVALLARD, Y.; BOSCH, M.; GASCÓN, J. Estudar Matemáticas: O elo perdido entre o

ensino e a aprendizagem. Tradução de: Daisy Vaz de Moraes. Porto Alegre: ArtMed, 2001.

COSTA, E. S. Equações Diofantinas Lineares e o Professor do Ensino Médio. 2007. 119 f.

Dissertação (Mestrado Acadêmico em Educação Matemática), Pontifícia Universidade Católica

de São Paulo, São Paulo.

COURANT, R.; ROBBINS, H. O que é Matemática? Tradução de: Adalberto da Silva Brito.

Rio de Janeiro: Ciência Moderna, 2000.

Page 68: Livro Engª Didática 2013

68

D’AMORE, B. Epistemologia, Didática da Matemática e Práticas de Ensino. In: Bolema, v.

20, n. 28, 2007. Disponível em: <www.dm.unibo.it/rsddm/it/articoli/damore>. Acesso em 17 jul.

2008.

DAVIS, C.; NUNES, M. M. R.; NUNES, C. A.A. Metacognição e Sucesso Escolar: Articulando

Teoria e Prática. Cadernos de Pesquisa, v. 35, n. 125, maio/ago. 2005. Disponível em:

<http://www.scielo.br/pdf/cp/v35n125/a1135125. pdf>. Acesso em: 14 out. 2008.

DOUADY, R. Didactique des Mathématiques. Encyclopedia Universalis, 1985, p.885-889.

FERRARI, F. B. Análise do modelo de orientação de pesquisa: um estudo de caso no

laboratório de ensino a distância da Universidade Federal de Santa Catarina. Tese (Doutorado em

Engenharia). Universidade Federal de Santa Catarina, Santa Catarina, 2006. Disponível em:

<http://teses.eps.ufsc.br/defesa/pdf/7128.pdf>.

FERRARI, P. L. Understanding Elementary Number Theory at the Undergarduate Level: A

Semiotic Approach. In: CAMPBELL, S.; ZAZKIS, R. (org.). Learning and Teaching Number

Theory. London: Ablex Publishing, 2002. Cap. 5. p. 97-115.

FIORENTINI, D.; MIORIM, M. Â.; MIGUEL, A. Contribuição para um repensar … a

Educação Algébrica Elementar. Pro-Posições. v. 4. n. 1. mar. 1993. p. 78-91.

FREITAS, J. L. M.. Situações Didáticas. In: MACHADO, S. D. A. (org.). Educação

Matemática: Uma introdução. 2 ed. São Paulo: Educ, 2002. p. 65-87.

GÁLVEZ, G. A Didática da Matemática. In: PARRA, C.; SAIZ, I. Didática da Matemática:

Reflexões Psicopedagógicas. Tradução de: Juan Acuña Llorens. Porto Alegre: ArtMed, 1996.

Cap. 2. p. 26-35.

JURKIEWICZ, S. Matemática Discreta e Ensino Médio. Programa de Engenharia de Produção da

UFRJ, 2004. Disponível em: <http://ensino.univates.br/~chat/Materiais /matdiscreta_medio .pdf>.

Acesso em: 18 mar. 2007.

LOPES JUNIOR, D. Função do 1° grau: Um estudo sobre seus Registros de Representação

Semiótica por Alunos da 1ª Série do Ensino Médio. 2005. Dissertação (Mestrado em Educação),

Universidade Federal de Mato Grosso do Sul, Campo Grande, MS.

LORENZATO, S, VILA, M. C. Século XXI: qual Matemática é recomendável? A posição do “The

National Council of Supervisors of Mathematics”. Revista Zetetiké, Campinas, Ano I, n. 1, p. 41-

49, 1993.

LÜDKE, M.; ANDRÉ, M. E. D. A. Pesquisa em Educação: Abordagens Qualitativas. São

Paulo: Editora Pedagógica e Universitária, 1986.

MACHADO, N. J. Epistemologia e Didática: As Concepções de conhecimento e inteligência e

a prática docente. São Paulo: Editora Cortez, 1995.

MACHADO, S. D. A. Engenharia Didática. In: MACHADO, S. D. A. (org.). Educação

Matemática: Uma introdução. 2 ed. São Paulo: Educ, 2002. p. 197-208.

MARANHÃO, M. C. S. A.; MACHADO, S. D. A.; COELHO, S. P. PROJETO: O que se

entende por Álgebra? Pontifícia Universidade Católica de São Paulo, 2005.

MENEZES, M. B; LESSA, M. M. L; MENEZES, A. P. A. B. A Emergência de Fenômenos

Didáticos em Sala de Aula: a Negociação de uma Seqüência Didática em Álgebra Inicial. 2006.

Disponível em: <www.rc.unesp.br/igce/matematica/bolema/.pdf>. Acesso em 15 jul. 2008.

Page 69: Livro Engª Didática 2013

69

OLIVEIRA, S. B. As Equações Diofantinas Lineares e o livro didático de Matemática para o

Ensino Médio. 2006. 102 f. Dissertação (Mestrado Acadêmico em Educação Matemática),

Pontifícia Universidade Católica de São Paulo, São Paulo.

PAIS, L. C. Introdução. In: Silvia D. A. (org.). Educação Matemática: Uma introdução. 2 ed.

