INTRODUÇÃO AO ESTUDO DE QUÍMICA

227
UNIDADES DE MEDIDA Observe as unidades do SI: A matéria, sendo um corpo ou uma substância e a energia podem ser avaliadas quantitativamente. Cada característica que possa ser quantificada constitui uma grandeza física. GRANDEZA FÍSICA Comprimento, massa, temperatura, tempo, volume, força, quantidade de matéria, etc. Essas grandezas são avaliadas pelas unidades de medida adotadas por convenção e cada unidade tem seu símbolo. Por exemplo, o m o símbolo do metro. O valor de uma grandeza pode ser expresso por um número e uma unidade de medida. Exemplo: 25ºC, 100m. SISTEMAS DE UNIDADES DE MEDIDA Um grupo de unidade é conhecido como sistema de unidades de medida. O mais utilizado é o SI (Sistema Internacional de Unidades). GRANDEZA NOME DA UNIDADE SÍMBOLO massa quilograma Kg comprimento metro m tempo segundo s corrente elétrica ampère A temperatura termodinâmica Kelvin K área metro quadrado pressão Pascal Pa força newton N Intensidade luminosa Candela cd Quantidade de matéria Mol mol

Transcript of INTRODUÇÃO AO ESTUDO DE QUÍMICA

Page 1: INTRODUÇÃO AO ESTUDO DE QUÍMICA

UNIDADES DE MEDIDAObserve as unidades do SI: A matéria, sendo um corpo ou uma substância e a energia podem ser avaliadas quantitativamente. Cada característica que possa ser quantificada constitui uma grandeza física.

GRANDEZA FÍSICA

Comprimento, massa, temperatura, tempo, volume, força, quantidade de matéria, etc.

Essas grandezas são avaliadas pelas unidades de medida adotadas por convenção e cada unidade tem seu símbolo. Por exemplo, o m o símbolo do metro.

O valor de uma grandeza pode ser expresso por um número e uma unidade de medida. Exemplo: 25ºC, 100m.

SISTEMAS DE UNIDADES DE MEDIDA

Um grupo de unidade é conhecido como sistema de unidades de medida. O mais utilizado é o SI (Sistema Internacional de Unidades).

GRANDEZA NOME DA UNIDADE SÍMBOLO

massa quilograma Kg

comprimento metro m

tempo segundo s

corrente elétrica ampère A

temperaturatermodinâmica

Kelvin K

área metro quadrado m²

pressão Pascal Pa

força newton N

Intensidadeluminosa

Candela cd

Quantidade de matéria

Mol mol

velocidade metros por segundo m/s

energia joule J

Page 2: INTRODUÇÃO AO ESTUDO DE QUÍMICA

tensão elétrica volt V

volume metro cúbico m³

potência watt W

 

Múltiplos e Submúltiplos

Às vezes é necessário usar unidades maiores oi menores do que as do SI.

Se a grandeza comprimento, onde a unidade no SI é o metro, tiver que ser expressa em unidades maiores usamos os seus múltiplos (quilômetro, hectômetro, decâmetro, etc.) e para utilizar unidades menores, usamos os submúltiplos (centímetro, decímetro, milímetro, etc.).

Observe a formação dos múltiplos e submúltiplos das unidades de medida mediante o emprego dos prefixos SI

Múltiplos:

PREFIXO SÍMBOLO SIGNIFICADO

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

quilo k 103

hecto h 10²

deca da 10

 

Submúltiplos

PREFIXO SÍMBOLO SIGNIFICADO

deci d 10-1

centi c 10-2

mili m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

            Ou a tabela mais simplificada:

km hm dam m dm cm mm

Page 3: INTRODUÇÃO AO ESTUDO DE QUÍMICA

10³ 10² 10 1 10-1 10-2 10-3

            Então:

1km = 1.10³1µm = 1.10-6 1cm = 1.10-21nm = 1.10-91mm = 1.10-3

            Se a grandeza for massa:

            1kg = 10³g1g = 10-3 kg1g = 10³ mg1mg = 10-3g1g = 106µg1 µg = 10-6

Para a grandeza volume, utilize-se muito a unidade de l (litro) e mL (mililitro), onde:

1l  = 1dm³1mL = 1cm³

Outras unidades:

Alguns países não utilizam unidades métricas. São as unidades do sistema inglês (milha, jarda, polegada, pé, libra e onça).

1milha = 1609m1polegada = 25,40mm = 2,540cm1jarda = 0,914m1onça= 28,35g1pé = 0,3048m1libra = 453,6g

MATÉRIA 

O QUE É MATÉRIA

Matéria é tudo o que tem massa e ocupa espaço.

Qualquer coisa que tenha existência física ou real é matéria. Tudo o que existe no universo conhecido manifesta-se como matéria ou energia.A matéria pode ser líquida, sólida ou gasosa. São exemplos de matéria: papel, madeira, ar, água, pedra. 

  

Page 4: INTRODUÇÃO AO ESTUDO DE QUÍMICA

SUBSTÂNCIA E MISTURA

Analisando a matéria qualitativamente (qualidade) chamamos a matéria de substância.

Substância – possui uma composição característica, determinada e um conjunto definido de propriedades.

Pode ser simples (formada por só um elemento químico) ou composta (formada por vários elementos químicos).

Exemplos de substância simples: ouro, mercúrio, ferro, zinco.Exemplos de substância composta: água, açúcar (sacarose), sal de cozinha (cloreto de sódio).

Mistura – são duas ou mais substâncias agrupadas, onde a composição é variável e suas propriedades também.

Exemplo de misturas: sangue, leite, ar, madeira, granito, água com açúcar.

CORPO E OBJETO

Analisando a matéria quantitativamente chamamos a matéria de Corpo.

Corpo - São quantidades limitadas de matéria. Como por exemplo: um bloco de gelo, uma barra de ouro.

Os corpos trabalhados e com certo uso são chamados de objetos. Uma barra de ouro (corpo) pode ser transformada em anel, brinco (objeto).

FENÔMENOS QUÍMICOS E FÍSICOS

Fenômeno é uma transformação da matéria. Pode ser química ou física.

Fenômeno Químico é uma transformação da matéria com alteração da sua composição. Exemplos: combustão de um gás, da madeira, formação da ferrugem, eletrólise da água.

Química – é a ciência que estuda os fenômenos químicos. Estuda as diferentes substâncias, suas transformações e como elas interagem e a energia envolvida.

Fenômenos Físicos - é a transformação da matéria sem alteração da sua composição.Exemplos: reflexão da luz, solidificação da água, ebulição do álcool etílico.

Física – é a ciência que estuda os fenômenos físicos. Estuda as propriedades da matéria e da energia, sem que haja alteração química.

Page 5: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

PROPRIEDADES DA MATÉRIA

O que define a matéria são suas propriedades.

Existem as propriedades gerais e as propriedades específicas.

As propriedades gerais são comuns para todo tipo de matéria e não permitem diferenciar uma da outra. São elas: massa, peso, inércia, elasticidade, compressibilidade, extensão, divisibilidade, impenetrabilidade.

Massa – medida da quantidade de matéria de um corpo. Determina a inércia e o peso.

Inércia – resistência que um corpo oferece a qualquer tentativa de variação do seu estado de movimento ou de repouso. O corpo que está em repouso, tende a ficar em repouso e o que está em movimento tende a ficar em movimento, com velocidade e direção constantes.

Peso – é a força gravitacional entre o corpo e a Terra.

Elasticidade – propriedade onde a matéria tem de retornar ao seu volume inicial após cessar a força que causa a compressão.

Compressibilidade – propriedade onde a matéria tem de reduzir seu volume quando submetida a certas pressões.

Extensão – propriedade onde a matéria tem de ocupar lugar no espaço.

Divisibilidade – a matéria pode ser dividida em porções cada vez menores. A menor porção da matéria é a molécula, que ainda conserva as suas propriedades.

Impenetrabilidade – dois corpos não podem ocupar o mesmo espaço ao mesmo tempo.

As propriedades específicas são próprias para cada tipo de matéria, diferenciando-as umas das outras. Podem ser classificadas em organolépticas, físicas e químicas.

As propriedades organolépticas podem ser percebidas pelos órgãos dos sentidos (olhos, nariz, língua). São elas: cor, brilho, odor e sabor.

As propriedades físicas são: ponto de fusão e ponto de ebulição, solidificação, liquefação, calor específico, densidade absoluta, propriedades magnéticas, maleabilidade, ductilidade, dureza e tenacidade.

Ponto de fusão e ebulição – são as temperaturas onde a matéria passa da fase sólida para a fase líquida e da fase líquida para a fase sólida, respectivamente.

Ponto de ebulição e de liquefação – são as temperaturas onde a matéria passa da fase líquida para a fase gasosa e da fase gasosa para a líquida, respectivamente.

Calor específico – é a quantidade de calor necessária para aumentar em 1 grau Celsius (ºC) a temperatura de 1grama de massa de qualquer substância. Pode ser medida em calorias.

Densidade absoluta – relação entre massa e volume de um corpo.

d = m : V

Page 6: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Propriedade magnética – capacidade que uma substância tem de atrair pedaços de ferro (Fe) e níquel (Ni).

Maleabilidade – é a propriedade que permite à matéria ser transformada em lâmina. Característica dos metais.

Ductibilidade – capacidade que a substância tem de ser transformada em fios. Característica dos metais.

Dureza – é determinada pela resistência que a superfície do material oferece ao risco por outro material. O diamante é o material que apresenta maior grau de dureza na natureza.

Tenacidade – é a resistência que os materiais oferecem ao choque mecânico, ou seja, ao impacto. Resiste ao forte impacto sem se quebrar.

As propriedades químicas são as responsáveis pelos tipos de transformação que cada substância é capaz de sofrer. Estes processos são as reações químicas. 

 

INTRODUÇÃO AO ESTUDO DE QUÍMICA / SISTEMAS MATERIAISO QUE É QUÍMICA

Química é a ciência que estuda a matéria e suas transformações. Estuda também a energia que está envolvida nessas transformações.

 

A química está muito ligada ao nosso dia a dia. Nos alimentos, medicamentos, construções, nas plantas, no vestuário, nos combustíveis. Tudo o que existe no universo é formado por química. No nosso organismo também há diversas transformações químicas. 

MATÉRIA E SUBSTÂNCIA

Matéria é tudo o que tem massa e ocupa espaço.

Qualquer coisa que tenha existência física ou real é matéria. Tudo o que existe no universo conhecido manifesta-se como matéria ou energia.

A matéria pode ser líquida, sólida ou gasosa. São exemplos de matéria: papel, madeira, ar, água, pedra. 

  

 Analisando a matéria qualitativamente (qualidade) chamamos a matéria de substância.

Substância – possui uma composição característica, determinada e um conjunto definido de propriedades.

Page 7: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Pode ser simples (formada por só um elemento químico) ou composta (formada por vários elementos químicos).

Exemplos de substância simples: ouro, mercúrio, ferro, zinco.

Exemplos de substância composta: água, açúcar (sacarose), sal de cozinha (cloreto de sódio).

As substâncias químicas podem ser classificadas de duas formas: quanto ao tipo de ligação que as forma e quanto ao número de elementos químicos que participam na ligação.

Classificação

- Quanto ao tipo de ligação

Quanto ao tipo de ligação as substâncias são classificadas em Iônicas,  Moleculares ou Metálicas. As substâncias iônicas têm pelo menos uma ligação iônica.

Exemplo: NaCl (cloreto de sódio)NaNO2 (nitrito de sódio)

As substâncias iônicas têm elevados pontos de ebulição e fusão; muitas delas, ao serem dissolvidas na água, têm os seus íons separados por ação da água num processo chamado dissociação iônica; conduzem corrente elétrica em solução aquosa.

Tabela com outros exemplos de substâncias iônicas:

SUBSTÂNCIA IÔNICA DESCRIÇÃO

SULFATO DE BÁRIO

USADO EM ESTUDOS DE RAIOS X NO TRATO GASTRINTESTINAL

ÓXIDO DE CÁLCIO CAL

CARBONATO DE CÁLCIO MÁRMORE

ÓXIDO FÉRRICO FERRUGEM

HIDRÓXIDO DE MAGNÉSIO ANTIÁCIDO

HIDRÓXIDO DE SÓDIO SODA CÁUSTICA

 

As substâncias moleculares são formadas exclusivamente por ligações covalentes. Em geral, tem baixa temperatura de ebulição e de fusão. A maioria delas não conduz eletricidade em solução aquosa. Formam moléculas.

Exemplos: água (H2O) amoníaco (NH3)

Tabela com outros exemplos de substâncias moleculares:

SUBSTÂNCIA MOLECULAR DESCRIÇÃO

MONÓXIDO DE CARBONO

GÁS VENENOSO RESULTADO DA COMBUSTÃO INCOMPLETA DA GASOLINA E DO ÁLCOOL

DIÓXIDO DE CARBONO

PRODUTO DA REAÇÃO DE COMBUSTÃO. ABSORVIDO PELAS PLANTAS PARA UTILIZAR NA

FOTOSSÍNTESE

ETANOL INGREDIENTE DE BEBIDAS ALCOÓLICAS E COMBUSTÍVEL

SACAROSE AÇÚCAR COMUM

 

As substâncias metálicas são formadas exclusivamente por ligações metálicas.Exemplos: Ferro (Fe), Prata (Ag), Ouro (Au), Alumínio (Al).

- Quanto ao número de elementos químicos

Page 8: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Quanto ao número de elementos químicos, as substâncias podem ser classificadas como simples ou compostas.

Substância Simples é aquela formada por um único elemento químico.Ex. Ferro (Fe), Alumínio (Al), gás hidrogênio (H2).

 

SUBSTÂNCIA SIMPLES – FERRO

Substância Composta é aquela formada por mais de um tipo de elemento químico.Ex. Cloreto de sódio (NaCl), Monóxido de Carbono (CO), Água (H2O).

SUBSTÂNCIA COMPOSTA – NaCl

 

ESTADOS FÍSICOS E ESTADO DE AGREGAÇÃO DAS MOLÉCULAS

Uma substância pode ser encontrada no estado físico líquido, sólido ou gasoso. Estes diferentes aspectos são chamados de fases de agregação e dependem da temperatura e pressão.

Para cada substância existe uma faixa de temperatura e pressão na qual ela mantém suas características como espécie, mudando apenas de fase de agregação.

Exemplo: a substância água, à temperatura inferior ou igual a 0°C, submetida à pressão de 1atm, se encontra na fase sólida; entre 0°C e 100°C, submetida à mesma pressão, se encontra na fase líquida e a 100°C, também submetida à mesma pressão, passará para a forma de vapor de água, ou seja, fase gasosa.

Fase gasosa

Nesta fase as partículas da substância estão com maior energia cinética. Elas ficam muito distantes umas das outras. Movem-se com muita velocidade e colidem entre si.

Um gás qualquer colocado dentro de uma garrafa de 1litro adquire a forma da garrafa e seu volume será de 1litro. Podemos dizer que uma substância na fase gasosa possui forma e volume variáveis.

Por que os gases são compressíveis? Sabendo que os gases (ao contrário dos líquidos e sólidos) não têm volume fixo, com um aumento de pressão podemos comprimi-los, ou reduzir o seu volume.

Os gases são compressíveis porque há muito espaço entre as partículas que os compõem.

Fase Líquida

Page 9: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Na fase líquida as partículas estão um pouco mais unidas em relação às partículas da fase gasosa, mas não totalmente unidas. Não há nenhum arranjo definido. A energia cinética é intermediária entre a fase gasosa e a fase sólida.

As partículas nos líquidos “deslizam” umas sobre as outras e se movem. Isto é o que proporciona a fluidez no líquido. Todos os líquidos podem fluir, e alguns mais que os outros. A água, por exemplo, flui com mais facilidade que o mel. Então dizemos que a água tem baixa viscosidade e que o mel tem alta viscosidade.

Os líquidos com baixa viscosidade oferecem menor resistência para fluir.

Fase Sólida

Na fase sólida, as partículas que formam a substância possuem a menor energia cinética; elas permanecem praticamente imóveis, unidas por forças de atração mútuas e dispostas, em geral, de acordo com um arranjo geométrico definido.

No caso das moléculas de água, esse arranjo é em forma de anéis, no qual sempre há um átomo de hidrogênio entre dois de oxigênio.

O arranjo das moléculas de água, na fase sólida, é o responsável pelo aumento do seu volume. Então, ao se congelar, a água se expande, formando o gelo que é menos denso que a água na fase líquida.

Um bloco de mármore, sobre uma mesa, muda de forma e volume com o passar do tempo? Podemos concluir que uma substância sólida possui forma e volume próprios.

MUDANÇA DE FASES E GRÁFICOS

No nosso dia a dia observamos que o gelo se derrete sob a ação do calor transformando-se em água. A água ferve sob calor mais intenso transformando-se em vapor de água. A água, neste caso, apresenta três estados: sólido, líquido e gasoso. São também chamado de estados físicos ou estado de agregação da matéria. Quando se transformam de um estado para o outro chamamos de Mudança de Estados Físicos. Cada transformação recebe um nome.

   sólida                          líquida                                 vapor        

    Fusão – mudança do estado sólido para o líquido.Vaporização – mudança do estado líquido para o gasoso.Liquefação ou Condensação – mudança do estado gasoso para o líquido.Solidificação – mudança do estado líquido para o sólido.Sublimação – mudança do estado sólido para o gasoso e vice-versa.

 

Page 10: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 Fonte: cienciaparavida.blogspot.com

 

A fusão obedece a algumas leis:

- uma determinada substância funde-se sempre na mesma temperatura, em determinada pressão. Essa temperatura é o ponto de fusão (PF) A água se funde a 0ºC e o ferro a 1500°C.

- durante a fusão, a temperatura permanece constante, ou seja, não é alterada.- durante a fusão, as substâncias aumentam de volume, exceto a água, ferro e a prata.

A temperatura em que uma substância começa a se solidificar é a mesma que ela começa a se fundir. O ponto de solidificação é o mesmo que o ponto de fusão.

A mudança da fase líquida para gasosa é dada de três maneiras. A evaporação é um processo mais lento que ocorre sem temperatura e pressão determinada. A ebulição é um processo rápido e depende de cada substância que possui a sua temperatura e pressão já determinada. É caracterizada pelo aparecimento de grande quantidade de bolhas.

A ebulição obedece a algumas leis: - as substância entram em ebulição sempre na mesma temperatura.- durante a ebulição, a temperatura segue inalterada.

Usamos o termo liquefação para indicar o aumento de pressão, transformando o sólido em gás.

A sublimação é um processo desencadeado a partir de uma temperatura e pressão determinadas e não passa pela fase líquida.

 

Gráfico das Mudanças de Estados Físicos:

 

Page 11: INTRODUÇÃO AO ESTUDO DE QUÍMICA

ALOTROPIA

Alotropia é a propriedade que alguns elementos químicos têm de formar uma ou mais substâncias simples diferentes.

São alótropos: carbono, oxigênio, fósforo e enxofre.

O carbono possui dois alótropos: o diamante e o grafite.

Essas duas substâncias parecem não ter nada em comum. O grafite é um sólido macio e cinzento, com fraco brilho metálico, conduz bem a eletricidade e calor e tem densidade 2,25g/mL. O diamante é sólido duro (o mais duro de todos), tem brilho adamantino, não conduz eletricidade nem calor e tem densidade 3,51g/mL. Mas as duas têm em comum a mesma composição química expressa pela fórmula Cn, sendo n um número muito grande e indeterminado.

A principal diferença está no arranjo cristalino dos átomos de carbono. No grafite formam-se hexágonos. Cada átomo de carbono é ligado a apenas três outros átomos de carbono, em lâminas planas, fracamente atraídas umas pelas outras. No diamante, cada átomo de carbono está ligado a quatro outros átomos também de carbono.

        

 

Page 12: INTRODUÇÃO AO ESTUDO DE QUÍMICA

   

O oxigênio tem dois alótropos, formando duas substâncias simples: o gás oxigênio (O2) e o gás ozônio (O3). 

O gás oxigênio é incolor e inodoro. Faz parte da atmosfera e é indispensável à vida dos seres aeróbicos. As plantas o devolvem para a atmosfera ao realizar a fotossíntese.

O gás ozônio é um gás azulado de cheiro forte e desagradável. Como agente bactericida, ele é usado na purificação da água nos chamados ozonizadores. O ozônio está presente na estratosfera, a mais ou menos 20Km a 30Km da superfície da terrestre. Ele forma uma camada que absorve parte dos raios ultravioletas (UV) do Sol, impedindo que eles se tornem prejudiciais aos organismos vivos.

            GÁS OXIGÊNIO                         GÁS OZÔNIO     

O fósforo tem duas formas alotrópicas principais: o fósforo branco e o fósforo vermelho.

O fósforo branco (P4) é um sólido branco com aspecto igual ao da cera. É muito reativo, tem densidade igual a 1,82g/mL e se funde a uma temperatura de 44°C e ferve a 280°C. Se aquecermos a 300°C na ausência de ar ele se transforma em fósforo vermelho, que é mais estável (menos reativo). 

O fósforo vermelho é um pó vermelho-escuro, amorfo (que não tem estrutura cristalina). Tem densidade igual a 2,38g/mL, ponto de fusão 590°C. Cada grão de pó desta substância é formado por milhões de moléculas P4, unidas umas às outras originando uma molécula gigante ( P∞).

O enxofre possui dois alótropos principais: o enxofre ortorrômbico ou simplesmente rômbico e o enxofre monocíclico. As duas formas são formadas por moléculas em forma de anel com oito átomos de enxofre (S8). A diferença está no arranjo molecular no espaço. Produzem cristais diferentes.

Os cristais rômbicos têm densidade 2,08g/mL e seu ponto de fusão é 112,8°C. Os monocíclicos têm densidade igual a 1,96g/mL e o ponto de fusão é 119,2°C.

Page 13: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Ambos alótropos do enxofre fervem a uma temperatura de 445°C. É um pó amarelo, inodoro, insolúvel em água e muito solúvel em sulfeto de carbono (CS2).

Mistura– são duas ou mais substâncias agrupadas, onde a composição é variável e suas propriedades também.

Exemplo de misturas: sangue, leite, ar, madeira, granito, água com açúcar.

Algumas misturas são tão importantes que têm nome próprio. São exemplos:- gasolina – mistura de hidrocarbonetos, que são substâncias formadas por hidrogênio e carbono.- ar atmosférico – mistura de 78% de nitrogênio, 21% de oxigênio, 1% de argônio e mais outros gases, como o gás carbônico.- álcool hidratado – mistura de 96% de álcool etílico mais 4% de água.

Sistema – é uma parte do universo que se deseja observar, analisar. Por exemplo: um tubo de ensaio com água, um pedaço de ferro, uma mistura de água e gasolina, etc.

Fases – é o aspecto visual uniforme.

As misturas podem conter uma ou mais fases.

Mistura Homogênea – é formada por apenas uma fase. Não se consegue diferencias a substância.Exemplos: - água + sal- água + álcool etílico- água + acetona- água + açúcar

 Água + sais minerais

Mistura Heterogênea – é formada por duas ou mais fases. As substâncias podem ser diferenciadas a olho nu ou pelo microscópio. 

Exemplos: - água + óleo - granito- água + enxofre- água + areia + óleo

Page 14: INTRODUÇÃO AO ESTUDO DE QUÍMICA

água + óleo

Os sistemas monofásicos são as misturas homogêneas.Os sistemas polifásicos são as misturas heterogêneas. Os sistemas homogêneos, quando formados por duas ou mais substâncias miscíveis (que se misturam) umas nas outras chamamos de soluções.São exemplos de soluções: água salgada, vinagre, álcool hidratado.Os sistemas heterogêneos podem ser formados por uma única substância, porém em várias fases de agregação (estados físicos).

Exemplo: água- líquida - sólida (gelo)- vapor

SEPARAÇÃO DE MISTURAS

Os componentes das misturas podem ser separados. Há algumas técnicas para realizar a separação de misturas. O tipo de separação depende do tipo de mistura.Alguns dos métodos de separação de mistura são: catação, levigação, dissolução ou flotação, peneiração, separação magnética, dissolução fracionada, decantação e sedimentação, centrifugação, filtração, evaporação, destilação simples e fracionada e fusão fracionada.

Separação de Sólidos

Para separar sólidos podemos utilizar o método da catação, levigação, flotação ou dissolução, peneiração, separação magnética, ventilação e dissolução fracionada.

- CATAÇÃO – consiste basicamente em recolher com as mãos ou uma pinça um dos componentes da mistura.

Exemplo: separar feijão das impurezas antes de cozinhá-los.

- LEVIGAÇÃO – separa substâncias mais densas das menos densas usando água corrente. 

Exemplo: processo usado por garimpeiros para separar ouro (mais denso) da areia (menos densa).

- DISSOLUÇÃO OU FLOCULAÇÃO – consiste em dissolver a mistura em solvente com densidade intermediária entre as densidades dos componentes das misturas.

Exemplo: serragem + areia Adiciona-se água na mistura. A areia fica no fundo e a serragem flutua na água.

- PENEIRAÇÃO – separa sólidos maiores de sólidos menores ou ainda sólidos em suspensão em líquidos.

Exemplo: os pedreiros usam esta técnica para separar a areia mais fina de pedrinhas; para separar a polpa de uma fruta das suas sementes, como o maracujá.

Este processo também é chamado de tamização.

Page 15: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- SEPARAÇÃO MAGNÉTICA – usado quando um dos componentes da mistura é um material magnético. Com um ímã ou eletroímã, o material é retirado. 

Exemplo: limalha de ferro + enxofre; areia + ferro

- VENTILAÇÃO – usado para separar dois componentes sólidos com densidades diferentes. É aplicado um jato de ar sobre a mistura.

Exemplo: separar o amendoim torrado da sua casca já solta; arroz + palha.

- DISSOLUÇÃO FRACIONADA - consiste em separar dois componentes sólidos utilizando um líquido que dissolva apenas um deles. 

Exemplo: sal + areia Dissolve-se o sal em água. A areia não se dissolve na água. Pode-se filtrar a mistura separando a areia, que fica retida no filtro da água salgada. Pode-se evaporar a água, separando a água do sal.

Separação de Sólidos e Líquidos

Para separar misturas de sólidos e líquidos podemos utilizar o método da decantação e sedimentação, centrifugação, filtração e evaporação.

- SEDIMENTAÇÃO – consiste em deixar a mistura em repouso até o sólido se depositar no fundo do recipiente. 

Exemplo: água + areia

 - DECANTAÇÃO – é a remoção da parte líquida, virando cuidadosamente o recipiente. Pode-se utilizar um funil de decantação para remover um dos componentes da mistura. 

Page 16: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Exemplo: água + óleo; água + areia

- CENTRIFUGAÇÃO – é o processo de aceleração da sedimentação. Utiliza-se um aparelho chamada centrífuga ou centrifugador, que pode ser elétrico ou manual. 

Exemplo: Para separar a água com barro.

      

- FILTRAÇÃO – processo mecânico que serve para separar mistura sólida dispersa com um líquido ou gás. Utiliza-se uma superfície porosa (filtro) para reter o sólido e deixar passar o líquido. O filtro usado é um papel-filtro.

 

Page 17: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O papel-filtro dobrado é usado quando o produto que mais interessa é o líquido. A filtração é mais lenta.

O papel-filtro pregueado produz uma filtração mais rápida e é utilizada quando a parte que mais interessa é a sólida.

Exemplo: água + areia

- EVAPORAÇÃO – consiste em evaporar o líquido que está misturado com um sólido.

Exemplo: água + sal de cozinha (cloreto de sódio).

Nas salinas, obtém-se o sal de cozinha por este processo. Na realidade, as evaporações resultam em sal grosso, que se for purificado torna-se o sal refinado (sal de cozinha), que é uma mistura de cloreto de sódio e outras substâncias que são adicionadas pela indústria.

Page 18: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Separação de Misturas Homogêneas

Para separar os componentes das substâncias de misturas homogêneas usamos os métodos chamados de fracionamento, que se baseiam na constância da temperatura nas mudanças de estados físicos. São eles: destilação e fusão.

- DESTILAÇÃO – consiste em separar líquidos e sólidos com pontos de ebulição diferentes. Os líquidos devem ser miscíveis entre si. 

Exemplo: água + álcool etílico; água + sal de cozinha

O ponto de ebulição da água é 100°C e o ponto de ebulição do álcool etílico é 78°C. Se aquecermos esta mistura, o álcool ferve primeiro. No condensador, o vapor do álcool é resfriado e transformado em álcool líquido, passando para outro recipiente, que pode ser um frasco coletor, um erlenmeyer ou um copo de béquer. E a água permanece no recipiente anterior, separando-se assim do álcool. 

Para essa técnica, usa-se o aparelho chamado destilador, que é um conjunto de vidrarias do laboratório químico. Utiliza-se: termômetro, balão de destilação, haste metálica ou suporte, bico de Bunsen, condensador, mangueiras, agarradores e frasco coletor.

Este método é a chamada Destilação Simples.

Nas indústrias, principalmente de petróleo, usa-se a destilação fracionada para separar misturas de dois ou mais líquidos. As torres de separação de petróleo fazem a sua divisão produzindo gasolina, óleo diesel, gás natural, querosene, piche. 

As substâncias devem conter pontos de ebulição diferentes, mas com valores próximos uns aos outros.

Fonte: http://www.infoescola.com/Modules/Articles/Images/destilacao-simples.gif

 

- FUSÃO FRACIONADA – separa componentes de misturas homogêneas de vários sólidos. Derrete-se a substância sólida até o seu ponto de fusão, separando-se das demais substâncias.

Exemplo: mistura sólida entre estanho e chumbo. O estanho funde-se a 231°C e o chumbo, a 327°C. Então, funde-se primeiramente o estanho.

Page 19: INTRODUÇÃO AO ESTUDO DE QUÍMICA

INTRODUÇÃO À QUÍMICA/CONSTITUIÇÃO DA MATÉRIAÁTOMO

Toda matéria é formada por partículas muito pequenas. Essas partículas chamamos de átomo.

ÁTOMO – É uma partícula indivisível.

Há cerca de 2,5 mil anos, o filósofo grego Demócrito disse que se dividirmos a matéria em pedacinhos cada vez menores, chegaremos a grãozinhos indivisíveis, que são os átomos (a = não e tomo = parte). Em 1897, o físico inglês Joseph Thompson (1856-1940) descobriu que os átomos eram divisíveis: lá dentro havia o elétron, partícula com carga elétrica negativa.

Em 1911, o neozelandês Ernest Rutherford (1871-1937) mostrou que os átomos tinham uma região central compacta chamada núcleo e que lá dentro encontravam-se os prótons, partículas com carga positiva.

Fonte: http://static.hsw.com.br/gif/atom-rutherford.jpg

 

Em 1932, o físico inglês James Chadwick (1891-1974) descobriu o nêutron, partícula neutra, companheira do próton no núcleo atômico.

No início dos anos 60, os cientistas já achavam que prótons e nêutrons eram formados por partículas ainda menores. Murray Gell-Mann, nascido em 1929 sugere a existência dos quarks, que seriam essas partículas menores. Os quarks são mantidos juntos por outras partículas denominadas gluons.

Acreditava-se, na Antiguidade, que os átomos eram indivisíveis e maciços. No século XX ficou provado que os átomos são formados por outras partículas. São três partículas fundamentais: elétrons, prótons e nêutrons.

O átomo se divide em duas partes: o núcleo e a eletrosfera. Os prótons e nêutrons ficam no núcleo do átomo e os elétrons ficam na eletrosfera.

Fonte: http://www.infoescola.com/Modules/Articles/Images/full-1-3d6aba4843.jpg

Page 20: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Essas partículas são caracterizadas pelas suas cargas elétricas. O elétron tem carga -1 e massa desprezível (sendo aproximadamente 1/1836 a massa do próton). A massa do próton seria então igual a 1 e a carga +1. O nêutron não possui carga elétrica e sua massa é igual a do próton.

Observe a tabela entre as relações de massa das partículas fundamentais do átomo. Adota-se como padrão o próton com massa igual a 1:

PARTÍCULA MASSA CARGA ELÉTRICAp 1 +1

n 1 0

é 1/1836 -1

Note que a massa do elétron é 1.836 vezes menor que a do próton, por isso desconsidera-se a sua massa.

Tamanho do Átomo

O tamanho do átomo é medido em angstrons (Å).

1 angstron = 10-10metros

O diâmetro médio do núcleo de um átomo fica entre 10 -4 Å e 10-5 Å e o da eletrosfera é de 1Å. A eletrosfera de um átomo é entre 10000 e 100000 vezes maior que o seu núcleo. Essa diferença de tamanho nos leva a admitir que o átomo é quase feito de espaço vazio.

Em termos práticos, se o núcleo tivesse o tamanho de uma bola de tênis, o primeiro elétron estaria a uma distância de 1 km.

 

Camadas Eletrônicas / Níveis de Energia

Na eletrosfera, os elétrons giram em torno do núcleo ocupando o que chamamos de NÍVEIS DE ENERGIA ou CAMADAS ELETRÔNICAS. Cada nível possui um número inteiro de 1 a 7 ou pelas letras maiúsculas K,L,M,N,O,P,Q. Nas camadas, os elétrons se movem e quando passam de uma camada para outra absorvem ou liberam energia.

Quando um elétron salta para uma camada mais interna ele libera energia.Quando um elétron salta para uma camada mais externa ele absorve energia.A energia emitida é em forma de luz. Chamamos essa energia de “quantum” de energia. O “quantum” também é chamado de fóton.

Cada camada eletrônica pode conter certo número máximo de elétrons.

Observe a tabela:

NOME DA CAMADA NÍVEL Nº MÁX. DE É NA CAMADAK 1 2

L 2 8

M 3 18

N 4 32

O 5 32

P 6 18

Q 7 8

O número de camadas ou níveis de energia varia de acordo com o número de elétrons de cada átomo.

Page 21: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Em todo átomo (exceto o paládio – Pd) o número máximo de elétrons em uma camada K só suporta 2 elétrons.

A penúltima camada deve ter no máximo 18 elétrons.

Para os átomos com mais de 3 camadas, enquanto a penúltima não estiver com 18 elétrons, a última terá no máximo 2 elétrons.

Observe algumas distribuições:

H (hidrogênio) nº de é = 1       K=1

K (potássio) nº de é = 19         K = 2   L=8   M = 8  N = 1

Be (berílio) nº de é = 4             K = 2   L = 2

Zr (zircônio) nº de é = 40         K = 2    L = 8  M = 18   N = 10   O = 2

Número Atômico (Z)

Cada átomo possui o seu número atômico. Ele indica o número de elétrons e prótons do átomo. Se ele estiver com sua carga elétrica zero ele está neutro, ou seja, é um átomo neutro.

O número atômico é indicado pela letra (Z).

Número Atômico é o número de prótons e elétrons (átomo neutro) que existem no átomo.Exemplos:Na (sódio) Z=11He (hélio) Z=2V (vanádio) Z=23Br (bromo) Z=84Po (polônio) Z=84

Pode-se dizer que o número atômico é igual ao número de prótons do núcleo. Se o átomo for neutro, é igual ao número de elétrons também.

Z = p = é

Número de Massa (A)

Número de massa é o peso do átomo. É a soma do número de prótons (Z) e de nêutrons (n) que existem num átomo.

A = p + n       ou      A = Z + n

É este número que informa se o átomo é mais “leve” ou mais “pesado”. São os prótons e nêutrons quem dão a massa do átomo, já que os elétrons são muito pequenos, com massa desprezível em relação a estas partículas.

Exemplos:Na (sódio) A = 23Se o Na tem A = 23 e Z = 11, qual o número de n (nêutrons)?

A = 23Z = p = é     

A = p + n23 = 11 + nn = 12 

A partir do Z, temos o número de prótons e de elétrons do átomo. A partir da fórmula A = p + n, isolamos o n para achá-lo, substituindo o A e o p na fórmula. Então podemos utilizar também a fórmula:

n = A – p

Observe o modelo:

a) K (potássio) A = 39Z = 19p = 19é = 19n = 20

Page 22: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Encontramos estes valores na Tabela Periódica dos Elementos. Toda tabela possui a sua legenda informando o número atômico e o número de massa. Aplicando a fórmula correta, conseguimos encontrar o valor de nêutrons.

ÍON

O átomo que possui p = é, ou seja, o número de prótons igual ao número de elétrons é eletricamente neutro.

Átomo neutro = p = é

Se o átomo tiver elétrons a mais ou a menos, então não será mais um átomo neutro. Este átomo passará a ser chamado de ÍON.

Íon = p ≠ é

Íon é um átomo que perde ou ganha elétrons. Ele pode ficar negativo ou positivo. Então:Íon positivo (+) doa elétrons – íon cátion. Ex. Na+

Íon negativo (-) recebe elétrons – íon ânion. Ex. Cl-

Quando um cátion doa elétrons, ele fica positivo.Quando um ânion ganha elétrons, ele fica negativo.

ISÓTOPO, ISÓBARO E ISÓTONO

Se observarmos o número atômico, números de massa e de nêutrons de diferentes átomos podem encontrar conjuntos de átomos com outro número igual.

Os isótopos são átomos que possuem o mesmo número de prótons (p) e diferente número de massa (A).

Exemplo: o hidrogênio (H)

¹H                   ²H              ³H¹                      ¹                ¹hidrogênio     deutério    trítioZ = 1             Z = 1         Z = 1A = 1            A = 2         A = 3

Este fenômeno é muito comum na natureza. Quase todos os elementos químicos naturais são formados por mistura de isótopos.

Os isóbaros são átomos que possuem o mesmo número de massa (A) e diferente número de prótons.Exemplo:

40K                        40Ca19                            20

A = 40               A = 40Z = 19               Z = 20

São átomos de elementos químicos diferentes, mas que tem o mesmo número de massa.

Os isótonos são átomos que possuem o mesmo número de nêutrons e com diferentes números de prótons e de massa. São átomos de diferentes elementos químicos.

Exemplo:

A = 37Cl                  A = 40CaZ = 17                     Z = 20__________           __________n = 20                        n = 20

Os isótonos têm propriedades químicas e físicas diferentes.

ELEMENTOS QUÍMICOS E SÍMBOLOS

Elemento Químico é o conjunto de todos os átomos com o mesmo número atômico (Z).

O número atômico (Z) identifica o elemento. Esta proposta foi feita por Moseley, em 1914.

Page 23: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Cada elemento químico é representado por um símbolo. Em geral, o símbolo do elemento deve ser a letra inicial do seu nome, em letra de imprensa maiúscula.

H – hidrogênioF – flúorO – oxigênioI – iodoC – carbonoN – nitrogênioB – boro

Outros são seguidos pela segunda letra do elemento.Co – cobaltoCr – crômioCu – cobreCs – césioCa – cálcioCl – cloroCd – cádmio

Outros têm o seu símbolo derivado do seu nome em latim.Na (natrium) – sódioK (kalium) – potássioS (sulfur) – enxofreP (phosphoros) – fósforoAg (argentum) – prataAu (aurum) – ouroCu (cuprum) – cobreSn (stannum) – estanhoPb (plumbum) – chumboHg (hydrargyrium) - mercúrio

O símbolo representa o átomo do elemento químico.

A representação (notação) é feita colocando o símbolo do elemento, o número atômico Z à esquerda e abaixo do símbolo e o número de massa (A) à esquerda ou direita acima do símbolo.

Veja o modelo:

AX             XA

Z             Z   

Observe os exemplos:

40Ca     ou     Ca40                    56Fe          ou      Fe56

                        20                20                         27                      27                           

 

MASSA ATÔMICA

A massa atômica do átomo é expressa em u. Indicam quantas vezes a massa do átomo é maior que 1/12 da massa do átomo de carbono (A =12).

Quando medimos uma grandeza, comparamos com outra como referência. Para medir a massa do nosso corpo utilizamos o quilograma (kg) como unidade padrão. Se a pessoa tem massa igual a 80kg significa que a sua massa é 80 vezes maior que a massa de 1 kg.

A Química, na prática, não se interessa em saber a massa de um átomo isolado, mas para a ciência, é importante saber a massa dos átomos comparados com a massa de outro átomo tomado como padrão. O carbono então foi o elemento que tem sua massa padronizada (A =12). 

A massa de um átomo é expressa empregando uma unidade muito pequena chamada unidade de massa atômica (u). Antigamente, usava-se a sigla u.m.a para esta unidade.

Uma unidade de massa atômica (u) é 1/12 da massa de um átomo de carbono (A=12). Isso equivale estabelecer o valor 12u como sendo a massa de um átomo de carbono (A=12).

Massa Atômica é a massa do átomo expressa em u. Indicam quantas vezes a massa do átomo é maior que 1/12 da massa do átomo de carbono (A=12).

Quando se afirma que a massa de um elemento X é igual a 24u, significa que a sua massa é 24 vezes maior que a massa de 1/12 do átomo do carbono (A=12). Em outras palavras, a massa atômica do elemento X é duas vezes a massa atômica do carbono.

Page 24: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Tabela com alguns elementos químicos e seus números atômicos e massas atômicas:

ELEMENTO SÍMBOLO NÚMERO ATÔMICO MASSA ATÔMICA

ENXOFRE S 16 32,06

OXIGÊNIO O 8 16,00

SÓDIO Na 11 23,00

ALUMÍNIO Al 13 26,98154

CÁLCIO Ca 20 40,08

HÉLIO He 2 4,00260

IODO I 53 126,9045

COBRE Cu 29 63,55

 

Massa Atômica e seus Isótopos

O número atômico e o número de massa sempre são números inteiros, mas com a massa atômica isso não acontece. 

A massa atômica de um elemento químico é baseada na média ponderada das massas de seus isótopos em unidades de massa atômica (u). Isto quer dizer que há vários isótopos na natureza e é feito um cálculo, uma média ponderada, que leva em consideração as abundâncias relativas desses isótopos, para ser usado como a massa atômica.

Então, a massa atômica é uma média dos diversos isótopos que existem na natureza sendo levada em consideração a sua quantidade existente.

Exemplo: Na natureza há dois tipos de cobre (com massas diferentes).69,09% de cobre (A=63), com massa atômica = 62,93u30,91% de cobre (A=65), com massa atômica = 64,93u

Qual massa destes cobres é tida como referência e colocada na Tabela Periódica?Devemos fazer a média ponderada destes isótopos:

 

(69,09 x 62,93)+(30,91 x 64,93)            _____________________________ = 63,55u

100

 

MODELOS ATÔMICOSDurante muito tempo, a constituição da matéria gerava curiosidade no homem. Desde a Antiguidade, filósofos tentavam descobrir como a matéria é formada.

Dois filósofos gregos, Demócrito e Leucipo, sugeriram que toda a matéria era formada por pequenos corpos indivisíveis. Chamaram estes corpos de átomo, que em grego a significa não e tomos significa divisível.

Demócrito, pai da atomística

Page 25: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Então, átomo era a última partícula que podia dividida.

Nos anos 500 e 1500 da era cristã, surgiram entre os árabes e europeus, os alquimistas. Seus trabalhos eram obter o elixir da longa vida, para que o ser humano se tornasse imortal. Era a pedra filosofal, capaz de tornar qualquer metal em ouro.

 

No século XVI, surge a Iatroquímica, que Ra uma doutrina médica que atribuía a causa química para tudo o que eu se passava no organismo.

Mais tarde, no século XVIII, nasce a idéia de química com os cientistas que estudaram as Leis Ponderais, Lavoisier e Proust.

 

O que é Modelo Atômico?

Os modelos atômicos são teoria baseadas na experimentação feita por cientistas para explicar como é o átomo.

Os modelos não existem na natureza. São apenas explicações para mostrar o porquê de um fenômeno. Muitos cientistas desenvolveram suas teorias. Com o passar dos tempos, os modelos foram evoluindo até chegar ao modelo atual.

MODELO DE DALTON

 O átomo de John Dalton era uma bolinha maciça e indivisível. 

Para ele, a matéria era formada por partículas que não podiam ser divididas chamadas de átomos. Seu trabalho era baseado nas Leis Ponderais de Proust e Lavoisier.

 

Dalton utilizava círculos de mesmo diâmetro com inscrições para representar os átomos dos diferentes elementos químicos. Assim, ele estabeleceu os postulados a seguir:

Page 26: INTRODUÇÃO AO ESTUDO DE QUÍMICA

I) Todas as substâncias são constituídas de minúsculas partículas, denominadas átomos, que não podem ser criados e nem destruídos. Nas substâncias, eles se encontram unidos por forças de atração mútua.

II) Cada substância é constituída de um único tipo de átomo. Substância simples ou elementos são formados de “átomos simples”, que são indivisíveis. Substâncias compostas são formadas por “átomos compostos”, capazes de se decompor, durante as reações químicas em “átomos simples”.

III) Todos os átomos de uma mesma substância são idênticos na forma, no tamanho, na massa e nas demais propriedades; átomos de substâncias diferentes possuem forma, tamanho, massa propriedades diferentes. A massa de um ”átomo composto” é igual à soma das massas de todos os “átomos simples” componentes.

IV) Os “átomos compostos” são formados por um pequeno número de “átomos simples”.

MODELO DE THOMPSON

Em 1903, o físico Joseph John Thomson propôs um novo modelo atômico, baseado nas experiências dos raios catódicos, o qual chamou de elétrons.

Para Thomson, o átomo era uma esfera de carga elétrica positiva “recheada” de elétrons de carga negativa. Esse modelo ficou conhecido como “pudim de passas”. Este modelo derruba a idéia de que o átomo é indivisível e introduz a natureza elétrica da matéria.

Fonte www.portaltosabendo.com.br

O modelo de Thomson explica alguns fenômenos como a corrente elétrica, eletrização por atrito, formação de íons e as descargas elétricas em gases.

MODELO DE RUTHERFORD

Em 1911, o neozelandês Ernest Rutherford realizou uma importante experiência.

          

Ele pegou um pedaço do metal polônio (Po) que emite partículas alfa (α) e colocou em uma caixa de chumbo com um pequeno orifício. As partículas alfa atravessavam outras placas de chumbo através de orifícios no seu centro. Depois atravessavam um lâmina muito fina (10-4mm) de ouro (Au).

Page 27: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Rutherford adaptou um anteparo móvel com sulfeto de zinco (fluorescente) para registrar o caminho percorrido pelas partículas.

O físico observou que a maioria das partículas alfa atravessava a lâmina de ouro e apenas algumas desviavam até mesmo retrocediam.

A partir destes resultados, concluiu que o átomo não era uma esfera positiva com elétrons mergulhados nesta esfera. Concluiu que:

- o átomo é um enorme vazio;- o átomo tem um núcleo muito pequeno;- o átomo tem núcleo positivo (+), já que partículas alfa desviavam algumas vezes;- os elétrons estão ao redor do núcleo (na eletrosfera) para equilibrar as cargas positivas.

O modelo atômico de Rutherford sugeriu então, um átomo com órbitas circulares dos elétrons em volta do núcleo. Comparou o átomo com o Sistema Solar, onde os elétrons seriam os planetas e o núcleo seria o Sol.

Hoje, sabe-se que o átomo é 10.000 a 100.000 vezes maior que seu núcleo. Numa escala macroscópica, pode-se comparar um átomo com um estádio de futebol.  Se o átomo fosse o estádio do Maracanã, o seu núcleo seria uma formiga no centro do campo. Então o átomo é enorme em relação ao seu núcleo.