São Paulo: Educ, 2002. p 9-12.

PARRA, C.; SAIZ, I. Didática da Matemática: Reflexões Psicopedagógicas. Tradução de: Juan

Acuña Llorens. Porto Alegre: ArtMed, 1996. Prefácio. p. 3-10.

Page 70: Livro Engª Didática 2013

70

Page 71: Livro Engª Didática 2013

ANEXO A: A Abordagem Algorítmica

Consideremos abaixo aspectos da resolução de uma Equação Diofantina Linear pela

abordagem algorítmica. Esta visa dar subsídios ao professor e não objetiva a inclusão no nível

básico, visto que não desejamos ensinar somente algoritmos, mas sim o desenvolvimento de

competências essenciais neste nível de ensino.

Inicialmente, propõe-se o Teorema 1 (T1), que se refere ao máximo divisor comum entre

dois números, que fornece uma condição necessária e suficiente para a existência de solução

inteira em uma Equação Diofantina Linear.

T1: Sejam a, b e c inteiros, com a e b não ambos nulos, e d = m.d.c. (a,b). A equação

diofantina cbYaX , nas incógnitas x e y inteiras, apresenta solução (ões) se e somente se d

divide c.

Uma condição equivalente a este teorema é apresentada pelo Corolário 1 (C1):

C1: Se m.d.c. (a,b) =1, ou seja, se a e b são primos entre si, então a equação cbyax

sempre tem soluções inteiras, qualquer que seja c .Z

A utilização do Corolário para a resolução de uma Equação Diofantina Linear do tipo

cbYaX , com ,,, Zcba onde m.d.c. (a,b) = 1, equivale a encontrar inteiros r e s tais que

1. bs ar

Isto equivale a utilizar o algoritmo de Euclides, ou algoritmo das divisões sucessivas, para

o cálculo do m.d.c. (a,b), ou seja, determinar o par ordenado (r,s). Podemos considerar esta

como sendo uma solução inteira particular da Equação Diofantina Linear c.bYaX

Denominando-se r = x0 e s = y0, então a solução particular (x0;y0) será utilizada para se

determinar as soluções da referida equação, de acordo com Teorema 2 (T2).

T2: Se (x0;y0) é uma solução particular da equação diofantina c,bYaX com

m.d.c.(a,b) = 1, então (x1,y1) será uma solução da equação se, e somente se, existir k Z tal que

b.k x x 01 e kayy .01 .

Existe uma resolução alternativa, também baseada no algoritmo de Euclides. Esta forma,

também utiliza a condição do termo c ser divisível pelo m.d.c. (a,b), porém prescinde de se

utilizar o Corolário 1. Este processo alternativo utiliza o Teorema 3.

Page 72: Livro Engª Didática 2013

72

T3: Sejam a, b e c inteiros tais que b)(a, m.d.c.d divide c. Escrevendo-se

sb, ra d com Z s r, , temos que d

csy

d

cr .;.x 00 é uma solução da equação

c.bYaX Toda outra solução é da forma: .,..;..x Ztcomtd

a

d

csyt

d

b

d

cr E

reciprocamente, para todo Zt os valores ‘x’ e ‘y’ dados pelas fórmulas acima são soluções

da equação.

Exemplificando, seja a seguinte situação: “Suponhamos que só existiam moedas de 15

escudos e de 7 escudos e que eu queria pagar (em escudos) uma certa quantia. Será que é

sempre possível? E se só existirem moedas de 12 e 30 escudos”? (UNIVERSIDADE DE

MINHO, 2003, p. 25).

O problema deixa em aberto a quantia total disponível A ser paga, que requer a

interpretação de que tal possibilidade recai no ato de se pagar 1 escudo. A percepção desta

característica permite situar este problema pela Equação Diofantina Linear ,1715 yx

sendo ‘x’ e ‘y’ as notas de 15 e 7 escudos a serem operadas.

Para a primeira pergunta, referente as moedas de 15 e 7 escudos, é sempre possível obter

uma solução com quantidades inteiras, pois na troca de moedas, o ato de pagar pode se

associar a operação de adição e o ato de receber a operação de subtração.

Uma primeira solução é dada por pagar uma moeda de 15 escudos e receber de volta

duas moedas de 7 escudos, pagando 1 escudo. A solução geral das infinitas soluções é dada

por:

Ztcomttd

bxx ,71.0 e .,152.0 Ztcomtt

d

ayy

No caso da segunda pergunta, referente à utilização de moedas de 12 e 30 escudos,

recaí-se na Equação Diofantina Linear ,63012 yx sendo ‘x’ e ‘y’ as notas de 12 e 30

escudos a serem operadas. Nesta nova situação, a possibilidade recai no fato da quantia de

escudos a ser paga poderá somente ser múltipla de 6, garantida pela condição de existência de

solução dada pelo m.d.c. dos coeficientes da Equação Diofantina Linear, ou seja, m.d.c. (12,

30) = 6.

Uma possível solução, encontrada por inspeção simples, é dada através do pagamento de

1 moeda de 30 escudos e o recebimento de duas moedas de 12 escudos, ou seja, x0 = -2 e y0 =

1. Assim, a solução geral é dada por:

Ztcomtttd

bxx ,52.

6

302.0

e .,.216

121.0 Ztcomttt

d

ayy