Porém, o átomo de Rutherford tem algumas falhas. Se o núcleo atômico é formado por partículas positivas, por que essas partículas não se repelem e o núcleo não desmorona? Se as partículas são de cargas opostas, por que elas não se atraem? Os elétrons iriam perder energia gradualmente percorrendo uma espiral em direção ao núcleo, e à medida que isso acontecesse, emitiriam energia na forma de luz. Mas como os elétrons ficam em movimento ao redor do núcleo sem que os átomos entrem em colapso?

Estas questões foram respondidas em 1932 por James Chadwick. Ele observou que o núcleo do berílio (Be) radioativo emitia partículas sem carga elétrica e com massa igual à dos prótons (+). Chamou esta partícula de nêutrons. Surgia então, a terceira partícula subatômica.

Agora sabemos que no núcleo do átomo há prótons e nêutrons e na eletrosfera há elétrons.

Então se estabeleceu esta relação:

PARTÍCULA MASSA CARGA ELÉTRICA

p 1 +1

n 1 0

é 1/1836 -1

 

Na tabela acima, pode-se verificar que o elétron é 1.836 vezes menor que a massa de um próton.

Page 28: INTRODUÇÃO AO ESTUDO DE QUÍMICA

MODELO DE BOHR

O modelo do físico dinamarquês Niels Bohr tentava dar continuidade ao trabalho feito por Rutherford. Para explicar os erros do modelo anterior, Bohr sugeriu que o átomo possui energia quantizada. Cada elétron só pode ter determinada quantidade de energia, por isso ele é quantizada.

O modelo de Bohr representa os níveis de energia. Cada elétron possui a sua energia. É comparado às orbitas dos planetas do Sistema Solar, onde cada elétron possui a sua própria órbita e com quantidades de energia já determinadas. 

As leis da física clássica não se enquadram neste modelo. Quando um elétron salta de um nível menor para um nível mais elevado, ele absorve energia e quando ele retorna para um nível menor, o elétron emite uma radiação em forma de luz.

Bohr organizou os elétrons em camadas ou níveis de energia.

Cada camada possui um nome e deve ter um número máximo de elétron.

Existem sete camadas ou níveis de energia ao redor do núcleo: K, L, M, N, O, P, Q. 

Observe a tabela que mostra o nome das camadas, o seu número quântico e o número máximo de elétrons em cada uma destas camadas:

N° QUÂNTICO N ° MÁXIMO DE é

K 1 2

L 2 8

M 3 18

N 4 32

O 5 32

P 6 18

Q 7 2

MODELO DE SCHRODINGER

Erwin Schrodinger foi um importante físico austríaco que desenvolveu uma importante equação para o campo da Teoria Quântica, a Equação de Schrodinger. 

Page 29: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O físico tentou descrever o movimento de onda, já que Louis De Broglie havia afirmado que a matéria se comportava como onda e como partícula (comportamento dualístico). Chegou então à famosa equação que tomou seu nome, vindo a ser a fórmula básica da mecânica ondulatória, e valendo-lhe a obtenção do prêmio Nobel, juntamente com o físico inglês Paul Dirac, em 1933.

 

 

MODELO DE BROGLIE

O cientista francês Louis de Broglie estudou a natureza das ondas dos elétrons.

Pare ele, a matéria é formada ora por corpúsculos, as partículas ora como onda. Esta é a teoria da dualidade. Suas teorias foram baseadas nos estudos de Albert Einstein e também de Max Planck. 

Ele introduz o conceito da mecânica ondulatória. Neste momento o elétron é visto como uma partícula-onda.

PRINCÍPIO DA INCERTEZA DE HEISENBERG

Segundo Werner Heisenberg, para encontrar a posição correta de um elétron, é necessário que ele interaja com algum instrumento de medida, como por exemplo, uma radiação. A radiação deve ter um comprimento de onda na ordem da incerteza com que se quer determinar esta posição.

Quanto menor for o comprimento de onda, maior é a precisão do local onde está o elétron. 

Quando se consegue descobrir o local provável onde está o elétron, este elétron já não estará neste local.

Page 30: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Modelo Atual

Segundo Heisenberg, é difícil se prever a posição correta de um elétron na sua eletrosfera. Schrodinger em 1926 calculou a região mais provável onde o elétron possa estar. Para essa região deu o nome de orbital.

Orbital – região do espaço que está ao redor do núcleo, onde há máxima probabilidade de se encontrar um elétron.

É importante ressaltar que não se pode ver um átomo isolado exatamente como foi descrito nos modelos atômicos. Algumas técnicas utilizadas por supercomputadores mostram manchas coloridas, mostrando a localização dos átomos de um determinado material. Essas imagens são obtidas por um microscópio de tunelamento que pode aumentar até 28 milhões de vezes. 

De acordo com o modelo de Rutherford-Bohr, o átomo apresenta níveis de energia ou camadas energéticas, onde cada nível possui um número máximo de elétrons. O número do nível representa o número quântico principal (n). 

Cada nível está dividido em subníveis de energia s, p, d, f. Representam o número quântico secundário ou azimutal (l).

SUBNÍVEL s p d f

NÚMERO QUÂNTICO 0 1 2 3

NÚMERO MÁX DE é 2 6 10 14

O subnível indica a forma da região no espaço onde está o elétron.As siglas s, p, d, f vem das palavras em inglês sharp, principal, diffuse e fine, respectivamente.

Número máximo de elétrons em cada subnível:

K = 1 ; 1s²L = 2 ; 2s²   2p6M = 3 ; 3s²  3p6 3d10N = 4 ; 4s²  4p6 4d10 4f14O = 5 ; 5s²  5p6 5d10 5f14P = 6 ; 6s²  6 p6 6d10 Q = 7 ; 7s²

O diagrama acima mostra a notação utilizada para indicar o número de elétrons em um nível e em um subnível.

Exemplos: 1s² - 2 é no subnível s do nível 1 (K)2p3  - 3 é no subnível p do nível 2 (L)5d6 – 6 é no subnível d do nível 5 (O)

Os orbitais são identificados pelo número quântico magnético (m). Indica a orientação desse orbital no espaço. Para cada valor de “l” (subnível), m assume valores inteiros que variam de – l ..., O,... +l

Assim:

s – 1p – 3d – 5f – 7

Cada orbital é representado simbolicamente por um quadradinho. Então eles podem ser assim:

-3 -2 -1 0 +1 +2 +3

Em cada orbital pode conter no máximo dois elétrons. 

Mas se os elétrons são cargas negativas, porque eles não se repelem e se afastam?

Se os elétrons giram no mesmo sentido ou em sentido contrário, eles criam campo magnético que os repelem ou os atraem. Essa rotação é chamada de SPIN, palavra em inglês derivada do verbo to spin, que significa girar.

Page 31: INTRODUÇÃO AO ESTUDO DE QUÍMICA

TABELA PERIÓDICAA partir do século XIX, cientistas começaram a perceber que os elementos químicos poderiam ser agrupados em colunas, formadas pela reunião de elementos com propriedades semelhantes.

O número de elementos químicos conhecidos pelo homem aumentou com o passar dos séculos, principalmente no XIX.

Observe a tabela:

ATÉ O FINAL DO SÉCULO: Nº DE ELEMENTOS QUÍMICOS

XVI 14

XVII 33

XIX 83

XX 112

 

Alguns elementos que já eram conhecidos antes de 1650, como Ag, C, As, Au, Hg, Pb, Sn, Sb, Cu, S.

Depois de tantos químicos tentarem classificar os elementos químicos, Dimitri Ivanovitch Mendeleyevfoi o que mais se destacou. Seu trabalho em classificar os elementos é usado até hoje.

Ele criou uma tabela periódica dos elementos, que serviu de base para organizar a que temos hoje.

Mendeleyev observou que há uma periodicidade das propriedades quando os elementos químicos eram colocados em ordem crescente de suas massas atômicas.

Page 32: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Lei da periodicidade – muitas propriedades físicas e químicas dos elementos variam periodicamente na sequência de seus números atômicos.

Como utilizar a Tabela Periódica?

Cada quadro da tabela fornece os dados referentes ao elemento químico: símbolo, massa atômica, número atômico, nome do elemento, elétrons nas camadas e se o elemento é radioativo.

As filas horizontais são denominadas períodos. Neles os elementos químicos estão dispostos na ordem crescente de seus números atômicos. O número da ordem do período indica o número de níveis energéticos ou camadas eletrônicas do elemento.

A tabela periódica apresenta sete períodos:1º período – 2 elementos2º período – 8 elementos3º período – 8 elementos4º período – 18 elementos5º período – 18 elementos6º período – 32 elementos7º período – até agora 30 elementos

As colunas verticais constituem as famílias ou grupos, nas quais os elementos estão reunidos segundo suas propriedades químicas.

As famílias ou grupos vão de 1 a 18. Algumas famílias possuem nome, como por exemplo:1 – alcalinos 2 – alcalinos terrosos13 – família do boro14 – família do carbono15 – família do nitrogênio16 – família dos calcogênios17 – família dos halogênios18 – gases nobres

Da família 1 e 2 e 13 até 18 chamamos de elementos representativos.

Da família do 3 até 12 chamamos de elementos de transição.

Os elementos que ficam na série dos lantanídeos e actinídeos são os elementos de transição. Como eles estão no grupo 3, como se estivessem numa “caixinha” para dentro da tabela, são chamados de elementos de transição interna. E os demais são chamados de elementos de transição externa. 

Page 33: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os elementos químicos estão reunidos em três grandes grupos: metais, não-metais e gases nobres. O hidrogênio (H) não se encaixa em nenhuma dessas classificações porque possui características próprias. Algumas tabelas mostram esta divisão.

Os metais são elementos químicos que possuem várias propriedades específicas, como brilho, condutividade térmica e elétrica, maleabilidade e ductibilidade. Todos os metais são sólidos à temperatura de 25ºC e pressão de 1atm, exceto o mercúrio (Hg) que é líquido nestas condições.

                     

  Quase todos os metais têm brilho, pois são capazes de refletir muito bem a luz. Ouro, prata e alumínio são exemplos de metais com muito brilho.

Os metais são bons condutores elétricos. Como em geral apresentam ductibilidade, ou seja, podem ser reduzidos a fios, são usados como tal na condução de eletricidade.

Os metais conduzem bem o calor. Nem sempre um metal puro apresenta as propriedades desejáveis para determinadas aplicações. Por isso são produzidas as ligas metálicas, onde dois ou mais metais são misturados. São exemplos o bronze e o latão. O bronze é uma mistura de cobre, estanho e o latão é resultado da mistura de cobre e zinco.

A maioria das ligas é formada por dois ou mais metais, mas algumas contêm não-metais, como o carbono. A liga mais usada desse tipo é o aço.

Os não-metais são maus condutores de eletricidade, quase não apresentam brilho, não são maleáveis e nem dúcteis. Tendem a formar ânions (íons negativos).

Page 34: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os gases nobres ou inertes, ou ainda raros, constituem cerca de 1% do ar. É muito difícil se conseguir compostos com estes gases. Raramente eles reagem porque são muito estáveis. Suas camadas exteriores estão completamente preenchidas de elétrons. Estão todos no grupo 18 da tabela periódica.

Na tabela periódica atual, existem elementos naturais e artificiais.

Os naturais são os elementos encontrados na natureza e os artificiais são produzidos em laboratórios.

Dois estão localizados antes do urânio (U-92), os chamados elementos cisurânicos, que são o tecnécio (Tc – 43) e o promécio (Pm – 61). Outros elementos artificiais vêm depois do urânio, chamamos detransurânicos que são todos os outros após o U – 92. Dentre eles: Pu, Am, Bk, Fm, No, Sg, Ds. 

Alguns elementos e suas descobertas:

Muitos elementos são conhecidos desde a Antiguidade, como por exemplo:

- Fe – ferro- Pb – chumbo- Cu – cobre- S – enxofre

A partir do século XVII foram descobertos outros elementos. Seus nomes eram homenagem ao cientista que produzia esse novo elemento ou à sua região de origem:

- Mg – magnésio – Magnésia, região da Grécia.- Al – alumínio – do latim alumen, sal de alumínio.- Br – bromo – do grego bromos, mau cheiro.- Rb – rubídio – do latim rubidium, cor vermelho-escuro.-He – hélio – do grego hélios (Sol), por ter sido descoberto a partir do espectro da luz do Sol.- Po – polônio – alusão à Polônia, terra natal de Marie Curie.

No século XX, com a produção de elementos artificiais foram utilizados nomes dos planetas do Sistema Solar:

- Np – netúnio- Pu – plutônio

Homenagem também a continente:

- Am – amerício

Homenagem a um estado norte-americano:

- Cf – califórnio

Homenagem a cientistas:

- Bh – bóhrio- Cm – cúrio- Es – einstênio- No – nobélio- Md – mendelévio- Rf – rutherfórdio

 

PROPRIEDADES PERIÓDICAS E APERIÓDICAS

Muitas propriedades dos elementos químicos vaiam periodicamente ao longo da Tabela periódica.

São as chamadas Propriedades Periódicas.

As propriedades periódicas podem ser: raio atômico, volume atômico, densidade absoluta, eletronegatividade, eletropositividade, eletroafinidade.

Esse fato obedece a Lei da Periodicidade de Moseley: “Muitas propriedades físicas e químicas dos elementos variam periodicamente na sequência de seus números atômicos.”

Para as propriedades onde os valores só aumentam com o número atômico e outras onde os valores só diminuem chamamos de Propriedades Aperiódicas. É propriedades aperiódicas, o calor específico.

Page 35: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Raio Atômico

O raio atômico dos elementos é uma propriedade periódica porque seus valores só variam periodicamente, ou seja, aumentam e diminuem seguidamente, com o aumento do número atômico.

O raio atômico (r) é a metade da distância internuclear mínima (d) que dois átomos desse elemento podem apresentar, sem estarem ligados quimicamente.

Para medir o raio atômico, usa-se a técnica da difração por Raios-X.

Em uma família, da tabela periódica, o raio atômico aumenta de cima para baixo e no período aumenta da direita para esquerda.

Para esta regra não é admitido os gases nobres, já que possuem o maior raio atômico em cada período.

Observando a tabela periódica, podemos verificar que o frâncio (Fr) tem maior raio atômico.

Se o átomo se transforma em íon cátion ou ânion, o seu raio sofre alteração.- o raio do átomo é sempre maior que o raio do seu íon cátion porque perde elétrons.- o raio do átomo é sempre menor que o raio do seu íon ânion porque ganha elétrons.

Volume Atômico

O volume atômico é uma propriedade periódica porque varia periodicamente com o aumento do número atômico.

Volume atômico é a relação entre a massa de uma quantidade de matéria (1 mol = 6,02.1023 átomos ) e a densidade da substância simples formada por esse elemento na fase sólida.

Não é o volume de um átomo, mas de um conjunto de átomos. No volume atômico influi não só o volume de cada átomo, como também o espaçamento que existe entre esses átomos. 

Na tabela periódica, os valores do volume atômico aumentam de cima para baixo nas famílias e em um período, do centro para as extremidades da tabela.  

 

Densidade Absoluta

Densidade ou Massa Específica é a relação entre a massa (m) de uma substância e o volume (V) ocupado por essa massa.

Esta variação, no estado sólido é uma propriedade periódica.

Na tabela periódica, os valores de densidades aumentam, nas famílias de cima para baixo e nos períodos, das extremidades para o centro.

Desta forma, pode-se notar que os elementos mais densos estão no centro e na parte de baixo da tabela periódica.

Exemplos:- Os (ósmio) – d=22,5g/mL- Ir (irídio) – d=22,4g/mL

Page 36: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Ponto de Fusão e Ponto de Ebulição

Ponto de Fusão é a temperatura onde a matéria passa da fase sólida para a fase líquida.

Ponto de Ebulição é a temperatura onde a matéria passa da fase líquida para a gasosa.

Na tabela periódica, os valores de PF e de PE variam numa família, à esquerda da tabela, aumenta de baixo para cima e à direta da tabela, aumenta de cima para baixo. Nos períodos, aumenta das extremidades para o centro.

Na tabela periódica há elementos de diferentes estados físicos.- fase gasosa: H, N, O, F, Cl, Ne, Ar, Kr, Xe, RN- fase líquida: Hg e Br- fase sólida: demais elementos

Imagine os elementos:

X = fase sólidaY = fase líquidaZ = fase gasosa

Então, temos:

X com PF e PE maior que Y e Y com PF e PE maior que Z

O carbono (C) é uma exceção para esta regra. Possui PF igual a 3800°C. 

O tungstênio (W) é o metal com maior PF, 3422°C, sendo utilizado em filamentos de lâmpadas incandescentes.

Potencial de Ionização

É a energia mínima necessária para “arrancar” um elétron de um átomo isolado no seu estado gasoso.

O primeiro potencial de ionização é considerado o mais importante porque é a energia necessária para “arrancar” o primeiro elétron da camada mais externa do átomo.

De acordo com o SI (Sistema Internacional) deve-se ser expresso em Kj/mol.

O potencial de ionização é uma propriedade periódica, que na tabela periódica, se comporta exatamente ao contrário do raio atômico.

Quanto maior o raio atômico, menor a atração do núcleo com o seu elétron mais afastado. Então é mais fácil de “arrancar” o elétron. Consequentemente é menor a energia de ionização.

O potencial de ionização aumenta, nas famílias de baixo para cima e nos períodos da esquerda para a direita.

Eletronegatividade

É a tendência que um átomo tem de atrair elétrons. É muito característico dos não-metais. Linus Pauling, através de experimentos, tentou quantificar esta tendência e criou uma escala de eletronegatividade. Essa escala existe em muitas tabelas periódicas.

A eletronegatividade aumenta conforme o raio atômico diminui. Quanto maior o raio atômico, menor será a atração do núcleo pelos elétrons mais afastados e então, menor a eletronegatividade.

Na tabela periódica, os gases nobres não são considerados, já que não tem tendência a ganhar ou perder elétrons. Já estão estabilizados. 

A eletronegatividade aumenta nas famílias, de baixo para cima e nos períodos da esquerda para a direita.

O elemento mais eletronegativo é o flúor (F), com valor de eletronegatividade 3,98.

Eletropositividade

É a tendência que um átomo tem de perder elétrons. É muito característico dos metais. Pode ser também chamado de caráter metálico. É o inverso da eletronegatividade.

A eletropositividade aumenta conforme o raio atômico aumenta.

Quanto maior o raio atômico, menor será a atração do núcleo pelo elétron mais afastado, maior a facilidade do átomo em doar elétrons, então, maior será a eletropositividade.

Page 37: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os gases nobres também não são considerados, por conta da sua estabilidade.

A eletropositividade aumenta nas famílias, de cima para baixo, e nos períodos, da direita para a esquerda.

O elemento mais eletropositivo é o frâncio (Fr), que possui eletronegatividade 0,70.

Tabela de eletronegatividade

Lembrando que o menor valor é o mais eletropositivo

Elementos Eletronegatividade

F 3,98

O 3,44

Cl 3,16

N 3,04

Br 2,96

I 2,66

S 2,58

C 2,55

Metais Nobres 2,54 a 2,28

H 2,20

P 2,19

Semi-metais 2,04 a 1,18

Metais Comuns 2,20 a 0,79

Fr 0,70

 

Eletroafinidade ou Afinidade Eletrônica

É a quantidade de energia liberada quando um átomo isolado no seu estado fundamental (fase gasosa) recebe 1é.

Um átomo isolado no seu estado fundamental pode receber 1é, transformando-se em um ânion. Isso pode levar ao átomo um estado de maior estabilidade e então ocorre a liberação de energia.

A afinidade eletrônica aumenta conforme o raio atômico diminui. É importante para os não-metais.

Os elementos mais eletroafins são os halogênios e o oxigênio.

A eletroafinidade, na tabela periódica, aumenta nas famílias de baixo para cima e nos períodos da esquerda para a direita.

Seus valores são dados em Kj/mol e são muito difíceis de serem medidos.

Calor Específico

É uma propriedade aperiódica. O calor específico do elemento no estado sólido sempre diminui com o aumento do número atômico.

O calor específico é a quantidade de calor necessária para elevar a 1°C a temperatura de 1g do elemento.

Page 38: INTRODUÇÃO AO ESTUDO DE QUÍMICA

LIGAÇÕES QUÍMICASOs átomos dificilmente ficam sozinhos na natureza. Eles tendem a se unir uns aos outros, formando assim tudo o que existe hoje.

Alguns átomos são estáveis, ou seja, pouco reativos. Já outros não podem ficar isolados. Precisam se ligar a outros elementos. As forças que mantêm os átomos unidos são fundamentalmente de natureza elétrica e são chamadas de Ligações Químicas.

Toda ligação envolve o movimento de elétrons nas camadas mais externas dos átomos, mas nunca atinge o núcleo.

ESTABILIDADE DOS GASES NOBRES

De todos os elementos químicos conhecidos, apenas 6, os gases nobres ou raros, são encontrados na natureza na forma de átomos isolados. Os demais se encontram sempre ligados uns aos outros, de diversas maneiras, nas mais diversas combinações.

Os gases nobres são encontrados na natureza na forma de átomos isolados porque eles têm a última camada da eletrosfera completa, ou seja, com 8 elétrons. Mesmo o hélio, com 2 elétrons, está completo porque o nível K só permite, no máximo, 2 elétrons.

Regra do Octeto – Os elementos químicos devem sempre conter 8 elétrons na última camada eletrônica ou camada de valência. Na camada K pode haver no máximo 2 elétrons. Desta forma os átomos ficam estáveis, com a configuração idêntica à dos gases nobres.

Observe a distribuição eletrônica dos gases nobres na tabela a seguir:

NOME SÍMBOLO Z K L M N O P Q

HÉLIO He 2 2 - - - - - -

NEÔNIO Ne 10 2 8 - - - - -

ARGÔNIO Ar 18 2 8 8 - - - -

CRIPTÔNIO Kr 36 2 8 18 8 - - -

XENÔNIO Xe 54 2 8 18 18 8 - -

Page 39: INTRODUÇÃO AO ESTUDO DE QUÍMICA

RADÔNIO Rn 86 2 8 18 32 18 8 -

 

A estabilidade dos gases nobres deve-se ao fato de que possuem a última camada completa, ou seja, com o número máximo de elétrons que essa camada pode conter, enquanto última. Os átomos dos demais elementos químicos, para ficarem estáveis, devem adquirir, através das ligações químicas, eletrosferas iguais às dos gases nobres.

Há três tipos de ligações químicas:

- Ligação Iônica – perda ou ganho de elétrons.- Ligação Covalente – compartilhamento de elétrons.- Ligação Metálica – átomos neutros e cátions mergulhados numa "nuvem" de elétrons.

LIGAÇÃO IÔNICA

A ligação iônica é resultado da alteração entre íons de cargas elétricas contrárias (ânions e cátions).

Esta ligação acontece, geralmente, entre os metais e não-metais.

Metais – 1 a 3 elétrons na última camada; tendência a perder elétrons e formar cátions. Elementos mais eletropositivos ou menos eletronegativos.

Não-Metais – 5 a 7 elétrons na última camada; tendência a ganhar elétrons e formar ânions. Elementos mais eletronegativos ou menos eletropositivos.

Então:

METAL + NÃO-METAL →  LIGAÇÃO IÔNICA

Exemplo: Na e ClNa (Z = 11)   K = 2  L = 8  M = 1Cl (Z = 17)    K = 2  L = 8  M = 7

O Na quer doar 1 é          →     Na+ (cátion)O Cl quer receber 1 é      →     Cl –  (ânion)

O cloro quer receber 7é na última camada. Para ficar com 8é (igual aos gases nobres) precisa de 1é.

 

  Na+          Cl –       →         NaClcátion       ânion             cloreto de sódio

As ligações iônicas formam compostos iônicos que são constituídos de cátions e ânions. Tais compostos iônicos formam-se de acordo com a capacidade de cada átomo de ganhar ou perder elétrons. Essa capacidade é a valência.

Observe a tabela com a valência dos elementos químicos (alguns alcalinos, alcalinos terrosos, calcogênios e halogênios):

SÍMBOLO ELEMENTO QUÍMICO CARGA ELÉTRICA

Na SÓDIO +1

K POTÁSSIO +1

Mg MAGNÉSIO +2

Ca CÁLCIO +2

Al ALUMÍNIO +3

F FLÚOR -1

Cl CLORO -1

Br BROMO -1

O OXIGÊNIO -2

Page 40: INTRODUÇÃO AO ESTUDO DE QUÍMICA

S ENXOFRE -2

Valência de outros elementos químicos:

SÍMBOLO ELEMENTO QUÍMICO CARGA ELÉTRICA

Fe FERRO +2

Fe FERRO +3

Ag PRATA +1

Zn ZINCO +2

 

Exemplo: Mg e Cl

  Mg+2                 Cl 1-              →                 MgCl2 cátion          ânion               cloreto de magnésio

Pode-se utilizar a “Regra da Tesoura”, onde o cátion passará a ser o número de cloros (não-metal) na fórmula final e o ânion será o número de magnésio (metal).

Outro exemplo: Al e O

  Al +3              O -2                →                     Al2O3 cátion           ânion                    óxido de alumínio

Neste caso, também foi utilizada a “Regra da Tesoura”. A fórmula final será chamada de íon fórmula.

Fórmula Eletrônica / Teoria de Lewis

A fórmula eletrônica representa os elétrons nas camadas de valência dos átomos.Ex. NaCl

A fórmula eletrônica é também chamada de fórmula de Lewis por ter sido proposta por esse cientista.

LIGAÇÃO COVALENTE

A ligação covalente, geralmente é feita entre os não-metais e não metais, hidrogênio e não-metais e hidrogênio com hidrogênio.

Esta ligação é caracterizada pelo compartilhamento de elétrons. O hidrogênio possui um elétron na sua camada de valência. Para ficar idêntico ao gás nobre hélio com 2 elétrons na última camada.

Ele precisa de mais um elétron. Então, 2 átomos de hidrogênio compartilham seus elétrons ficando estáveis:

Ex.  H (Z = 1)  K = 1

H – H    →   H2

O traço representa o par de elétrons compartilhados.

Nessa situação, tudo se passa como se cada átomo tivesse 2 elétrons  em sua eletrosfera. Os elétrons pertencem ao mesmo tempo, aos dois átomos, ou seja, os dois átomos compartilham os 2 elétrons. A menor porção de uma substância resultante de ligação covalente é chamada de molécula. Então o H2 é uma molécula ou um composto molecular. Um composto é considerado composto molecular ou molécula quando possui apenas ligações covalentes

Observe a ligação covalente entre dois átomos de cloro:

Page 41: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Fórmula de Lewis o u Fórmula Eletrônica

 

Cl – ClFórmula Estrutural

 

Cl 2Fórmula Molecular

Conforme o número de elétrons que os átomos compartilham, eles podem ser mono, bi, tri ou tetravalentes.

A ligação covalente pode ocorrer também, entre átomos de diferentes elementos, por exemplo, a água.

Fórmula de Lewis

 

 Fórmula Estrutural

 

H2OFórmula Molecular 

A água, no exemplo, faz três ligações covalentes, formando a molécula H2O. O oxigênio tem 6é na última camada e precisa de 2é para ficar estável. O hidrogênio tem 1 é e precisa de mais 1é para se estabilizar. Sobram ainda dois pares de elétrons sobre o átomo de oxigênio.

A ligação covalente pode ser representada de várias formas. As fórmulas em que aparecem indicados pelos sinais   .   ou   x  são chamadas de fórmula de Lewis ou fórmula eletrônica.

Quando os pares de elétrons são representados por traços (-) chamamos de fórmula estrutural plana, mostrando o número de ligações e quais os átomos estão ligados. 

A fórmula molecular é a mais simplificada, mostrando apenas quais e quantos átomos têm na molécula. 

Veja o modelo:

                    H .  .  H                                   H – H                                   H2

Fórmula de Lewis ou eletrônica    Fórmula Estrutural Plana     Fórmula Molecular

Tabela de alguns elementos com sua valência (covalência) e a sua representação:

ELEMENTO COMPARTILHA VALÊNCIA REPRESENTAÇÃO

HIDROGÊNIO 1é 1 H –

CLORO 1é 1 Cl –

Page 42: INTRODUÇÃO AO ESTUDO DE QUÍMICA

OXIGÊNIO 2é 2 – O –  e  O =

ENXOFRE 2é 2 – S –  e S =

NITROGÊNIO 3é 3

   |– N – , = N –  e N ≡

CARBONO 4é 4

| |– C –  , = C = , = C  |                        |

e  ≡ C –

 

LIGAÇÃO METÁLICA

Ligação metálica é a ligação entre metais e metais. Formam as chamadas ligas metálicas que são cada vez mais importantes para o nosso dia-a-dia. No estado sólido, os metais se agrupam de forma geometricamente ordenados formando as células, ou grades ou retículo cristalino.Uma amostra de metal é constituída por um grande número de células unitárias formadas por cátions desse metal.

Na ligação entre átomos de um elemento metálico ocorre liberação parcial dos elétrons mais externos, com a conseqüente formação de cátions, que formam as células unitárias. 

Esses cátions têm suas cargas estabilizadas pelos elétrons que foram liberados e que ficam envolvendo a estrutura como uma nuvem eletrônica. São dotados de certo movimento e, por isso, chamados de elétrons livres. Essa movimentação dos elétrons livres explica por que os metais são bons condutores elétricos e térmicos.

A consideração de que a corrente elétrica é um fluxo de elétrons levou à criação da Teoria da Nuvem Eletrônica ou Teoria do “Mar” de elétrons. Pode-se dizer que o metal seria um aglomerado de átomos neutros e cátions, mergulhados numa nuvem ou “mar” de elétrons livres. Esta nuvem de elétrons funcionaria como a ligação metálica, que mantém os átomos unidos.

 

  

                                  Figura geométrica do NaCl (cloreto de sódio)          

 

Um cristal ou retículo cristalino de NaCl aumentado 300 vezes

São estas ligações e suas estruturas que os metais apresentam uma série de propriedades bem características, como por exemplo, o brilho metálico, a condutividade elétrica, o alto ponto de fusão e ebulição, a maleabilidade, a ductilidade, a alta densidade e a resistência á tração. 

Page 43: INTRODUÇÃO AO ESTUDO DE QUÍMICA

As ligas metálicas são a união de dois ou mais metais. Às vezes com não-metais e metais. As ligas têm mais aplicação do que os metais puros.

Algumas ligas:- bronze (cobre + estanho) – usado em estátuas, sinos

- aço comum (ferro + 0,1 a 0,8% de carbono) – com maior resistência à tração, é usado em construção, pontes, fogões, geladeiras.

  

- aço inoxidável (ferro + 0,1 de carbono + 18% de cromo + 8% de níquel) – não enferruja (diferente do ferro e do aço comum), é usado em vagões de metrô, fogões, pias e talheres.

  

- latão (cobre + zinco) – usado em armas e torneiras.

  

- ouro / em jóias (75% de ouro ou prata + 25% de cobre) – usado para fabricação de jóias. Utiliza-se 25% de cobre para o ouro 18K. E o ouro 24K é considerado ouro puro.

Page 44: INTRODUÇÃO AO ESTUDO DE QUÍMICA

As substâncias metálicas são representadas graficamente pelo símbolo do elemento:Exemplo: Fe, Cu, Na, Ag, Au, Ca, Hg, Mg, Cs, Li.

Polaridade das Ligações Químicas

A eletronegatividade é a capacidade que um átomo tem de atrair para si o par de elétrons que ele compartilha com outro átomo em uma ligação covalente. As medidas experimentais foram feitas pelo cientista Linus Pauling, que criou uma escala de eletronegatividade. 

De acordo com a diferença de eletronegatividade dos elementos, pode-se classificar a ligação covalente em polar ou apolar.

 = diferença de eletronegatividade

Ligação Apolar (  =0) A diferença de eletronegatividade tem que ser igual à zero. Geralmente, acontece em moléculas de átomos iguais.

Exemplos:

Ligação Polar ( )

A diferença de eletronegatividade tem que diferente de zero. Geralmente, acontece em moléculas de átomos diferentes.

Exemplos:

Observe que a ligação entre I e F é mais polar do que a ligação entre H e Cl.

Se o valor for maior que 1,7, a ligação é iônica.

Exemplos:

Polaridade das Moléculas

Page 45: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Durante as ligações químicas, podem sobrar elétrons do átomo central. 

Então:- molécula polar – quando não sobram elétrons do átomo central.- molécula apolar – quando sobram elétrons do átomo central.

LIGAÇÕES INTERMOLECULARES / INTERAÇÕES INTERMOLECULARES

Os sólidos iônicos estão unidos por causa da forte atração entre seus íons cátions e seus íons ânions. A maioria dos metais são sólidos a temperatura ambiente por causa da ligação metálica. As substâncias que tem ligações covalentes podem ser, em temperatura ambiente, sólida, liquida ou gasosa. Isto mostra que as interações entre estas moléculas podem ser maiores ou menores. Existem três tipos de interações intermoleculares. Elas servem somente para as substâncias que possuem ligações covalentes. São elas:

- Pontes de Hidrogênio ou Ligações de Hidrogênio;- Forças dipolo-dipolo, dipolo-permanente ou dipolar;- Forças de London, Forças de Van der Waals ou dipolo-induzido.

Pontes de Hidrogênio

Esta interação intermolecular pode ser chamada também de Ligações de Hidrogênio. É realizada sempre entre o hidrogênio e um átomo mais eletronegativo, como flúor, oxigênio e nitrogênio.

    FlúorH  +  Oxigênio

Nitrogênio

 

É característico em moléculas polares. Podem ser encontrados no estado sólido e liquido. É a ligação mais forte de todas, devida à alta eletropositividade do hidrogênio e à alta eletronegatividade do flúor, oxigênio e nitrogênio. De um lado, um átomo muito positivo e do outro, um átomo muito negativo. Isto faz com que a atração entre estes átomos seja muito forte. Por isso, em geral são sólidos ou líquidos.

Exemplos:H2O, HF, NH3

Uma consequência das pontes de hidrogênio que existem na água é a sua elevada tensão superficial. As moléculas que estão no interior do líquido atraem e são atraídas por todas as moléculas vizinhas, de tal modo que as essas forças se equilibram. Já as moléculas da superfície só são atraídas pelas moléculas de baixo e dos lados. Consequentemente, essas moléculas se atraem mais fortemente e criam uma película parecida com uma película elástica na superfície da água. Este fenômeno ocorre com todos os líquidos, mas com a água, acontece mais intensamente. A tensão superficial explica alguns fenômenos, como por exemplo, o fato de alguns insetos caminharem sobre a água e a forma esférica das gotas de água.

Dipolo-Dipolo

Esta interação intermolecular pode ser chamada também de dipolo-permanente ou dipolar.Ocorre em polares. É menos intensa que as pontes de hidrogênio. Quando a molécula é polar, há de um lado um átomo mais eletropositivo e do outro, um átomo mais eletronegativo.

Estabelece-se de modo que a extremidade negativa do dipolo de uma molécula se oriente na direção da extremidade positiva do dipolo de outra molécula. 

Assim: 

Exemplos:HCl, HBr, HI

Forças de London

Esta interação intermolecular pode ser chamada também de dipolo-induzido ou Forças de Van der Waals. 

Page 46: INTRODUÇÃO AO ESTUDO DE QUÍMICA

É a interação mais fraca de todas e ocorre em moléculas apolares. Neste caso, não há atração elétrica entre estas moléculas. Deveriam permanecer sempre isolados e é o que realmente acontece porque, em temperatura ambiente, estão no estado gasoso. 

São cerca de dez vezes mais fracas que as ligações dipolo-dipolo.

A molécula mesmo sendo apolar, possui muitos elétrons, que se movimentam rapidamente. Pode acontecer, em um dado momento, de uma molécula estar com mais elétrons de um lado do que do outro. Esta molécula estará, portanto, momentaneamente polarizada e por indução elétrica, ira provocar a polarização de uma molécula vizinha (dipolo induzido), resultando uma fraca atração entre ambas. Esta atração é a Força de London.

Exemplos: Cl2, CO2, H2

Quadro-Resumo das propriedades físicas e os tipos de ligações:

Tipo de substância

Metálica Iônica Covalente polar Covalente apolar

Partícula Átomos e cátions Íons moléculas Moléculas

Atração entre as partículas

Por “elétrons livres”

Atração eletrostática

Pontes de hidrogênio ou dipolo-dipolo Van der Waals

Estado físico Sólido (exceto Hg) Sólido Líquido Gasoso

PF e PE Alto Alto Baixo Muito baixo

Condutividade elétrica

Alta (sólidos e líquidos), sem

atração da substância

Alta (fundidos ou em solução)

Praticamente nula quando pura.

Condutora quando em solução

Nula

Solubilidade em solventes comuns

 Insolúvel

Solúvel em solvente polar

Solúvel em solvente polar

Solúvel em solvente apolar

Dureza Dura, mas maleável e dúctil

Dura, porém quebradiça

- -

Geralmente, usa-se a regra que semelhante dissolve semelhante. Isto quer dizer que solvente polar dissolve substância polar e que solvente apolar dissolve substância apolar. Mas nem sempre esta regra está correta. A água, por exemplo, é uma substância polar e pode dissolver o álcool etílico, que é apolar.

 

GEOMETRIA MOLECULAR

A geometria molecular explica como estão dispostos os átomos dentro da molécula. Os átomos tendem a ficar numa posição mais espaçada, esparramada possível. Assim conseguem adquirir a estabilidade. 

As geometrias moleculares são: linear, angular, trigonal planar, piramidal, tetraédrica, octaédrica, forma de T, bipirâmide trigonal, gangorra ou tetraédrica distorcida, quadrado planar, pirâmide de base quadrática.

Veja as principais geometrias moleculares:

Linear

Para moléculas diatômicas (com dois átomos).

Polar – átomos diferentes: HCl       H – Cl Apolar – átomos iguais: H2              H – H

Page 47: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Para moléculas triatômicas (com três átomos), sem sobra de elétrons do elemento central. Apolares.Formam um ângulo de 180°.

CS2              S – C – S

Angular

Para moléculas triatômicas com sobra de elétrons. Polares.Formam um ângulo de 109°28´.

                                  H2O                     :O:                                        

                                      H                  H       

Trigonal Planar

Para moléculas tetratômicas sem sobra de elétrons. Apolares.Formam um ângulo de 120°.

                                      BF3                         F|B

                                          

                                                        F            F        

Piramidal

Para moléculas tetratômica, com sobra de um par de elétrons. Polares.:           P

                                           

Cl             ClCl                    

 

     Tetraédrica

Para moléculas pentatômicas com átomo central. Apolares.Cl

                        

                                          

CCl4                                 C                                         

Cl             ClCl                    

 

Page 48: INTRODUÇÃO AO ESTUDO DE QUÍMICA

FUNÇÃO DA QUÍMICA INORGÃNICAAlgumas substâncias químicas com propriedades semelhantes foram agrupadas em funções químicas.

Função Química – conjunto de compostos com propriedades químicas semelhantes.

As substâncias inorgânicas se dividem em quatro grandes grupos que são conhecidos como as funções da química inorgânica. São elas: ácidos, bases, óxidos e sais. Há também as funções orgânicas que são os hidrocarbonetos, álcoois, cetonas, aldeídos, éteres, ésteres, ácidos carboxílicos, aminas e amidas.

ÁCIDOS

 Ácido é toda substância que em água produz o cátion H+.  Quando um ácido entra em contato com a água, ele se ioniza e libera H+.  Exemplos: HCl  + H2O  →  H+  +  Cl-

HF  +   H2O  →  H+  +  F-

H2SO4  →  H+ +  SO2-

Identifica-se um ácido com a presença de um H+ no lado esquerdo da fórmula.As principais características dos ácidos são:- sabor azedo (em  geral tóxicos e corrosivos);- conduzem eletricidade em solução aquosa (em água);- mudam a cor de certas substâncias (indicadores ácido-base, que são substâncias orgânicas);- reagem com base formando sal e água.

Utilidade

- Ácido sulfúrico (H2SO4) – produto químico mais utilizado na indústria, por isso o consumo de ácido sulfúrico mede o desenvolvimento industrial de um país. É corrosivo e muito solúvel em água. É usado em baterias de automóveis, na produção de fertilizantes, compostos orgânicos, na limpeza de metais e ligas metálicas (aço).

- Ácido clorídrico (HCl) – é um dos componentes do suco gástrico do nosso estômago. O HCl puro é um gás muito corrosivo e tóxico. O HCl em solução aquosa é sufocante e corrosivo. É usado na limpeza de pisos e paredes de pedra ou azulejo. O ácido muriático é o ácido clorídrico impuro.

- Ácido fluorídrico (HF) – é utilizado para a produção de alumínio, corrosão de vidros (em automóveis), decoração em objetos de vidro. É altamente corrosivo para a pele.

- Ácido nítrico (HNO3) – ácido tóxico e corrosivo. Utilizado na produção de fertilizantes e de compostos orgânicos.

Classificação

A) PRESENÇA DE OXIGÊNIO

- ácidos sem oxigênio – hidrácidos Exemplos: HCl, HBr

Page 49: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- ácidos com oxigênios – oxiácidosExemplos: H2SO4, HNO3

B) NÚMERO DE  H+  IONIZÁVEIS

- monoácido – produz 1 H+  Exemplos: HCl, HNO3

- diácido – produz 2 H+  Exemplos: H2SO4,H2CO3

- triácido – produz 3 H+  Exemplos: H3PO4, H3BO3

- tetrácidos – 4H+ Exemplos: H4SiO4

Os poliácidos são ácidos com dois ou mais H+ ionizáveis.

C) FORÇA ÁCIDA (GRAU DE IONIZAÇÃO):

- Hidrácidos: Fortes: HCl, HBrModerado: HFFraco: os demais hidrácidos

- Oxiácidos: Sendo a fórmula genérica: HaEOb, onde:H = hidrogênioE = elemento químico O = oxigênioa = número de Hb = número de O

Se b-a: 3 ou 2 = ácido forte1 = ácido moderado0 = ácido fraco

Exemplos:HNO3 →  3-1=2  → ácido forteH3PO4 → 4-3=1 → ácido moderadoH3BO3 → 3-3=0 → ácido fraco

Nomenclatura

A) HIDRÁCIDOS

Ácido + nome do elemento + ídrico

Exemplos: HCl – ácido clorídricoH2S – ácido sulfídrico

B) OXIÁCIDOS

Ácido + nome do elemento + oso/ico

Exemplos: H2SO4 – ácido sulfúricoHNO3 – ácido nítricoH3PO4 – ácido fosfóricoHClO3 – ácido clóricoH2CO3 – ácido carbônico

Todos os ácidos acima terminam em ICO. Eles servem como referência para dar nome aos demais oxiácidos. Se diminuirmos o número de oxigênio destes ácidos, utilizamos a terminação OSO. Se diminuirmos dois oxigênios, adicionamos HIPO antes do elemento mais a terminação OSO. Se aumentar o número de oxigênio, colocamos o prefixo PER na frente do elemento. Veja os exemplos:

H2SO5 – ácido persulfúricoH2SO4 – ácido sulfúrico

Page 50: INTRODUÇÃO AO ESTUDO DE QUÍMICA

H2SO3 – ácido sulfurosoH2SO2 – ácido hiposulfuroso

Então:Ácido per+elemento+icoÁcido+elemento+icoÁcido +elemento+osoÁcido+hipo+elemento+oso

BASES

Base é toda substância que em água produz o ânion OH- (hidroxila). Quando uma base entra em contato com água, ela se dissocia e libera OH-.Exemplos: NaOH + H2O ↔ Na+ + OH-Mg(OH)2 + H2O ↔ Mg2+ + 2OH-

Al(OH)3 + H2O ↔ Al3+ + 3OH-

Identifica-se uma base pela presença de OH- no lado direito da fórmula.As principais características das bases são:- sabor adstringente (sabor igual ao da banana verde que parece que “prende” a língua);- conduzem eletricidade em solução aquosa (em água);- mudam a cor de certas substâncias, os chamados indicadores ácido-base;-reagem com ácidos formando sal e água.

Utilidade

- Hidróxido de sódio (NaOH) – conhecida também como soda cáustica. É tóxico e corrosivo. Usado para desentupir pias. É muito usado na indústria química para preparar sabão e outros compostos orgânicos.

- Hidróxido de Magnésio (Mg(OH)2) – usado como antiácido estomacal. É também chamado de leite de magnésia.

- Hidróxido de cálcio – (Ca(OH)2) – chamado de cal hidratada, cal apagada ou cal extinta. Usada na construção civil para preparar argamassa e usado em pinturas. O hidróxido de cálcio em água é chamado de leite de cal ou água de cal.

Page 51: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- Hidróxido de amônio (NH4OH) em solução aquosa é conhecido como amoníaco ou amônia. Usado em limpeza doméstica, saponificações de gorduras e óleos. É tóxico e irritante aos olhos.

 

Classificação

A) Número de OH- dissociadas:- Monobase – possui uma OH-

Exemplo: NaOH, NH4OH

- Dibase- possui dois OH- Exemplos: Mg(OH)2, Fe(OH)2

- Tribase – possui três OH- Exemplos: Al(OH)3, Fe(OH)3

- Tetrabase – possui quatro OH- Exemplos: Pb(OH)4, Sn(OH)4

B) Força Básica/Grau de Dissociação:- Base Forte – tem grau de dissociação de quase 100%. São as bases dos metais alcalinos e alcalinos terrosos. Exemplos: NaOH, KOH, Ca(OH)2

Exceção: Mg(OH)2 que é uma base fraca.

- Base Fraca – tem grau de dissociação inferior a 5%. São as demais bases, incluindo o Mg(OH) 2 e NH4OH.

C) Solubilidade em Água:- Solúveis: bases dos metais alcalinos e o NH4OH.Exemplos: KOH, NaOH, LiOH, NH4OH.

- Pouco solúveis: bases dos metais alcalinos terrosos.Exemplos: Ba(OH)2, Ca(OH)2, Mg(OH)2.

- Insolúveis: demais bases.Exemplos: Fe(OH)2, Al(OH)3, Sn(OH)2

Nomenclatura

A) Elementos com um NOX/ Elementos com NOX fixo:

Hidróxido de + nome do elemento

Exemplos: NaOH (nox 1+) – hidróxido de sódioMg(OH)2 (nox 2+) – hidróxido de magnésioCa(OH)2 (nox 2+) – hidróxido de cálcio

B) Elementos com mais de um NOX/ Elementos com NOX variável:

Hidróxido de + nome do elemento + OSO/ICO

Ou ainda:

Hidróxido de + nome do elemento + número do NOX em romano

O NOX maior fica com a terminação ICO e o NOX menor fica com a terminação OSO.

Page 52: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Exemplos:Fe(OH)2 – hidróxido ferroso ou hidróxido de ferro IIFe(OH)3 – hidróxido férrico ou hidróxido de ferro III

ÓXIDOS

Óxido é toda substância formada por oxigênio e mais outro elemento. Formam compostos binários, ou seja, só possuem dois elementos na sua fórmula química.

magnetita

água rochas

Exemplos: Na2O, MgO, Al2O3, FeO.

Identificam-se os óxidos como composto binário sendo o oxigênio o elemento mais eletronegativo e do lado direito da fórmula. Portanto, não existe um óxido com flúor.

Utilidade

- Óxido de cálcio (Cao) – sólido branco usado na construção civil para fabricar cimento, tijolo, cerâmicas. Age como fungicida e bactericida. Na agricultura, para corrigir a acidez do solo, pode ser chamado de cal viva ou cal virgem.

 

- Dióxido de carbono (CO2) – é o gás carbônico obtido como subproduto de várias reações industriais. Usado em refrigerantes e quando sólido é conhecido como gelo-seco. Participa da

fotossíntese das plantas.

- Óxido de hidrogênio (H2O) – é a água. Óxido mais importante do planeta. Toda a forma de vida na Terra está associada a este óxido.

- Óxido de zinco (ZnO) – é um pó branco (alvaiade) usado em pinturas do rosto de palhaços. Usado também como protetor solar.

Page 53: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- Peróxido de Hidrogênio (H2O2) – chamada de água oxigenada, é um peróxido que se decompõe rapidamente. É usado como bactericida e para branqueamento de cabelos, fibras e papel.

Classificação: 

A) Óxidos Básicos: reagem com água para formar bases ou reagem com ácidos formando sal e água. Exemplos:Na2O  + H2O  →  2NaOH2Na2O  + 2HCl  →  2NaCl  + H2O

São sólidos iônicos. Metais alcalinos e alcalinos terrosos reagem com a água. Estes metais tem NOX 1+, 2+ e 3+.

B) Óxidos Ácidos: reagem com água para formar ácido ou reagem com base formando sal e água.Exemplos: SO3 + H2O  →  H2SO4

SO3 + 2 NaOH  →  Na2SO4 + H2O 

São formados por oxigênio e não-metais ou metais com NOX elevado.

C) Óxidos Anfóteros: comportam-se como óxidos básicos e também como óxidos ácidos. Só reagem com ácido forte ou base forte. Exemplos:ZnO  + HCl  →  ZnCl2  +  H2O  ZnO  +  2NaOH  →  Na2ZnO2  +   H2O 

São, em geral, sólidos iônicos, insolúveis em água.Podem ser formados por: Zn, Pb, Sn, As, Sb.

D) Óxidos neutros: não reagem com água, nem com ácido e nem com base. Exemplos: CO, N2O, NO.São gases e moleculares, formados por não-metais.

E) Peróxidos: reagem com água ou com ácido diluído formando água oxigenada (H2O2).Exemplos: Na2O2  + 2H2O  →  2NaOH  + H2O2

Na2O2  + H2SO4  → Na2SO4 + H2O2

Na2O2 – peróxido de sódioH2O2 – peróxido de hidrogênio

Nomenclatura

A) Óxidos com NOX fixo:Em geral, metais alcalinos e alcalinos terrosos.

Óxido de + nome do elemento

Exemplos: Na2O – óxido de sódioCao – óxido de cálcio

B) Óxidos com NOX variável:

Óxido de + nome do elemento + ICO/OSO

ICO – NOX maiorOSO – NOX menor

Exemplos: Fe2O3– (Fe com nox 3+) – óxido férricoFeO – (Fe com nox 2+) – óxido ferroso

Pode-se usar também número romano indicando o nox do metal.Exemplos:Fe2O3 – óxido de ferro IIIFeO – óxido de ferro II

Pode-se usar, ainda a nomenclatura que indica o número de átomo de oxigênios e o número de átomos do elemento. Usa-se esta forma para dar nome aos óxidos ácidos.

Page 54: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Mono                                         MonoDi               +   óxido de     +       Di                      + nome do elementoTri                                              Tri

Exemplos: CO – monóxido de carbonoCO2 – dióxido de carbonoSO3 – trióxido de enxofreN2O3 – trióxido de dinitrogênio

SAIS

Sal é toda substância que em água produz um cátion diferente do H+ e um ânion diferente do OH-.Os sais são formados a partir da reação de um ácido com uma base, que é a reação de neutralização, formando também água. 

Exemplos: HCl  +  NaOH  →  NaCl  + H2O

                                            ácido     base          sal       água

As principais características são:- conduzem eletricidade quando estão na fase líquida (fundidos) ou em solução aquosa, porque nestes casos há elétrons livres;- geralmente são sólidos à temperatura e pressão ambiente (25°C e 1atm).

Utilidade

- Cloreto de sódio (NaCl) – é obtido da água do mar e utilizado na alimentação como sal de cozinha e na conservação de carnes. Na indústria, é usado para a produção de soda cáustica e gás cloro.

- Carbonato de sódio (Na2CO3) – também chamado de soda ou barrilha. Usado para a fabricação de vidro, sabão, corantes e no tratamento de água de piscina.

- Carbonato de cálcio (CaCO3) – na natureza, é encontrado na forma de mármore, calcário e calcita. Forma as estalactites e as estalagmites das cavernas. Usado na produção de cimento e de cal virgem (Cao). Reduz a acidez do solo.

    

             mármore                                    estalactite e estalagmite nas cavernas       

Page 55: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- Hipoclorito de sódio (NaOCl) – usado como anti-séptico e alvejante (clareamento de roupas).

Nomenclatura

O nome do sal é formado a partir do nome do ácido que o originou:

Assim:

ÁCIDO SAL

ÍDRICO ETO

ICO ATO

OSO ITO

Nome do Sal: Nome do ânion do ácido de origem + eto/ato/ito + de + nome do cátion da base de origem

Exemplo:

HCl               +             NaOH               →            NaCl             +             H2Oácido clorídrico        hidróxido de sódio            cloreto de sódio                  água

Outros nomes:CaF2 – fluoreto de cálcioNaBr – brometo de sódioLi2(SO4) – sulfato de lítioKNO2 – nitrito de potássioNa2CO3 – carbonato de sódio

7.5 Indicadores Ácido-Base e pH

Os indicadores ácido-base são substâncias orgânicas que ao entrar em contato com um ácido ficam com uma cor e ao entrar em contato com uma base ficam com outra cor. Assim, para saber se uma substância é ácido ou base, podemos utilizar um indicador orgânico para identificar a função química. 

São exemplos de indicadores ácido-base: fenolftaleína, alaranjado de metila, papel tornassol, azul de bromotimol. 

Alguns indicadores naturais também podem ser utilizados, como o repolho roxo e a flor hortência e o hibisco.

Veja a coloração que os principais indicadores podem adquirir ao entrar em contato com um ácido ou uma base:

INDICADOR ÁCIDO BASE NEUTRO

FENOLFTALEÍNA INCOLOR ROSA INCOLOR

TORNASSOL ROSA AZUL -

Para os outros indicadores:- Repolho roxo, em meio aquoso, fica vermelho em contato com ácido, verde em contato com base e vermelho quando neutro.- Alaranjado de metila fica vermelho em contato com ácido, amarelo-laranja em base e quando neutro;- O azul de bromotimol fica amarelo em ácido, e azul em base e quando neutro;- A flor hortência fica azul em meio ácido e rosa em base;- O hibisco ou mimo-de-vênus, que possui a cor rosa, fica vermelho-alaranjado em contato com ácido e verde em meio básico.

Alguns indicadores ácido-base são tão eficientes que indicam até mesmo o grau de acidez ou alcalinidade (basicidade) das substâncias. Este grau é chamado do pH (produto hidrogeniônico) que mede a quantidade do cátion H+ das soluções. 

Existe uma escala de acidez e alcalinidade que vai de zero a quatorze. O maior número indica solução básica (alcalina) e o menor número indica uma solução ácida. Se o valor de pH for sete, ou seja, a metade, então a solução não é nem ácida e nem básica, ela é neutra. 

Page 56: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Quanto mais a solução se aproxima de zero, mais ácida ela é. Quanto mais a solução se aproxima do quatorze, mais básica ela é.

Escala de pH

|_______________|_______________|0                             7                           14

ácido         neutro         base

Na prática, o pH pode ser medido com indicadores ácido-base e também através de aparelhos que medem a condutividade elétrica das soluções. 

Os indicadores mudam de cor em diferentes valores de pH. Para essa mudança de cor damos o nome de viragem e para o valor do pH damos o nome de ponto de viragem.

Veja alguns exemplos diários de valores de pH:

CARÁTER ALCALINO PRODUTO

14 Solução de soda cáustica (NaOH)

13

12 Água de cal

11

10 Creme dental alcalino

9

8 Solução aquosa de NaHCO3

CARÁTER NEUTRO

7 Água pura

CARÁTER ÁCIDO

6 Água da torneira, água da chuva

5 Refrigerantes

4 Chuva ácida

3 Vinagre

2 Suco de limão

1 Suco gástrico (HCl)

0 Solução aquosa de HCl

7.6 Teoria Modernas de Ácido e Base:

De uma maneira geral, sabemos que ácido é toda substância que em água produz um cátion H+ e que base é toda a substância que em água produz um ânion OH-. Esta teoria foi utilizada durante muito tempo para explicar o conceito de ácido e de base. É a Teoria de Arrhenius.

Mas surgiram, com o passar dos tempos, novas teoria relacionadas a ácido e base. São as chamadas Teorias Modernas Ácido-Base.

São elas: - Teoria de Bronsted-Lowry- Teoria de Lewis

Antes, vamos relembrar a Teoria de Arrhenius:

Teoria de Arrhenius

Para este cientista, os ácidos e as bases são eletrólitos, que em contato com a água liberam íons. 

Page 57: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Quando um ácido libera íons em solução aquosa, acontece uma ionização. 

Exemplo:HCl + H2O →  H+  +  Cl-

Na realidade, libera o íon hidrônio (H3O+) assim:HCl + H2O →  H3O+  +  Cl-

Quando uma base libera íons em solução aquosa, acontece uma dissociação.

Exemplo:NaOH + H2O →  Na+ + OH-

Ácido de Arrhenius – é toda substância que em água produz um cátion H+.Base de Arrhenius – é toda a substância que em água produz um ânion OH-.

Teoria de Bronsted-Lowry

Esta teoria é baseada nos estudos dos químicos Johannes Nicolaus Bronsted e Thomas Martin Lowry. Juntos eles definiram ácido e base na ausência de água, que não é explicado pela Teoria de Arrhenius.

A teoria é baseada em doar ou receber 1 próton.

Ácido de Bronsted-Lowry – é toda a espécie química que doa 1 próton.Base de Bronsted-Lowry – é toda a espécie química que recebe 1 próton.

Exemplo:doa         recebe          doa         recebe                        

HCl    +    NH3     ↔     NH4+   +  Cl-

ácido        base            ácido         base             

Neste caso, o HCl doa 1 próton para a amônia (NH3). Na reação reversa, o NH4+ é quem doa 1 próton para o íon Cl-.

Os ácidos e bases de Bronsted-Lowry formam pares conjugados. Sempre um ácido e uma base. O ácido da primeira reação e a base que formou.

Assim:

HCl e Cl- são pares conjugados. O HCl é o ácido conjugado da sua base conjugada Cl-.

A NH3 e NH4+ são pares conjugados.A NH3 é a base conjugada do seu ácido conjugado NH4+.

Teoria de Lewis

O químico norte-americano Gilbert Newton Lewis, desenvolveu uma teoria ácido-base relacionada ao par de elétron.

Ácido de Lewis – é a espécie química que recebe o par de elétrons numa reação química.Base de Lewis - é a espécie química que doa o par de elétrons numa reação química.

Exemplo:  doa         recebe      

:NH3     +    H+       ↔    NH4+

                                          base        ácido 

Quadro-resumo das teorias ácido-base:

TEORIA ÁCIDO BASE

ARRHENIUS Libera H+ em solução aquosa Libera OH- em solução aquosa

BRONSTED-LOWRY Doa 1 próton Recebe 1 próton

LEWIS Recebe par de elétrons Doa par de elétrons

Page 58: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

REAÇÕES QUÍMICASAs substâncias podem combinar-se com outras substâncias transformando-se em novas substâncias. Para estas transformações damos o nome de Reações Químicas.

Reação Química é um fenômeno onde os átomos permanecem intactos. Durante as reações, as moléculas iniciais são "desmontadas" e os seus átomos são reaproveitados para "montar" novas moléculas.

 

No nosso cotidiano, há muitas reações químicas envolvidas, como por exemplo, no preparo de alimentos, a própria digestão destes alimentos no nosso organismo, a combustão nos automóveis, o aparecimento da ferrugem, a fabricação de remédios, etc.

     

EQUAÇÃO QUÍMICA

A forma que representamos a reação química chama-se Equação Química.

Equação Química – é a representação gráfica da reação química.

Nela colocamos os elementos que estão envolvidos na reação, de forma abreviada, e como ela aconteceu, através de símbolos já padronizados.

As Equações Químicas representam a escrita usada pelos químicos e de forma universal, ou seja, é a mesma em qualquer país.

As substâncias que participam da reação química são chamadas de produtos ou reagentes na equação química.

Reagentes (1° membro) – são as substâncias que estão no início da reação. São as que irão reagir, sofrer a transformação.

Produtos (2° membro) – são as substâncias resultantes da reação química.

Exemplo: Duas moléculas de gás hidrogênio juntam-se com uma molécula de gás oxigênio formando duas moléculas de água.

2H2       +       O2    →       2 H2O

reagente                    produto

Observe que o H2 e o O2 são reagentes e H2O é o produto.

Para representar a reação química, utiliza-se uma seta apontando para o lado direito, indicando a transformação.

Em cima da seta, são utilizados alguns símbolos indicando as condições nas quais a reação deve ocorrer.

∆ - caloraq – aquoso ( em água)

Page 59: INTRODUÇÃO AO ESTUDO DE QUÍMICA

cat – catalisadorλ – energia luminosa

Em cada substância pode haver os seguintes símbolos:↑ - desprendimento de gás↓ - precipitação de um sólido

Nas equações químicas, as substâncias podem aparecer com seus estados físicos:(s) – sólido(l) – líquido(g) – gasoso

Exemplo: C (s)   +  O2 (g)   →   CO2 (g)

BALANCEAMENTO DE EQUAÇÕES QUÍMICAS

Em uma reação química, a estrutura dos átomos, enquanto elementos químicos ficam inalterados. Os átomos de um elemento não se transformam em átomos de outro elemento. Também não há perda ou criação de átomos novos (Lei de Lavoisier).

O número de átomos dos reagentes deve ser igual ao número de átomos dos produtos. Quando isso acontece, dizemos que a equação química está balanceada.

Exemplo de equação balanceada:  C +  O2    →    CO2

Exemplo de equação química não balanceada:  H2   +  O2    →    H2O

Observe que na 1ª equação há um carbono e no reagente e um carbono no produto. Também há dois oxigênios no reagente e dois no produto. A equação está corretamente balanceada.

Na 2ª equação, há dois hidrogênios no reagente e dois hidrogênios no produto, porém há dois oxigênios no reagente e apenas um no produto. Então, deve-se balancear esta equação. Há alguns métodos para balancear uma equação química. O mais fácil e simples é o Método das Tentativas.

Para balancear a 2ª equação, podemos colocar o número 2 na frente do H2 e o número 2 na frente da H2O, assim:

2 H2   +  O2    →   2 H2O

O número de átomos, por exemplo, deve ser mantido sempre. Para esse número damos o nome de índice. O número que poderá ser colocado na frente do átomo é o coeficiente, no caso, também 2. Então temos agora 4 H no reagente e 4 H no produto. Também 2 O no reagente e 2 O no produto. A reação agora está balanceada.

Quando o coeficiente for 1, ele não precisa ser escrito.  

Método das Tentativas / Acerto de Coeficientes

Para fazer o acerto dos coeficientes das reações químicas, utilizamos o método das tentativas, que consiste apenas em contar o número de átomos dos reagentes e dos produtos.

Para facilitar, podemos começar acertando os metais. Em seguida os não-metais, depois oxigênio e por último o hidrogênio.

Nesta ordem:1º) Metais2º) Não-Metais3º) Oxigênio4º) Hidrogênio 

VELOCIDADE DAS REAÇÕES

As reações químicas não ocorrem com a mesma velocidade: umas são mais rápidas, outras são bem lentas. A reação entre bicarbonato de sódio, por exemplo, e vinagre, é rápida. Basta os reagentes entrarem em contato para que ela ocorra. Já a reação que ocorre entre ferro, oxigênio e água, formando a ferrugem, é lenta.

Alguns fatores podem alterar a velocidade das reações químicas.

Page 60: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Numa reação entre um comprimido efervescente e água podemos acelerar a velocidade desta reação. Basta dividir o comprimido em pedaços iguais. Então quanto mais triturado, mais dividido, mais rápido é a reação. Este fator é a superfície de contato, que aumenta e faz com que a reação seja mais rápida.

O mesmo acontece quanto à temperatura. Se colocarmos o comprimido efervescente em água fria e outro em água quente, observaremos que com a água quente a reação ocorre mais rápida. Então, o aumento da temperatura faz com que a velocidade da reação química aumente.

TIPOS DE REAÇÕES QUÍMICAS

As reações químicas são classificadas em quatro tipos:

- síntese ou adição- análise ou decomposição- simples troca ou deslocamento- dupla troca

- SÍNTESE OU ADIÇÃO – é a reação onde duas ou mais substâncias reagem para se transformar em uma. Exemplos: C  +  O2  →    CO2

Cao  + H2O  →   Ca(OH)2

 - ANÁLISE OU DECOMPOSIÇÃO – é a reação onde uma substância se divide em duas ou mais substâncias de estrutura mais simples. Exemplos: 2AgBr  →    2Ag  + Br2

2Cu(NO3)2   →    2CuO  +  4NO2  +  O2 

 - SIMPLES TROCA OU DESLOCAMENTO – é a reação onde uma substância simples troca de lugar com um elemento de uma substância composta, se transformando em uma nova substância simples.Exemplos:Zn   +  H2SO4     →   ZnSO4  +   H2  Fe   +  CuSO4   →   FeSO4    +  Cu

  - DUPLA TROCA – é a reação onde duas substâncias compostas reagem e trocam seus elementos, se transformando em duas substâncias também compostas. Exemplos: HCl  +   NaOH   →  NaCl  +    H2O       FeS  +   2HCl     →  FeCl2  +  H2S 

LEI DE LAVOISIER

Page 61: INTRODUÇÃO AO ESTUDO DE QUÍMICA

“Numa reação química, a soma das massas dos reagentes é igual à soma das massas dos produtos.”

Segundo esta lei, num sistema químico fechado, qualquer que seja a transformação ocorrida, a massa segue constante.

Estas afirmativas obedecem a uma Lei da natureza. Descoberta pelo cientista francês Antoine Lavoisier, no final do século XVII. Por este motivo, esta lei ficou conhecida como Lei de Lavoisier ou Lei da Conservação da Massa.

É dele também a célebre frase: "Na natureza nada se perde, nada se cria. Tudo se transforma".

 

Observe:Uma reação entre as substâncias A e B transformam-se em C. A massa da substância A é 20g e de B é 5g. Qual a massa de C?

A   +    B   →   C20g     5g         x

Então: 20 + 5 = 25g de C

A   +    B   →   C20g     5g         25g

Esta reação obedece a Lei de Lavoisier, onde a soma das massas dos reagentes é igual a soma da massa dos produtos.

LEI DE PROUST

Page 62: INTRODUÇÃO AO ESTUDO DE QUÍMICA

"Uma determinada substância composta é formada por substâncias mais simples, unidas sempre na mesma proporção em massa".

O químico francês Joseph Louis Proust observou que em uma reação química a relação entre as massas das substâncias participantes é sempre constante. A Lei de Proust ou a Lei das proporções definidas diz que dois ou mais elementos ao se combinarem para formar substâncias, conservam entre si proporções definidas.

Observe: A massa de uma molécula de água é 18g e é resultado da soma das massas atômicas do hidrogênio e do oxigênio.

 

H2 – massa atômica = 1 → 2 x 1 = 2gO – massa atômica = 16 → 1 x 16 = 16g

Então 18g de água tem sempre 16g de oxigênio e 2g de hidrogênio. A molécula água esta na proporção 1:8.

m H2  =   2g  =   1____     ___      __

m O       16g       8

 

As Leis de Lavoisier e de Proust são chamadas de Leis Ponderais porque estão relacionadas à massa dos elementos químicos nas reações químicas. 

 

ESTEQUIOMETRIAEstequiometria é a parte da Química que estuda as proporções dos elementos que se combinam ou que reagem.

Page 63: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

MASSA ATÔMICA (u)

É a massa do átomo medida em unidades de massa atômica (u).

A massa atômica indica quantas vezes o átomo considerado é mais pesado que  do isótopo C12. 

Na natureza, quase todos os elementos são misturas dos seus isótopos com diferentes porcentagens em massa. Estas porcentagens são chamadas de abundâncias relativas.

Veja a abundância relativa do cloro:

Isótopo Abundância Relativa Massa Atômica

Cl35 75,4% 34,969 u

Cl37 24,6% 36,966 u

 

A massa atômica do cloro que aparece na Tabela Periódica dos Elementos é a média ponderada destas massas. O cálculo é feito desta maneira:

Veja a porcentagem dos isótopos do hidrogênio na natureza:

           1H1 1H² 1H³

    99,9% 0,09% 0,01%

Hidrogênio Deutério Trítio

 

Antigamente, utilizava-se o termo "peso atômico". Mas deve-se evitar este termo. Para determinar as massas atômicas dos elementos é utilizado um aparelho chamado espectrômetro de massas.

MASSA MOLECULAR (MM)

É a massa da molécula medida em unidades de massa atômica. Para cálculos estequioméricos, utliza-se a unidade gramas (g).

O cálculo da massa molecular é feito a partir das massas atômicas dos elementos e a soma dos seus átomos na molécula.

Assim:

H2O (água)

O = 1x 16 = 16H = 2 x 1 = 2MM = 16 + 2 = 18g ou 18u

Na fórmula da água há 1 átomo de O que é multiplicado pela sua massa atômica (16), resultando em 16.

Há dois átomos de H que é multiplicado pela sua massa atômica (1), resultando em 2.Estes resultados são somados e desta forma encontramos o valor da massa molecular, 18g ou 18u.

Veja outros exemplos:

CO2 (dióxido de carbono)

O = 2 x 16 = 32C = 1 x 12 = 12MM = 32 + 12 = 44g ou 44u

Page 64: INTRODUÇÃO AO ESTUDO DE QUÍMICA

C12H22O11 (sacarose)

O = 11 x 16 = 176H = 22 x 1 = 22C = 12 x 12 = 144MM = 176 + 22 + 144 = 342g ou 342u

Mg(OH)2  (hidróxido de magnésio)

H = 2 x 1 = 2O = 2 x 16 = 32Mg = 1 x 24 = 24MM = 2 + 32 + 24 = 58g ou 58u

Ca(NO3)2  (nitrato de cálcio)

O = 6 x 16 = 96N = 2 x 14 = 28Ca = 1 x 40 = 40MM = 96 + 28 + 40 = 164g ou 164u

CuSO4.5H2O (sulfato cúprico penta-hidratado)

O = 5 x 16 = 80H = 10 x 1 = 10O = 4 x 16 = 64S = 1 x 32 = 32Cu = 1 x 63,5 = 63,5MM = 80 + 10 + 64 + 32 + 63,5 = 249,5g ou 249,5u

Fórmula Mínima

É uma fórmula que fornece o número relativo entre os átomos da substância.Mostra a proporção em número de átomos dos elementos expressa em número inteiros e os menores possíveis.

Veja a fórmula mínima de algumas substâncias e sua fórmula moleculares:

Substância Fórmula Molecular Fórmula Mínima

Água Oxigenada H2O2 HO

Glicose C6H12O6 CH2O

Ácido Sulfúrico H2SO4 H2SO4

Geralmente, as fórmulas mínimas são uma “simplificação matemática” da fórmula molecular. A água oxigenada pode ser dividida por 2 formando a fórmula mínima acima. Na glicose, a fórmula molecular foi dividida por 6 e no ácido sulfúrico, não é possível dividir por um número inteiro, então a fórmula mínima fica igual à fórmula molecular.

Composição Centesimal ou Análise Elementar

A fórmula centesimal fornece o percentual dos átomos que compõe a substância. Representa a proporção em massa que existe na substância. É sempre constante e segue a Lei de Proust.

Exemplo:

C: 85,6%H: 14,4%

Veja como calcular a fórmula centesimal a partir de dados obtidos da análise da substância:

A análise de 0,40g de um certo óxido de ferro revelou que ele possui 0,28g de ferro e 0,12g de oxigênio. Qual é a sua fórmula centesimal?

 

x = 70% de Fe

Page 65: INTRODUÇÃO AO ESTUDO DE QUÍMICA

  x = 30%

Então, neste óxido possui 70% de Fe e 30% de O.

MOL

A palavra mol foi utilizada pela primira vez pelo químico Wilhem Ostwald em 1896. Em latim, esta palavra significa mole, que significa”monte”, “quantidade”. A partir desta palavra também originoumolécula, que quer dizer pequena quantidade. 

Algumas mercadorias são vendidadas em quantidades já definidas, como por exemplo a dúzia (6), a resma (500) e etc.

O mol também determina quantidade. Pode determinar também massa e volume. Veja o esquema a seguir:

O mol indica quantidade. Um mol de qualquer coisa possui 6,02.1023 unidades. É utilizado em química para referir-se à matéria microscópica, já que este número é muito grande. Pode ser usado para quantificar átomos, moléculas, íons, número de elétrons, etc.

O número 6,02.1023 é a constante de Avogadro.

Exemplos:

1 mol de átomos de H tem 6,02.1023 átomos.2 mol de átomos de H tem 2 x 6,02.1023 átomos = 12,04.1023 átomos de H

O mol indica massa. Um mol de um elemento é igual a sua massa molecular em gramas (g).

Exemplos:

1 mol de água tem 18g2 mol de água tem 2 x 18 = 36g

O mol indica volume. Na realidade, indica o volume ocupado por um gás nas CNTP (condições normais de temperatura e pressão). Para gases que estão nestas condições, o valor de um mol é 22,4L (litros).

CNTP: T=0°C = 273KP = 1atm = 760mmHg

Exemplos:

1 mol de CO2 ocupa que volume nas CNTP? 22,4L2 mol de CO2 ocupa que volume nas CNTP? 2 x 22,4L = 44,8L

Para gases que não estão nestas condições, utiliza-se a fórmula do Gás Ideal ou Equação de Clapeyron:

P.V = n.R.T

Onde:P = pressão do gás (atm)V = volume do gás (L)n = número de mols do gás (mol)R = constante de Clapeyron = 0,082atm.L/mol.KT = temperatura do gás (K)

Page 66: INTRODUÇÃO AO ESTUDO DE QUÍMICA

ESTEQUIOMETRIA COMUM / ESTEQUIOMETRIA DA FÓRMULA:

Os cálculos estequiométricos são cálculos que relacionam as grandezas e quantidades dos elementos químicos. Utiliza-se muito o conceito de mol nestes cálculos. É muito importante saber transformar a unidade grama em mol. Pode-se usar a seguinte fórmula:

Onde:n = número de mol (quantidade de matéria)

m = massa em gramasMM = massa molar (g/mol)

Exemplo:

Quantas gramas existem em 2 mol de CO2?

                               

Este cálculo pode ser feito também por Regra de Três:

Para os cálculos com regra de três, sempre devemos colocar as unidade iguais uma embaixo da outra, como no exemplo acima.

Outros exemplos de cálculos estequiométricos envolvendo apenas a fórmula química:

1. Quantos mols há em 90g de H2O?

 

90 = 18. x

5 mol = x

1. Quantas moléculas de água há em 3 mol de H2O?

 

x = 3 . 6,02.1023x = 18,06. 1023 ou 1,806.1024 moléculas

3) Qual o volume ocupado por 4 mol do gás Cl2 nas CNTP?

Page 67: INTRODUÇÃO AO ESTUDO DE QUÍMICA

x  = 4 x 22,4x = 89,6L

4) Quantos mols existem em 89,6L do gás CO2 nas CNTP?

x = 4 mol

ESTEQUIOMETRIA DA EQUAÇÃO QUÍMICA

Os cálculos estequiométricos que envolvem uma reação química consistem em encontrar as quantidades de certas substâncias a partir de dados de outras substâncias que participam da mesma reação química. 

Estes cálculos são feitos através de proporções. Deve-se levar em conta os coeficientes, que agora serão chamados de coeficientes estequiométricos.

Veja alguns passos que podem ser seguidos para montar e calcular:

1. fazer o balanceamento da equação química (acertar os coeficientes estequiométricos);2. fazer contagem de mol de cada substância;3. ler no problema o que pede;4. relacionar as grandezas;5. calcular com regra de três (proporção).

Exemplos:1) 108g de metal alumínio reagem com o ácido sulfúrico, produzindo o sal e hidrogênio, segundo a reação abaixo:

Determine:a) o balanceamento da equação:

  

Isto quer dizer que 2 mol de Al reage com 3 mol de H2SO4 reagindo com 1 mol de Al2(SO4)3 e 3 mol de H2

b) a massa o ácido sulfúrico necessária para reagir com o alumínio:1°) passo:                                      2°) passo:   

            

                                         

                         

3°) passo:

Page 68: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 x = 588g de H2SO4

Relacionar a massa de ácido com a massa de alumínio, como no 3° passo. Antes, no 1° e no 2°passo, transformar o número de mol em gramas.

CÁLCULO DE PUREZA

O cálculo de pureza é feito para determinar a quantidade de impurezas que existem nas substâncias. 

Estes cálculos são muito utilizados, já que nem todas as substâncias são puras.

Exemplo:

Uma amostra de calcita, contendo 80% de carbonato de cálcio, sofre decomposição quando submetida a aquecimento, de acordo com a reação:

Qual massa de óxido de cálcio obtida a partir da queima de 800g de calcita?

x = 640g de CaCO3  

Para o restante do cálculo, utiliza-se somente o valor de CaCO3  puro, ou seja, 640g.

x = 358,4g de CaO

CÁLCULO DE RENDIMENTO

É comum, nas reações químicas, a quantidade de produto ser inferior ao valor esperado. Neste caso, o rendimento não foi total. Isto pode acontecer por várias razões, como por exemplo, má qualidade dos aparelhos ou dos reagentes, falta de preparo do operador, etc.

O cálculo de rendimento de uma reação química é feito a partir da quantidade obtida de produto e a quantidade teórica (que deveria ser obtida).

Quando não houver referência ao rendimento de reação envolvida, supõe-se que ele tenha sido de 100%.

Page 69: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Exemplo:

Num processo de obtenção de ferro a partir do minério hematita (Fe2O3), considere a equação química não-balanceada:

Utilizando–se 480g do minério e admitindo-se um rendimento de 80% na reação, a quantidade de ferro produzida será de:

Equação Balanceada: Dados:  1Fe2O3 = 480g                                               2Fe = x (m) com 80% de rendimentoMM Fe2O3 = 160g/molMM Fe = 56g/mol

x = 336g de Fe

Cálculo de Rendimento:

x = 268,8g de Fe

CÁLCULO DO REAGENTE LIMITANTE E EM EXCESSO:

Para garantir que a reação ocorra e para ocorrer mais rápido, é adicionado, geralmente, um excesso de reagente. Apenas um dos reagentes estará em excesso. O outro reagente será o limitante.

Estes cálculos podem ser identificados quando o problema apresenta dois valores de reagentes. É necessário calcular qual destes reagentes é o limitante e qual deles é o que está em excesso.

Depois de descobrir o reagente limitante e em excesso, utiliza-se apenas o limitante como base para os cálculos estequiométricos. 

Exemplos:

1) Zinco e enxofre reagem para formar sulfeto de zinco de acordo com a seguinte reação:

Reagiu 30g de zinco e 36g de enxofre. Qual é o regente em excesso?

Balancear a reação química: Dados:

Page 70: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Zn = 30gS = 36g

Transformar a massa em gramas para mol:

              

                                                

                      

Pela proporção da reação 1mol de Zn reage com 1mol de S.Então 0,46mol de Zn reage com quantos mols de S?Pode ser feita uma regra de três para verificar qual regente está em excesso:

 x = 0,46mol de S

Então 1mol de Zn precisa de 1mol de S para reagir. Se temos 0,46mol de Zn, precisamos de 0,46mol de S, mas temos 1,12mol de S. Concluímos que o S está em excesso e, portanto o Zn é o regente limitante.

2) Quantos gramas de ZnS será formado a partir dos dados da equação acima?

Para resolver esta pergunta, utiliza-se somente o valor do reagente limitante.

 

x = 44,68g de ZnS

Algumas constantes e conversões úteis:

1atm = 760mmHg = 101325Pa1Torr = 1mmHg

R= 0,082atm.L/mol.KR= 8,314/mol.KR= 1,987cal/mol.K

Número de Avogadro: 6,02.1023

1mL = 1cm³1dm³ = 1L = 1000mL

1000Kg = 1ton1Kg = 1000g1g = 1000mg

Page 71: INTRODUÇÃO AO ESTUDO DE QUÍMICA

1nm = 1.10-9m

 

FORMULAS E DICAS:

ESTEQUIOMETRIAAntes de efetuar um cálculo estequiométrico é importante saber cacular a massa atômica das substâncias.

Cálculo da massa molecular (MM)

Sua unidade é em gramas (g). Procura-se o valor da massa atômica do elemento químico na tabela períodica.

Ex.

He = 4,00g

Ne = 20,18g

Se na substância tiver mais de um elemento ou do mesmo elemento, calcula-se somando as massas atômicas destes elementos. Se tiver do mesmo, multiplica-se.

Ex.

H2O = 16 + 2. (1) = 18g

C12H22O11 = 11. (16) + 22. (1) + 12. (12) = 342g

Ca(NO3)2  = 2.3.(16) + 2. (14) + 40 = 164g

MOL

O mol sempre indica:- quantidade - massa- volume

A quantidade é um número muito grande que foi determinado experimentalmente, o Número de Avogadro (6,02.1023).

Assim como existe a dúzia, existe o Número de Avogadro.Se a dúzia indica 12 unidades de qualquer coisa, o Número de Avogadro indica  6,02.1023 unidades de qualquer coisa. Neste caso, é usado para quantificar átomos, moléculas, íons e tantas outras partículas subatômicas, muito pequenas.

O mol também indica massa. É a mesma massa que encontramos na Tabela Periódica, porém em gramas (g). portanto um mol de uma substância é igual à sua massa atômica.

O mol indica volume nas CNTP, que quer dizer condições normais de temperatura e pressão. A temperatura deve ser 0°C ou 273K e a pressão 1 atm. Se estas condições forem satisfeitas, um mol de um gás será 22,4L.

Esta constante é para gases. Se o gás não estiver nas CNTP, pode se calcular através da seguinte fórmula para gases ideiais:

P.V = n. R. T

Onde: P = pressão (atm)V = volume (L)n = número de molsR = constante de Clapeyron = 0,082 atm.L/mol.KT = temperatura (K)

 

Estequiometria Comum ou da Fórmula

Estes cálculos são relações de grandezas. Utiliza-se regras de três simples.

Colocar sempre na primeira linha os dados que já sabemos e na segunda linha os dados que devem ser calculados.

Page 72: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Veja o exemplo:

- Quantas gramas de água há em 3 mol de água?

Se 1 mol há 18 gramas (calcular a massa molecular com a ajuda da tabela periódica) então 3 mol tem quantas gramas?

Na primeira linha, coloca-se os dados conhecidos, ou seja, que um mol tem 18 gramas:

Na segunda linha, coloca-se os dados que queremos calcular, ou seja, que 3 mols terá x gramas.

Sempre colocando unidade embaixo da mesma unidade.

Assim temos:

1 mol   –   18g3 mol   –    x(g)

x = 54g de H2O

Estequiometria da Equação Química

Para estes cálculos, pode-se seguir alguns passos:

1. fazer o balanceamento da equação química (acertar os coeficientes estequiométricos);2. fazer contagem de mol de cada substância;3. ler no problema o que pede;4. relacionar as grandezas;5. calcular com regra de três (proporção).

É sempre importante relacionar as substâncias que tem dados e a substância que se deseja calcular alguma grandeza.

Cálculo de Pureza

Este cálculo é muito utilizado nos laboratórios químicos, já que nenhuma substância é 100% pura.

Sempre há alguma impureza. Por este motivo, alguns problemas já indicam a quantidade de impureza ou o quanto a substância é pura.

Se uma amostra de 40g de NaCl é 70% pura, quanto de NaCl há na amostra?

40g    –   100%x (g)   –   70%

x = 28g de NaCl

Este é o primeiro passo para os cálculos estequiométricos que envolvem reações químicas com cálculo de pureza.

Cálculo de Rendimento

Nenhuma reação química tem 100% de aproveitamento. Geralmente a quantidade de produto pode ser inferior ao valor esperado. Neste caso, o rendimento não foi total. Isto pode acontecer por várias razões, como por exemplo, má qualidade dos aparelhos ou dos reagentes, falta de preparo do operador, etc.

O cálculo de rendimento é feito relacionando o valor esperado e o valor obtido de produto.

- Numa determinada reação química deve-se obter 500g. Porém, a reação só teve 60% de rendimento. Qual o valor da massa obtida de produto?

100 %    –   500g60%     –   x (g)

x = 300g

Constantes e conversões úteis:

Constante de Clapeyron:R= 0,082atm.L/mol.KR= 8,314/mol.KR= 1,987cal/mol.K

Número de Avogadro: 6,02.1023

Page 73: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Pressão:1atm = 760mmHg = 101325Pa1Torr = 1mmHg

Volume:1mL = 1cm³1dm³ = 1L = 1000mL

Massa:1000Kg = 1ton1Kg = 1000g1g = 1000mg

Comprimento:1nm = 1.10-9m

Fórmula para cálculo do número de mols (n):

Onde:n = número de mols

m = massa (g)MM = massa molar (g/mol)

RADIOATIVIDADEAlguns átomos, principalmente os de grande massa, se desintegram espontaneamente, manifestando radioatividade.

Pierre Curie e Marie Curie, o casal Curie estudou a radioatividade dos sais de urânio. Eles verificaram que todos os sais de urânio tinham a propriedade de impressionar chapas fotográficas.

Concluíram que o responsável pelas emissões era o urânio (U).

  

Fizeram muitas experiências, extraindo e purificando o urânio (U) a partir do minério pechblenda (U3O).

Page 74: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Observaram que as impurezas eram mais radioativas do que o próprio urânio. Separaram, em 1898, das impurezas, um novo elemento químico, o Polônio (Po) em homenagem à terra natal de Marie Curie, a Polônia. O Polônio é 400 vezes mais radioativo do que o urânio.

Mais experimentos foram feitos pelo casal e foi descoberto outro elemento químico, o Rádio (Ra), 900vezes mais radioativo que o urânio. Este elemento torna luninescente (azulado) quando esta no escuro e torna fluorescente algumas substãncias como ZnS, BaS, etc…Os átomos dos elementos radioativos são muito instáveis. Por este motivo, a radioatividade se manifesta pela emissão de partículas do núcleo do átomo ou de radiação eletromagnética.

Desintegração ou Decaimento Nuclear – processo onde os núcleos instáveis emitem partícula e ondas eletromagnéticas para conseguir estabilidade.

Só é radioativo o elemento que tem seu núcleo instável. A estabilidade do núcleo atômico é determinada pelo número de massa (A), ou seja, quantidade de prótons mais nêutrons. A estabilidade só é rompida nos átomos com número de massa muito grande. A partir do polônio (Pó-84), todos os elementos têm instabilidade. 

Há alguns átomos mais leves com núcleos instáveis, em proporções mínimas. São os chamados isótopos radioativos ou radioisótopos.

 

DESINTEGRAÇÃO RADIATIVA

Quando ocorre a desintegração, os núcleos liberam radiação em forma de partículas alfa (α), beta (β) e raios gama (γ).

Desintegração alfa

Consiste na emissão da partícula alfa (α). Esta partícula é carregada positivamente, sendo sua carga 2+. É formada por dois prótons e 2 nêutrons expelidos do núcleo.

Primeira Lei da Radioatividade / Lei de Soddy

“Quando um núcleo emite uma partícula alfa (α), seu número atômico diminui duas unidades e seu número de massa diminui 4 unidades.”

Exemplo:

235                      231                     4 U            →          Th       +             α 92                        90                      2    átomo-pai            átomo-filho     partícula  alfa

Page 75: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Desintegração beta

Consiste na emissão de partícula beta (β). É formada por um elétron que é “atirado” em altíssima velocidade para fora do núcleo. Na verdade, o elétron não está no núcleo. O elétron é emitido por causa do núcleo instável.

Segunda Lei da Radioatividade / Lei de Soddy-Fajans-Russel

“Quando um núcleo emite uma partícula beta (β), seu número atômico aumenta uma unidade e seu número de massa não se altera.”

Exemplo: 

210                  210                     0   Bi          →           Po         +         β  83                       84                     1-   átomo-pai           átomo-filho      partícula beta

Lembre-se que a carga elétrica relativa do elétron é 1-.Neste caso, o átomo-pai e o átomo-filho são isóbaros.Os átomos de tório, césio e estrôncio emitem radiação β.O tório-234, por exemplo, se transforma em protactínio-234 emitindo um elétron, partícula beta.

Desintegração gama

As emissões gama (γ) não são partículas. São ondas eletromagnéticas, assim como a luz ou ondas luminosas.

Possui um poder de penetração maior que a alfa e beta. Conseguem atravessar até 20cm no aço e 5 cm no chumbo (Pb). Por este motivo, estas emissões são muito perigosas do ponto de vista fisiológico. Podem danificar tecidos vivos e até matar.

A emissão gama (γ) não altera nem o número atômico e nem o número de massa.O rádio-226, por exemplo, se transforma em radônio-222, emitindo radiação gama e também partículas alfa.

Page 76: INTRODUÇÃO AO ESTUDO DE QUÍMICA

DECAIMENTO E MEIA-VIDA

Radioatividade – É a propriedade que os núcleos atômicos instáveis possuem de emitir partículas e radiações eletromagnéticas para se transformarem em núcleos mais estáveis. Para este fenômeno, damos o nome de reação de desintegração radioativa, reação de transmutação ou reação de decaimento. A reação só acaba com a formação de átomos estáveis.

Exemplos:

U -238 sofre decaimento até se transformar em Pb-206.

O tempo que os elementos radioativos levam para ficarem estáveis, varia muito.

Meia-Vida – É o tempo necessário para a metade dos isótopos de uma amostra se desintegrar.

Um conjunto de átomos radioativos pode estar se desintegrando neste instante. Outro átomo pode se desintegrar daqui há uma hora. Outro, pode desintegrar daqui há três meses.O U-235 é o elemento com meia-vida mais longa. Tem cerca de 7,04.108anos.

Exemplo de um gráfico de Meia-vida: Atividade x Tempo

Exemplo de decaimento do bismuto- 210 

EFEITOS DA RADIOATIVIDADE NOS ORGANISMOS

Os efeitos da radioatividade no ser humano dependem da quantidade acumulada no organismo e do tipo de radiação. A radioatividade é inofensiva para a vida humana em pequenas doses, mas, se a dose for excessiva, pode provocar lesões no sistema nervoso, no aparelho gastrintestinal, na medula óssea, etc., Muitas vezes pode levar a morte (em poucos dias ou num espaço de dez a quarenta anos, através de leucemia ou outro tipo de câncer).

Estar em contato com a radiação é algo sutil e impossível de ser percebido imediatamente, já que no momento do impacto não ocorre dor ou lesão visível.

A radiação ataca as células do corpo, fazendo com que os átomos que compõem as células sofram alterações em sua estrutura. As ligações químicas podem ser alteradas, afetando o funcionamento das células. Isso provoca, com o tempo, conseqüências biológicas no funcionamento do organismo como um todo; algumas conseqüências podem ser percebidas a curto prazo, outras a longo prazo.

Page 77: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Às vezes vão apresentar problemas somente os descendentes (filhos, netos) da pessoa que sofreu alguma alteração genética induzida pela radioatividade.

SOLUÇÕESAs misturas podem ser homogêneas ou heterogêneas.

As misturas homogêneas possuem uma fase distinta.

As misturas heterogêneas possuem duas ou mais fases distintas.

Solução é uma mistura homogênea entre duas ou mais substâncias. O processo utilizado para obter essa mistura é chamdo de dissolução.

 

Uma solução é sempre formada pelo soluto e pelo solvente.

Page 78: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

Soluto – substância que será dissolvida.Solvente – substância que dissolve.

A água é chamada de solvente universal. Isso porque ela dissolve muitas substâncias e está presente em muitas soluções.

As soluções podem ser formadas por qualquer combinação envolvendo os três estados físicos da matéria: sólido, líquido e gasoso.

Exemplos de soluções no nosso dia-a-dia:

- álcool hidratado - acetona- água mineral- soro fisiológico

Tipos de Dispersão

Dispersão – são sistemas nos quais uma substância está disseminada, sob a forma de pequenas partículas, em uma segunda substância.

Um exemplo é a mistura entre água e areia em um copo. No início, a mistura fica turva, mas com o passar do tempo, as partículas maiores vão de depositando no fundo do copo. Mesmo assim, a água ainda fica turva na parte de cima. A água não ficará totalmente livre de areia.

De acordo com o tamanho das partículas, podemos classificar estas dispersões em solução verdadeira, colóide e suspensão.

Veja a seguir o diâmetro médio das partículas dispersas:

Dispersão Diâmetro médio

Soluções Verdadeiras Entre 0 e 1nm

Colóides Entre 1 e 1.000nm

Suspensões Acima de 1.000nm

Obs. 1nm (nanômetro) = 1.10-9m

SOLUÇÃO

São misturas homogêneas translúcidas, com diâmetro médio das partículas entre 0 e 1nm.

Exemplos: açúcar na água, sal de cozinha na água, álcool hidratado. 

COLÓIDES

São misturas homogêneas que possuem moléculas ou íons gigantes. O diâmetro médio de suas partículas é de 1 a 1.000nm. Este tipo de mistura dispersa facilmente a luz, por isso são opacas, não são translúcidas.

Podem ser sólidas, líquidas ou gasosas.

Page 79: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O termo colóide vem do grego e significa "cola" e foi proposto por Thomas Grahm, em 1860 para as denominar as substâncias como o amido, cola, gelatina e albumina, que se difundiam na água lentamente em comparação com as soluções verdadeiras (água e açúcar, por exemplo).

Apesar dos colóides parecerem homogêneos a olho nu, a nível microscópico são heterogêneos. Isto porque não são estáveis e quase sempre precipitam.

Exemplos: maionese, shampoo, leite de magnésia, neblina, gelatina na água, leite, creme.

Suspensão – são misturas com grandes aglomerados de átomos, íons e moléculas. O tamanho médio das partículas é acima de 1.000nm.

Exemplos: terra suspensa em água, fumaça negra (partículas de carvã suspensam no ar). 

COEFICIENTE DE SOLUBILIDADE

Quando adicionamos sal a um copo com água, dependendo da quantidade colocada neste copo, o sal se dissolverá ou não. O mesmo acontece quando colocamos muito açúcar no café preto. Nem todo o açúcar se dissolverá no café. A quantidade que não se dissolver ficará depositada no fundo.

O Coeficiente de Solubilidade é a quantidade necessária de uma substância para saturar uma quantidade padrão de solvente, em determinada temperatura e pressão.

Em outras palvras, a solubilidade é definida como a concentração de uma substância em solução, que está em equilíbrio com o soluto puro a uma dada temperatura.

Exemplos:AgNO3 – 330g/100mL de H2O a 25°CNaCl – 357g/L de H2O a 0°CAgCl – 0,00035g/100mL de H2O a 25°C

Veja que o AgCl é muito insolúvel. Quando o coeficiente de solubilidade é quase nulo, a substância é insolúvel naquele solvente.

Quando dois líquidos não se misturam chamamos de líquidos imiscíveis (água e óleo, por exemplo). Quando dois líquidos se misturam em qualquer proporção, ou seja, o coeficeinte de solubilidade é infinito, os líquidos são miscíves (água e álcool, por exemplo).   

Classificação das Soluções Quanto à Quantidade de Soluto

De acordo com a quantidade de soluto dissolvida na solução podemos classificá-las em: solução saturada, solução insaturada e solução supersaturada.

Solução Saturada – são aquelas que  atingiram o coeficiente de solubilidade. Está no limite da saturação. Contém a máxima quantidade de soluto dissolvido, está em equilíbrio com o soluto não-dissolvido, em determinada temperatura. Dizer que uma solução é saturada é o mesmo que dizer que a solução atingiu o ponto de saturação. 

Solução Insaturada (Não-saturada) – são aquelas que contém menos soluto do que o estabelecido pelo coeficiente de solubilidade. Não está em equilíbrio, porque se for adicionado mais soluto, ele se dissolve até atingir a saturação.

Solução Supersaturada – são aquelas que contém mais soluto do que o necessário para formar uma solução saturada, em determinada temperatura. Ultrapassa o coeficiente de solubilidade. São instáveis e podem precipitar,  formando o chamado precipitado (ppt) ou corpo de chão.

CURVAS DE SOLUBILIDADE

São gráficos que apresentam variação dos coeficientes de solubilidade das substâncias em função da temperatura.

Veja os coeficientes de solubilidade do nitrato de potássio em 100g de água. A a partir destes dados é possível montar a curva de solubilidade.

Page 80: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Temperatura (°C) (g) KNO3 /100g de água

0 13,3

10 20,9

20 31,6

30 45,8

40 63,9

50 85,5

60 110

70 138

80 169

90 202

100 246

Para qualquer ponto em cima da curva de solublidade, a solução é saturada.Para qualquer ponto acima da curva de solubilidade, a solução é supersaturada.Para qualquer ponto abaixo da curva de solubilidade, a solução é insaturada.

Através do gráfico também é possível observar que a solubilidade aumenta com o aumento da tempratura. Em geral, isso ocorre porque quando o soluto se dissolve com absorção de calor (dissolução endotérmica). As substâncias que se dissolvem com liberação de calor (dissolução exotérmica) tendem a ser menos solúveis a quente.

Curva de Solubilidade de alguns saisFONTE: http://www.furg.br/furg/depto/quimica/solubi.html

Page 81: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 FONTE: http://luizclaudionovaes.sites.uol.com.br/solub.1.gif

Observando o gráfico acima sobre a solubilidade de alguns sais, responda:

1) Qual o soluto mais solúvel a 0°C?

É o KI, porque solubiliza quase 130g em 100g de água.

2) Qual o C.S. aproximado do NaNO3 a 20°C?

90

3) Se a temperatura de uma solução baixar de 70°C para 50°C, qual será aproximadamente a massa do KBr que precipitará?

70°C = 90g50°C = 80gEntão: 90-80 = 10g

4)  Qual sal tem a solubilidade prejudicada pelo aquecimento?

Na2SO4

5) Se o KNO3 solubiliza 90g em 100g de água a 50°C, quanto solubilizará quando houver 50g de água?

x = 45g de sal KNO3

6) Que tipo de solução formaria 80g do sal NH4Cl a 20°C?

Solução Supersaturada.

Soluções Importantes no Cotidiano:

Ácido Acético Ácido Acético a 4% Temperar alimentos

Álcool Hidratado Hidratado 96% Álcool doméstico, empregado na  em limpeza

Page 82: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Soda Cáustica NaOH (líquido) Remoção de crosta de gorduras e fabricação de sabão

Soro Fisiológico NaCl (aquoso) 0,9% Medicina e limpeza de lentes de contato

Formol Metanal 40% Conservação de tecido animal

Aliança de ouro Ouro 18 quilates Joalheria

Água Sanitária Hipoclorito de sódio a 5% Bactericida e alvejante

Quanto à proporção do soluto/solvente

A solução pode ser:- Concentrada: grande quantidade de soluto em relação ao solvente.Exemplo: H2SO4 conc = ácido sulfúrico 98% + água

- Diluída: pequena quantidade de soluto em relação ao solvente.Diluir significa adicionar mais solvente puro a uma determinada solução.Exemplo: água + pitada de sal de cozinha.

TIPOS DE CONCENTRAÇÃO

Concentração é o termo que utilizamos para fazer a relação entre a quantidade de soluto e a quantidade de solvente em uma solução. As quantidades podem ser dadas em massa, volume, mol, etc.Observe: m1= 2gn2 = 0,5molV = 14L

Cada grandeza tem um índice. Utilizamos índice:1 = para quantidades relativas ao soluto 2 = para quantidades relativas ao solventenenhum índice = para quantidades relativas à solução

Exemplos:massa de 2g do soluto NaCl: m1= 2gnúmero de mols de 0,5mol do solvente água: n2 = 0,5molvolume da solução de 14L: V = 14L

As concentrações podem ser:

1. Concentração Comum2. Molaridade3. Título4. Fração Molar5. Normalidade

Concentração Comum (C)

É a relação entre a massa do soluto em gramas e o volume da solução em litros. 

Onde:C = concentração comum (g/L)m1= massa do soluto(g)V = volume da solução (L)

Exemplo:

Qual a concentração comum em g/L de uma solução de 3L com 60g de NaCl?

Page 83: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Concentração comum é diferente de densidade, apesar da fórmula ser parecida. Veja a diferença:

A densidade é sempre da solução, então:

Na concentração comum, calcula-se apenas a msoluto, ou seja, m1

Molaridade (M)

A molaridade de uma solução é a concentração em número de mols de soluto e o volumede 1L de solução. 

Onde:M = molaridade (mol/L)n1= número de mols do soluto (mol)V = volume da solução (L)

O cálculo da molaridade é feito através da fórmula acima ou por regra de três. Outra fórmula que utilizamos é para achar o número de mols de um soluto:

Onde:n = número de mols (mol)m1 = massa do soluto (g)MM = massa molar (g/mol)

Exemplo:       

Qual a molaridade de uma solução de 3L com 87,75g de NaCl? 

                     

                  

                 

Podemos utilizar uma única fórmula unindo a molaridade e o número de mols:

Onde:M = molaridade (mol/L)

m1 = massa do soluto (g)MM1= massa molar do soluto (g/mol)

V = volume da solução (L)

Page 84: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Título ( ) e Percentual (%)

É a relação entre soluto e solvente de uma solução dada em percentual (%). 

Os percentuais podem ser:

- Percentual massa/massa ou peso/peso: %m/m ; %p/p

- Percentual massa/volume:%m/V ; %p/V

   - Percentual volume/volume:%v/v

Exemplos: 

NaCl 20,3% = 20,3g em 100g de solução50% de NaOH = 50g de NaOH em 100mL de solução (m/v)46% de etanol = 46mL de etanol em 100mL de solução (v/v)

O título não possui unidade. É adimensional. Ele varia entre 0 e 1. O percentual varia de 0 a 100.

   ou   

Para encontrar o valor percentual através do título:

Relação entre concentração comum, densidade e título:

      Relação entre outras grandezas:

Ou simplesmente: 

 

Exemplo:

1) Uma solução contém 8g de NaCl e 42g de água. Qual o título em massa da solução? E seu título percentual?

                        % = ?                          

                                                                                        

Page 85: INTRODUÇÃO AO ESTUDO DE QUÍMICA

                                   

   

                                   

2) No rótulo de um frasco de HCl há a seguinte informação:

título percentual em massa = 36,5%densidade = 1,18g/mL

Qual a molaridade desse ácido?

Transformar o percentual em título:

Depois aplicar a fórmula:

Para achar a molaridade:

Fração Molar (x)

A fração molar é uma unidade de concentração muito utilizada em físico-química. Pode ser encontrado o valor da fração molar do soluto e também do solvente. É uma unidade adimensional. 

     ou     

 

    ou     

Então:

Onde:x = fração molar da soluçãox1= fração molar do soluto

x2 = fração molar do solventen1= n°de mol do soluto

n2 = n° de mol do solventen = n° de mol da solução

Observação:

Exemplo:

Adicionando-se 52,0g de sacarose, C12H22O11 a 48,0g de água para formar uma solução, calcule para a fração molar da sacarose nesta solução:

Page 86: INTRODUÇÃO AO ESTUDO DE QUÍMICA

             

Para achar a fração molar do soluto (sacarose):

 

 

Normalidade (N ou η)

É a relação entre o equivalente-grama do soluto pelo volume da solução. A unidade é representada pela letra N (normal). Está em desuso, mas ainda pode ser encontrada em alguns rótulos nos laboratórios.

Onde:                                                            N = normalidade (N)

n Eqg1 = número de equivalente-grama do solutoV = volume da solução

Como calcular o equivalente-grama?Para ácido:

Onde: 1E ácido = 1 equivavelnte-grama do ácidoMM = massa molar

Exemplo:Quantas gramas tem 1E (um equivalente-grama) de HCl?

            

Para base: 

Onde: 1E base = 1 equivavelnte-grama da baseMM = massa molar

Exemplo: Quantos equivalentes-grama tem em 80g de NaOH?

         

Page 87: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Para sal: 

Onde:1E sal = 1 equivavelnte-grama do salMM = massa molar

Exemplo: Quantas gramas tem 1E de NaCl?

        

Resumindo as três fórmulas, o equivalente-grama pode ser dado por:

Onde:MM = massa molarx = n° de H+, n° de OH- ou n° total de elétrons transferidos

Algumas relações entre normalidade, molaridade e massa:

          

Exemplo de cálculo envolvendo normalidade:Qual a massa de ácido sulfúrico (H2SO4) contida em 80mL de sua solução 0,1N?

Dados: MM = 98g/molV = 80mL = 0,08LN = 0,1Nm1= ?

Calcular o equivalente-grama:

Calcular a massa:

             

DILUIÇÃO

Consiste em adicionar mais solvente puro a uma determinada solução.

A massa de uma solução após ser diluída permance a mesma, não é alterada, porém a sua concentração e o volume se alteram. Enquanto o volume aumenta, a concentração diminui. Veja a fórmula:

Page 88: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Onde: M1 = molaridade da solução 1M2 = molaridade da solução 2V1 = volume da solução 1V2 = volume da solução 2

Para esta fórmula, sempre M1 e V1 são mais concentrados e M2 e V2 são mais diluídos. 

Exemplo:

Um químico deseja preparar 1500mL de uma solução 1,4mol/L de ácido clorídrico (HCl), diluindo uma solução 2,8mol/L do mesmo ácido. Qual o volum de solução que havia na primeira solução a ser diluída?

Dados:

              

Observe que as unidades de volume foram mantidas em mL. Se uma das unidades for diferente, deve-se transformar para litros. 

MISTURA DE SOLUÇÕES

- De mesmo soluto: na mistura de soluções de mesmo soluto não há reação química entre estas soluções. Neste caso, o valor do volume final é a soma das soluções. 

Onde:C = concentração comum (g/L)

M = molaridade (mol/L)V = volume (L)

Exemplo: 

Qual a molaridade de uma solução de NaOH formada pela mistura de 60mL de solução a 5mol/L com 300mL de solução a 2mol/L?

Page 89: INTRODUÇÃO AO ESTUDO DE QUÍMICA

          

                                                                                

- De diferente soluto que reagem entre si: ocorre reação entre as substâncias que compõe a mistura. Para que a reção seja completa entre os solutos, os volumes misturados devem obedecer a proporção estequiométrica que corresponde à reação química.

Veja as fórmulas utilizadas:

Reação de Neutralização:

       

          

Pode-se usar a seguinte fórmula:

Onde: xa = número de H+xb= número de OH-

Estes cálculos também podem ser feitos por regra de três e utilizando as outras fórmulas.

Exemplo:

Juntando-se 300mL de HCl 0,4mol/L com 200mL de NaOH 0,6mol/L, pergunta-se quais serão as molaridades da solução final com respeito:

a) ao ácido:b) à base:c) ao sal formado:

Montar a reação química:

Calcular n (número de mol) do ácido e da base:

Page 90: INTRODUÇÃO AO ESTUDO DE QUÍMICA

      Se formar 0,12mol de ácido e também de base e a proporção estequiométrica é 1:1, então a molaridade final de ácido e de base é zero porque reagiu todo o soluto.

Calcular a molaridade do sal:Antes achar o volume final:

                

Titulação

Método de análise volumétrica que consiste em determinar a concentração de ácido ou de base através de um volume gasto de uma das soluções com molaridade conhecida.

Este método é muito utilizado em laboratórios químicos e é utilizado as seguintes vidrarias e reagentes:

- erlenmeyer (vidro usado para guardar e preparar soluções);- bureta (tubo de vidro graduado em milímetros com torneira;- indicador ácido-base (fenolftaleína, alaranjado de metila, etc).

 

Na bureta, coloca-se a solução de concentração conhecida, a qual é adicionada a uma alíquota (porção) da solução com concentração a ser determinada. 

O momento em que o indicador muda de cor, chamamos de ponto de final ou ponto de equivalência. Anota-se o volume gasto na bureta. Através deste volume podemos estabelecer as quantidades, em mol, que reagiram entre si.

FORMULAS E DICAS:

SOLUÇÃOPara o estudo das soluções é necessário conhecer todos os tipos de concentrações. A maioria das concentrações podem ser calculadas por regra de três, mas usa-se muito as fórmulas.

Veja algumas delas:

Concentração comum:

Page 91: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A unidade utilizada é g/L.

Molaridade

A unidade utilizada é mol/L.

Dica: substituindo o número de mols (n) da fórmula    , temos então a fórmula:

Título

Esta concentração não tem unidade, então dizemos que é adimensional.

   ou   

Percentual

O percentual é expresso em %.

Fração Molar

Esta concentração não tem unidade, então dizemos que é adimensional.

Normalidade

A unidade utilizada é N de normal.

Equivalente-grama

A unidade utilizada é g. 

Para certas soluções, calculamos a diluição. Podemos fazer mistura das soluções e obtemos novas concentrações. Veja as fórmulas para cada caso:

Diluição

Quando adiciona-se água numa solução. 

Usamos a seguinte fórmula:

A molaridade (M) pode ser substituída por concentração comum (C).

Page 92: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Dica: no lado esquerdo da fórmula, colocamos os dados da solução inicial, mais concentrada e no lado direito colocamos a solução que foi adicionada água, a mais diluída.

Mistura de solução de mesmo soluto

     ou     

Mistura de solução de soluto diferente

Neste caso, as solução são de ácido e base, portanto reações de neutralização. O ácido e a base reagem e formam um novo produto. 

Deve-se levar em conta a reação química e o coeficiente estequiométrico.

 

Unindo concentrações

Para facilitar os cálculos de soluções, há algumas fórmulas com diferentes concentrações que foram unidas. 

Dica: cuidado com a densidade e concentração comum. Apesar de terem a fórmula parecida, não é a mesma coisa. A densidade é a densidade da solução, portanto massa da solução e volume da solução. A concentração comum é a massa do soluto pelo volume da solução.

Tabela Resumo das Fórmulas de Soluções:

TIPO DE CONCENTRAÇÃO FÓRMULA UNIDADE

CONCENTRAÇÃO COMUM g/mL

MOLARIDADE

                      

  e  

mol/L

NÚMERO DE MOL mol

TÍTULO   ou  

adimensional

PERCENTUAL %

CONCENTRAÇÃO,TÍTULO E DENSIDADE g/mL

DENSIDADE, CONCENTRAÇÃO E TÍTULO

g/mL

Page 93: INTRODUÇÃO AO ESTUDO DE QUÍMICA

FRAÇÃO MOLAR adimensional

NORMALIDADE N

EQUIVALENTE-GRAMAg

DILUIÇÃO -

MISTURA DE SOLUÇÃO DE MESMO SOLUTO -

MISTURA DE SOLUÇÃO DE SOLUTOS DIFERENTES -

 

COLoIDES- Sistemas onde um ou mais componentes apresentam partículas com dimensões médias inferiores a 1000 nanômetros (1 nanômetro = 1nm = 10-9m).

- A maioria dos coloides tem aspecto turvo ou opaco.

- Disperso é a substância presente em menor quantidade.

- Dispersante: Substância presente em maior quantidade.

- Os coloides têm dois tipos de fases: Sol e Gel.

- Sol tem disperso sólido e dispersante líquido, adquirindo aspecto de solução na forma líquida. Um exemplo é a cola.

- Gel tem disperso sólido e dispersante líquido, adquirindo aspecto sólido. Um exemplo é a geleia de frutas.

- Alguns termos são utilizados para o estudo dos coloides como suspensão, emulsão, aerossóis, hidrossol, espumas.

- Suspensão é um sistema coloidal de um sólido num líquido (sol). O sistema é instável e suas partículas são quase reconhecíveis ao microscópio.

- Emulsão é um sistema coloidal onde as duas fases são líquidas.

- Aerossóis são coloides na forma de grãos de poeira que nunca se sedimentam. Devemos sempre retirar a poeira dos objetos com regularidade. Esses grãos de poeira tem diâmetro de 1000nm e estão em suspensão e tendem a se sedimentar. Mas no ar, há alguns grãos de poeira com dimensões coloidais que não se sedimentam, os aerossóis.

- Exemplos de aerossóis são as neblinas, a fumaça, spray.

- Hidrossol é um sistema coloidal onde a fase dispersante é a água.

- Espumas são sistemas coloidais. Quando um gás é borbulhado num líquido, além da bolhas enormes e visíveis, são formadas também bolhas de dimensões coloidais. Por este motivo, as espumas são coloides. 

- Exemplos de espumas são o chantily, mistura de ar e creme de leite.

- Sólido com poros de dimensão coloidal é classificado como espuma sólida, como a pedra-pomes, que tem ar em microscópicos poros de dimensão coloidal. 

Tabela com exemplos de misturas coloidais onde estão evidenciados o disperso, o dispersante e seus nomes:

Page 94: INTRODUÇÃO AO ESTUDO DE QUÍMICA

DISPERSANTE DISPERSO NOME EXEMPLO

Gás Líquido Aerossol líquido NEBLINA: gotículas de água dispersas no ar

Gás Sólido Aerossol sólido FUMAÇA: partículas sólidas com dimensões coloidais

Líquido Gás Espuma

ESPUMA DE SABÃO OU BOLHA DE SABÃO: nas espumas, a fase líquida (película da bolha) tem dimensões coloidais, enquanto o gás, no interior da película, é o disperso

Líquido Líquido Emulsão

MAIONESE: vinagre, óleo e gema de ovo batidos. A gema é constituída de proteínas (lecitinas) que promovem a interação entre o vinagre e o óleo

Líquido Sólido Sol

CREME DENTAL: partículas com dimensões coloidais de substâncias antiácidas e outras que conferem sabor ao creme dental. Todas dispersas em meio aquoso

Sólido Gás Espuma sólida

PEDRA-POMES: a fase dispersa é a sólida. Nos microporos da fase sólida permanece o gás

Sólido Líquido Gel

GELATINA: as moléculas de proteínas se entrelaçam e confinam as moléculas de água nessa rede de moléculas proteicas

Sólido Sólido Suspensão sólida

VIDRO COLORIDO: vidro é a fase dispersante com partículas metálicas dispersas

PROPRIEDADES COLIGATIVASO que acontece com o ponto de ebulição da água se adicionarmos sal de cozinha? Por que a água ferve mais rápido em locais de elevada altitude? Por que se adiciona sal nas estradas no inverno?

Estas perguntas estão relacionadas à propriedades  que comparam o comportamento das soluções com o seu solvente puro.

São propriedades coligativas das soluções são aquelas que se relacionam diretamente com o número de partículas de soluto que se encontram dispersas (dissolvidas) em um determinado solvente. Depende do número de partículas dispersas na solução, independente da natureza dessa partícula. 

São as alterações que os solutos causam ao solvente. 

Durante o estudo das propriedades coligativas sempre é necessário comparar o comportamento da solução com o respectivo solvente puro.

Page 95: INTRODUÇÃO AO ESTUDO DE QUÍMICA

      

Solvente puro água e soluto sal de cozinha. Quando misturados provocam alteração nas propriedades físicas do solvente, neste caso o aumento do ponto de fusão (P.F).

Um exemplo desta comparação é o ponto de ebulição da água. Verifique que ao se aquecer água pura, ao nível do mar, a temperatura de ebulição da água (solvente puro) é igual a 100°C. No entanto, quando se aquece uma solução aquosa de NaCl, percebe-se que o ponto de ebulição da água sofre um aumento. 

A elevação do ponto de ebulição da água na solução sempre irá produzir efeitos em algumas propriedades físicas de um solvente, que são:

- diminuição da pressão de vapor- aumento do ponto de ebulição- diminuição do ponto de congelamento- aumento da pressão osmótica

Estes efeitos são conhecidos como efeitos coligativos, que dependem exclusivamente da concentração (quantidade) de partículas que se encontram dispersas num solvente. Os efeitos coligativos definem as quatro propriedades coligativas que são as seguintes:

- tonoscopia- ebulioscopia- crioscopia- osmometria

Partículas Dissolvidas

Antes de iniciar o estudo das propriedades coligativas, é importante saber calcular o número de partículas que ficam dissolvidas nas soluções. Serão encontradas dois tipos de partículas, as moleculares e as iônicas.

Soluções Moleculares

São as soluções que possuem moléculas como partículas dispersas.

O número de partículas (moléculas dissolvidas) é igual ao número de partículas que se encontram em solução.

Exemplos de partículas moleculares: - glicose – C6H12O6- sacarose – C12H22O11 - uréia – CO(NH2)2

O cálculo das soluções moleculares é feito a partir do conceito de mol, levando em conta o número de Avogadro.

 1 mol de partículas = número de Avogadro = 6,02.1023 partículas

Exemplo:Calcule o número de partículas de sacarose que contém em 1L de solução 2mol/L:

Soluções Iônicas

São as soluções que possuem íons como partículas dispersas. Em uma solução iônica, nem todos os íons estão dissociados, ou seja, nem todos os íons estão dissolvidos na solução.

Page 96: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Para realizar o cálculo das partículas dissociadas em soluções iônicas é necessário levar em

consideração o grau de dissociação ou ionização ( ) da substância que está dissolvida.

As partículas iônicas podem ser ácidos, bases ou sais.

Se o ácido sulfúrico apresenta um grau de ionização igual a 61%, isto quer dizer que 61% dos seus íons se dissociam e que 39% não se dissociam.

Exemplo:Considere que uma solução de Al2(SO4)3 é dissolvida em água, e que sua dissociação é 100%

Se tivesse grau de dissociação 60%:

Em 1 mol de partículas dissolvidas:- 0,6mol de partículas ionizadas- 0,4mol de partículas não-ionizadas

Fórmula para as partículas ionizadas: 

Fórmula para as partículas não ionizadas: 

Onde: n1 = número de mol do soluto

grau de dissociação (%)n° íons = número de íons na solução

Veja como o cálculo pode ser feito:Calcule o número de partículas dissolvidas em uma solução que contem 33g de H3PO2

com  :

1°) montar a reação de dissociação:

 

2°) calcular a massa molar:MM = massa molar (H3PO2) = 66g/mol

3°) Calcular o número de mol:

4°) Calcular o número de partículas ionizadas e não ionizadas, em seguida somar:

Observe que o grau de ionização na fórmula foi dividido por 100.

PRESSÃO DE VAPOR (Pv)

Page 97: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Em qualquer temperatura, as moléculas de qualquer líquido estão sempre em movimento. Algumas com velocidade (diferentes) maiores que as outras e por isso conseguem escapar do liquido, passando para a atmosfera. É o que acontece, por exemplo, com a roupa secando no varal ou uma poça d´água que vai desaparecendo. 

A velocidade de evaporação do líquido é igual à velocidade de condensação de seus vapores. Dizemos, então que há um equilíbrio dinâmico entre o líquido e seus vapores. Os vapores do líquido chegaram ao estado de vapores saturados e que foi alcançada a pressão máxima de vapor do líquido.

Pressão máxima de vapor (Pv) é a pressão exercida por seus vapores quando estes estão em equilíbrio dinâmico com o líquido. Pode-se dizer também que é a pressão exercida pelas moléculas do solvente líquido contra a a sua superfície para passar para o estado de vapor.

Quanto maior a Pv mais volátil é o líquido. Ou seja, quanto mais pressão o líquido faz contra a sua superfície, mais este líquido passará para o estado de vapor, evapora mais rápido. 

Alguns fatores influenciam na pressão de vapor, como:- temperatura- natureza do líquido

Temperatura

Quando se aquece um líquido, a quantidade de vapor tende a aumentar conforme o tempo, o que fará com que a pressão de vapor também aumente. O aumento da temperatura ocasiona a agitação das moléculas. O líquido evapora mais intensamente e causa maior pressão de vapor.

Veja o caso da água pura:

T (°C) Pv (mmHg)

0 4,6

10 9,2

20 17,5

30 31,8

40 55,3

50 92,5

60 149,4

70 233,7

80 355,1

90 525,8

100 760,0

110 1.074,6

120 1.489,1

Quanto maior Pv , mais volátil (mais evapora)

Page 98: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Natureza do líquido

Considere um frasco que contém água e outro contendo álcool, ambos no estado líquido e com mesmo volume e temperatura. Nos dois frascos há um manômetro para medir a pressão de vapor das substâncias. 

Após algum tempo, a pressão indicada pelo álcool foi maior do que a pressão indicada para a água, porque no frasco do álcool houve a formação de uma quantidade maior de vapores, já que o álcool é uma substância mais volátil. 

Conclui-se que a pressão de vapor de uma substância depende apenas de sua natureza química e não da quantidade. 

Líquidos mais voláteis que a água, como éter comum, álcool etílico e acetona evaporam mais intensamente e possuem maior pressão de vapor.

Quanto menor a temperatura, mais evapora, maior Pv

Fonte: http://esds.edu.pt/antiga/afa/quimica/Imagens/I_17.png

TONOSCOPIA

A tonoscopia é uma propriedade coligativa que ocasiona o abaixamento da pressão de vapor de um líquido, quando a ele se adiciona um soluto não volátil. Se adicionarmos um soluto não volátil em solvente, ocorre a diminuição da pressão de vapor e consequentemente, demora mais tempo para evaporar.  

A pressão de vapor de um solvente puro sempre será maior do que a pressão de vapor de uma solução. Com a adição das partículas do soluto intensificam-se as forças atrativas moleculares e diminui a pressão de vapor do solvente.

Exemplo de pressão de vapor da água pura e em solução:

Água pura (25°C) = Pv=23,76mmHgSolução 1mol/L de glicose (25°C) = Pv=23,34mmHgSolução 1mol/L de sacarose (25°C) = Pv=23,34mmHg

 

Quanto maior a quantidade de partículas em uma solução, menor será a sua pressão de vapor.

Ebulição dos Líquidos Puros

O fenômeno físico onde uma substância passa do estado líquido para gasoso é a vaporização.

Há três tipos de vaporização:- evaporação- ebulição- calefação

Page 99: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A evaporação acontece na superfície do líquido. É uma vaporização mais lenta, mais calma. A ebulição acontece no interior do líquido. É uma vaporização mais turbulenta, com formação de bolhas. 

A calefação é uma passagem muito rápida do estado líquido para vapor. Quase que instantânea.

Quando a pressão de vapor é igual a pressão atmosférica o líquido entra em ebulição.

Onde:Pv ou Po = pressão de vapor

Patm = pressão atmosférica (pressão externa local)

Se a pressão de vapor aumenta, o ponto de ebulição (P.E.) também aumenta.

Ponto de Ebulição e Pressão Atmosférica

A pressão atmosférica varia de acordo com a altitude. Com o aumento da altitude, diminui a pressão atmosférica, diminuindo o ponto de ebulição, causando a diminuição da pressão de vapor. Locais onde tem menos pressão atmosférica, a água ferve mais rápido. As moléculas escapam do líquido com mais facilidade. 

Em lugares de grande altitude, as substâncias entram em ebulição a temperaturas mais baixas que ao nível do mar. Isto explica a dificuldade de cozinhar alimentos, como ovos e arroz e preparar bebidas quentes, como café e chá em locais que estão ao nível do mar.

Veja a tabela comparativa entre cidades de diferentes altitudes e seus pontos de ebulição:

Cidade / Local Altitude em relação ao nível do mar (m)

P.E. aproximado da água (°C)

Rio de Janeiro 0 100

São Paulo 750 97

Campos do Jordão 1.628 95

Cidade do México 2.240 92

La Paz 3.636 88

Monte Everest 8.848 70

 

Quanto maior a altitude, menor o P.E., menor a Patm, menor a Pv.

EBULIOSCOPIA

A ebulioscopia é uma propriedade coligativa que ocasiona a elevação da temperatura de um líquido quando a ele se adiciona um soluto não-volátil e não-iônico. 

A temperatura em que se inicia a ebulição do solvente em uma solução de soluto não-volátil é sempre maior que o ponto de ebulição do solvente puro (sob mesma pressão). 

Page 100: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Isso acontece porque a água, por exemplo, só entrará em ebulição novamente se receber energia suficiente para que sua pressão de vapor volte a se igualar à pressão externa (atmosférica), o que irá acontecer numa temperatura superior a 100°C. 

Exemplo:Água pura: P.E. = 100°CÁgua com açúcar: P.E. maior que 100°C

Veja a tabela comapartiva a seguir com diferentes soluções de sacarose em água e o P.E.:

Quantidade de matéria de sacarose (por Kg de água)

P.E. Água Pura a 1atm P.E. água na solução a 1atm

0,01 100 100,01

0,2 100 100,10

0,8 100 100,42

Observe que quanto mais partículas dissolvidas há na solução, maior é a temperatura de ebulição.

Quanto maior a quantidade de partículas em uma solução, maior será o seu P.E.

Diagrama de Fases e o Ponto Triplo

A transformação de cada estado físico possui um nome. Obseve:

 

Existe um gráfico que representa as curvas de variação da temperatura de ebulição e da variação da temperatura de solidificação de uma substância qualquer em função da pressão de vapor.

Essas curvas coincidem num ponto específico de cada substância.

Fonte: http://estadofisico.blogspot.com/2007/08/as-substncias-podem-mudar-de-estado.html

As curvas de variação das temperaturas de ebulição e de solidificação da água em função da pressão de vapor coincidem no ponto em que a pressão é igual a 4,579mmHg e a tempertura é 0,0098°C. 

Esta coordenada representa o Ponto Triplo da água e o equilíbrio das fases. Isto quer dizer que a substância pode ser encontrada, neste ponto exato da curva,  nos três estados físicos ao mesmo tempo: sólido, líquido e gasoso.

Equilíbrio das fases:

Page 101: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Diagrama de Fases é o nome do gráfico que contém simultaneamente as curvas da variação das temperaturas de ebulição, solidificação e de sublimação de determinada substância química em função da pressão de vapor.

fonte: http://www.profpc.com.br/propriedades_coligativas.htm

Toda substância possui seu diagrama de fases, com seu ponto triplo (T) e suas curvas.  Em um diagrama de fases podemos verificar que:- no ponto triplo coexistem as três fases do equilíbrio;- na curva de solidificação coexistem a fase sólida e a fase líquida;- na curva de sublimação coexistem a fase sólida e a fase vapor;- na curva de ebulição coexistem a fase líquida e a fase vapor.

Ainda em relação ao diagrama de fases:- toda região à esquerda das curvas de solidificação e de sublimação existe somente a fase sólida;- toda região entre as curvas de solidificação e de ebulição existe somente a fase líquida;- toda região à direita das curvas de ebulição e de sublimação existem somente a fase de vapor.

O diagrama de fases explica muitos fenômenos que acontecem no nosso cotidiano. A patinação no gelo é um exemplo. O deslizamento dos patins no gelo é facilitado porque ao encostá-lo no gelo, ele exerce uma presão e o gelo derrete momentaneamente, ficando líquido. Quando acaba a pressão, volta a ser gelo. 

O uso do gás carbônico (CO2) para a conservação de sorvetes também é um exemplo da utilidade do diagrama de fases. À pressão de 1atm, ele passa diretamente de sólido para gasoso a 78°C abaixo de zero. Por isso é usado como gelo-seco. Ele não se transorma em líquido, passa direto para a fase gasosa em temperatura ambiente.

 

Substâncias simples que sofrem fenômenos como a alotropia também possuem seu diagrama de fases. É o caso do carbono, que possui os alótropos com diferentes formas geométrica, o carbono grafite e o carbono diamante. Hoje sabe-se que é possível trasformar grafite em diamante de acordo com estudos realizados sobre o diagrama de fases do carbono. O grafite pode ser transformado em diamante catalisado por crômio a uma temperatura de 2000°C e pressão de 100mil atm (equivalente à pressão no subsolo a uma profundidade de 33Km). Este processo pode ser feito em laboratórios especializados (até mesmo no Brasil) e leva cerca de 5 minutos.

Page 102: INTRODUÇÃO AO ESTUDO DE QUÍMICA

        

                               Carbono grafite             Carbono Diamante

Ponto de Congelamento

Para que uma substância passe da fase líquida para a sólida, as suas moléculas precisam perder energia cinética (energia do movimento). Então, deve haver a diminuição da temperatura. Lembre-se que a temperatura está ligada ao agitamento das moléculas.

Entre as substâncias com mesmo tipo de ligação intermolecular, o ponto de solidificação será mais baixo naquela que possuir menor massa molar. Isto porque quanto menor a massa molar da substância, maior é a mobilidade das suas moléculas (energia cinética). 

Veja alguns Pontos de Solidificação:

Substância PS (°C) Massa Molar (g/mol)

n-pentano -129,7 72

n-hexano -95 86

propanona -94 58

ácido acético 16,6 60

 

Em moléculas de diferentes ligações intermoleculares, o ponto de solidificação será mais baixo nas substâncias que tiverem a ligação mais fraca. Por isso o ácido acético tem PS mais alto que as demais substâncias apresentadas. Possui ligações intermoleculares do tipo pontes de hidrogênio, que é a mais forte das ligações.

CRIOSCOPIA

É uma propriedade coligativa que ocasiona a diminuição na temperatura de congelamento do solvente. É provocado pela adição de um soluto não-volátil em um solvente. Esta relacionado com o ponto de solidificação (PS) das substâncias. 

Esta propriedade pode ser chamada também de criometria.

Quando se compara um solvente puro e uma solução de soluto não-volátil, é possível afirmar que o ponto de congelamento da solução sempre será menor que o ponto de congelamento do solvente puro. 

Quanto maior o número de partículas dissolvidas em uma solução, menor será o seu ponto de congelamento.

Em países onde o inverno é muito rigoroso, adiciona-se sal nas estradas para provocar a diminuição da temperatura de congelamento da água, evitando que se forme gelo.

Esta propriedade também explica porque grande parte da água do mar não congela a 0°C. A imensa quantidade de sal dissolvida nos mares e oceanos faz com que o seu ponto de congelamento diminua.

Page 103: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

Nos carros, é comum adicionar um anticongelante nos radiadores, o etilenoglicol. Esta substância em solução com a água diminui a temperatura de congelamento para -37°C.

OSMOMETRIA

A Osmose estuda a passagem espontânea de solvente de uma solução mais diluída para outra mais concentrada através de uma membrana semipermeável. A palavra osmose vem grego osmós, que significa impulso.

A Osmometria estuda a medição da pressão osmótica das soluções.

As soluções devem ser do mesmo soluto, a fim de igualar concentração.

Para impedir que o solvente passa para a solução mais concentrada, é adicionada uma pressão sobre a solução concentrada.

Para a realização da osmose exitem três tipos de membranas:- permeáveis- impermeáveis- semipermeáveis

As membranas permeáveis deixam passar solvente e soluto. É usado, por exemplo, um pano de algodão fino.

As membranas impermeáveis não deixam passar solvente e nem soluto.

As membranas semipermeáveis tem ação seletiva quanto ao tipo de substância que pode atravessá-la. Deixam-se atravessar por algumas substâncias, mas por outras não. Permite a passagem do solvente e impede a passagem do soluto. 

São exemplos de manbranas semipermeáveis:- papel vegetal- papel pergaminho- tripa de animal (as que envolvem lingüiça e salsicha)- bexiga de animal- película de acetato de celulose – papel celofane- membrana celular- membrana de porcela que contém ferrocianeto cúprico Cu2[Fe(CN)6]

Page 104: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Pressão Osmótica   é a pressão que se deve aplicar à solução para não deixar o solvente atravessar a membrana semipermeável. É a pressão que é preciso exercer sobre um sistema para impedir que a osmose ocorra naturalmente.

Para o cálculo da pressão osmótica, usa-se a seguinte expressão:

Para as soluções iônicas:

Onde:

As soluções podem ser classificadas quanto às suas pressões osmóticas.Sendo duas soluções A e B com mesma temperatura:

Hipertônica, isotônica e hipotônica refere-se à solução A em relação à solução B.

Exemplo de cálculo de pressão osmótica:Calcular a pressão osmótica de uma solução de sacarose (C12H22O11), sendo que foram dissolvidas 34,2g desse soluto em 0,5L de solvente a 27°C. Dado: MM = 342g/mol

Em primeiro lugar, deve-se calcular o número de mol em 34,2g de sacarose. Em seguida, encontrar o valor de 27°C em Kelvin, somando 273 ou 273,15. E por último, aplicar a fórmula sem o fator de correção de Van´t Hoff porque a sacarose é um composto molecular e não iônico.

 O efeito coligativo iônico é maior do que o efeito coligativo molecular.

A pressão osmótica é muito importante e explica uma série de fenômenos que ocorrem. 

O fato das verduras murcharem após serem temperadas com sal acontece porque o sal retira a água das células das verduras.

As frutas secas, como a ameixa-preta, incham quando colocadas em água. 

Ajuda na conservação dos alimentos, por exemplo, a carne salgada e frutas cozidas em calda muito doce impedindo que não se estraguem com facilidade.

Os peixes tem metabolismos diferentes de acordo com o tipo de água em que vivem. O corpo do peixe é formado por muita água e outras substâncias dissolvidas nela. Como na água salgada

Page 105: INTRODUÇÃO AO ESTUDO DE QUÍMICA

possui mais sais do que na água doce, um peixe de água salgada não poderia viver em água doce e vice-versa. Causaria um desequilíbrio entre a presão osmótica interna do organismo do peixe e a pressão osmótica externa da água. 

Em casos de desidratação, onde há muita perda de água, é necessário repor ao organismo soro fisiológico, composto de água fervida, uma colher de sal de cozinha e duas colheres de açúcar, para reequilibrar a pressão osmótica do organismo.

Resumo das Propriedades Coligativas

PROPRIEDADE COLIGATIVA CAUSA

Tonoscopia Diminuição da pressão de vapor do solvente

Ebulioscopia Aumento da temperatura de ebulição

Crioscopia Diminuição da temperatura de congelamento

Osmometria Aumento da pressão osmótica

 

TERMOQUÍMICAAs transformações físicas e as reações químicas quase sempre estão envolvidas em perda ou ganho de calor. O calor é uma das formas de energia mais comum que se conhece. 

A Termoquímica é uma parte da Química que faz o estudo das quantidades de calor liberadas ou absorvidas durante as reações químicas. A maioria das reações químicas envolve perda ou ganho de calor (energia).

Veja no quadro abaixo os tipos de reações com perda ou ganho de calor:

REAÇÕES QUE LIBERAM ENERGIA REAÇÕES QUE ABSORVEM ENERGIA

Queima do carvão Cozimento de alimentos

Queima da vela Fotossíntese das plantas, o sol fornece energia

Reação química em uma pilha Pancada violenta inicia a detonação de um explosivo

Queima da gasolina no carro Cromagem em para-choque de carro, com energia elétrica

As transformações físicas também são acompanhadas de calor, como ocorre na mudanda de estados físicos da matéria.

absorção de calor

 

SÓLIDO               LÍQUIDO                GASOSO

Page 106: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 liberação de calor

Quando a substância passa do estado físico sólido para liquido e em seguida para gasoso, ocorre absorção de calor.

Quando a substância passa do estado gasoso para líquido e em seguida para sólido, ocorre liberação de calor.

Essa energia que vem das reações químicas é decorrente de rearranjo das ligações químicas dos reagentes transformando-se em produtos. Essa energia armazenada é a ENTALPIA (H). É a energia que vem de dentro da molécula.

Nas reações químicas não é necessário calcular a entalpia. Devemos calcular, geralmente, a variação de entalpia (ΔH). 

 A variação de entalpia é a diferença entre a entalpia dos produtos e a entalpia dos reagentes. 

 

 

UNIDADE DE CALOR

Tipos de Reações

As reações químicas podem ser de dois tipos:- ENDOTÉRMICA: absorvem calor (+)- EXOTÉRMICA: liberam calor (-)

REAÇÃO ENDOTÉRMICA

Page 107: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Se o valor for positivo (+) a reação é endotérmica.A reação absorveu energia para acontecer.

REAÇÃO EXOTÉRMICA

Page 108: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Se o valor for negativo (-) a reação é exotérmica.A reação perdeu energia para acontecer.

ENTALPIA

Tipos de Entalpias

Através de algumas reações, é possível calcular o valor da variação de entalpia. - Entalpia de Formação- Entalpia de Combustão- Entalpia de Ligação- Entalpia de Neutralização- Entalpia de Dissolução

Entalpia de Formação ou Calor de Reação

A Entalpia de formação é a energia da reação quando forma 1 mol de substância, a partir das substâncias químicas (elemento no seu estado padrão).

Estado Padrão: é a forma mais estável de uma substância a 25°C e a 1atm de pressão. São as substâncias simples.

As substâncias que participam da reação de formação devem ser simples. Devem informar o estado físico. Sua variação de entalpia de formação padrão é zero. 

Exemplo de substância simples: C(grafite), O2(g), N2(g), H2(g), Na(s), S(s).

Exemplo de reação de formação:

Page 109: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 Isto quer dizer que para formar 1 mol de NH3 a reção produz 11 kcal de energia.Este cálculo pode ser feito utilizando a fórmula da variação de entalpia e utilizando alguns dados tabelados.

Tabela com valores de Entalpia de Formação Padrão de Algumas Substâncias

SUBSTÂNCIA H°f kJ/mol SUBSTÂNCIA H°f kJ/mol

C2H2(g) 226,8 C diamante +2,1

CH4(g) -74,8 NH3 (g) -45,9

CO(g) -110,3 NaCl (s) -412,1

CO2(g) -393,3 O3 (g) +143

H2O(v) -242 SO2 (g) -297

H2O(l) -286 SO3 (g) -396

Exemplo: Escreva a reação de formação para cada substância abaixo, indicando o valor da entalpia de formação de SO3(g):

1°) montar a reação de formação:

2°) Aplicar a fórmula:

Entalpia de Combustão

É sempre uma reação exotérmica. É o calor liberado na reação de combustão de 1 mol de uma substância em presença de gás oxigênio O2(g)

COMBUSTÃO COMPLETA: mais quantidade de oxigênio. Forma gás carbônico e água.

COMBUSTÃO INCOMPLETA: menos quantidade de oxigênio. Produz menos quantidade de energia.

Forma mais resíduos como monóxido de carbono (CO) e água (H2O).

Exemplo: 

Page 110: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Qual o valor da entalpia de combustão do benzeno (C6H6)? 

Dados:

Tabela de ΔH°comb de algumas substâncias

SUBSTÂNCIA FÓRMULA ΔH°comb (kcal/mol)

Hidrogênio H2(g) -68,3

Carbono Grafite C(grafite) -94,1

Monóxido de Carbono CO(g) -67,6

Metano CH4(g) -212,8

Etano C2H6(g) -372,8

Propano C3H8(g) -530,6

Butano C4H10(g) -688,0

Benzeno C6H6(g) -781,0

Etanol H3C – CH2 – OH(l) -326,5

Ácido Acético H3C – COOH(l) -208,5

Glicose C6H12O6(S) -673,0

Sacarose C12H22O11(S) -1348,9

 

Entalpia de Ligação

Durante as reações químicas, as ligações químicas dos reagentes e produtos são alteradas. Podemos calcular o ΔH pela análise desses novos rearranjos.

 A entalpia de ligação é a variação de entalpia verificada na quebra de 1mol de uma determinada ligação química, sendo que todas as substâncias estejam no estado gasoso, a 25° C e 1atm.

Reagentes = sempre são quebradas as ligações = ENDOTÉRMICA (+)Produtos = sempre são formadas as ligações = EXOTÉRMICA (-)Exemplo:

 

Page 111: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A ΔH do processo é a soma desses calores. Calcula-se utilizando dados tabelados.

ENTALPIA DE LIGAÇÃO (EM kJ/MOL) 

LIGAÇÃO H°(kJ/MOL) LIGAÇÃO H°(kJ/MOL) LIGAÇÃO H°(kJ/MOL)

H – H 436 H – Br 366 N – C 305

H – O 463 H – I 299 C ≡ C 837

N – N 163 H – N 388 C = C 612

N = N 409 H – C 412 C – C 348

N ≡ N 944 O = O 496 C – Cl 338

H – F 565 O – C 360 Br – Br 193

H – Cl 431 O = C 743 Cl – Cl 242

 

A partir desta tabela com dados das ligações de alguns elementos é possível calcular também outras entalpias, como por exemplo a de combustão e a de formação.

Entalpia de Neutralização

É a entalpia de uma reação de neutralização (entre um ácido e uma base formando sal e água). A reação é exotérmica. 

É a variação de entalpia verificada na neutralização de 1mol de H+ do ácido por 1mol de OH-da base, sendo todas as substâncias em diluição total ou infinita, a 25°C e 1atm.

Exemplos:

Entalpia de Dissolução

É a variação de entalpia envolvida na dissolução de 1mol de determinada substância numa quantidade de água suficiente para que a solução obtida seja diluída. 

Quando um sólido é colocado em um copo com água acontece uma dissolução. Nesta ordem acontece:

Page 112: INTRODUÇÃO AO ESTUDO DE QUÍMICA

LEI DE HESS

O químico e médico Germain Henry Hess (1802-1850) desenvolveu importantes trabalhos na área de Termoquímica. 

A Lei de Hess é uma lei experimental e estabelece que a variação de entalpia de uma reação química depende apenas dos estados inicial e final da reação.

A Lei de Hess também pode ser chamada de Lei da Soma dos Calores de Reação. É uma forma de calcular a variação de entalpia através dos calores das reações intermediárias. Podem ser infinitas

variações de entalpia.

Exemplo: Qual o valor da variação de entalpia da reação a seguir?

Dados (equações intermediárias):

Resolução:

______________________________________

Observe que a ΔH1e ΔH2 são somadas, obtendo-se o valor da variação de entalpia. As equações químicas também são somadas, obtendo-se a reação global.

Page 113: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Para montar as equações e aplicar a Lei de Hess, podemos fazer algumas alterações matemáticas, seguindo as seguintes regras:

1°) as equações intermediárias devem estar de acordo com a reação global. Coloca-se as equações (dados) na ordem que reagem ou são produzidas. Se não estiverem de acordo, troca-se o sinal da ΔH;

2°) acertar os coeficientes também de acordo com a reação global. Se a equação for multiplicada, a ΔH também deve ser multiplicada pelo mesmo número.

3°) realizar o somatório para montar a reação global;

4°) somar os valores das ΔH das equações intermediárias para achar a ΔH da reação global.

Exemplo:

Calcule a variação de entalpia da seguinte reação pela Lei de Hess:

Dados: 

Resolução: Deve-se escrever todas as equações intermediárias (dados) de acordo com a reação global. Na primeira equação, o que há em comum é o C(grafite). Então ele deve ser escrito da mesma forma (como reagente e 1mol).

A segunda equação tem em comum com a reação global o H2(g). Nos dados, esta esécie química não está exatamente igual como na global. Deve-se multiplicar toda a equação por 2, inclusive a ΔH2

A terceira equação tem em comum com a reação global o CH4(g). deve-se inverter a posição desta equação e portanto trocar o sinal da ΔH3

Veja como deve ser feito:

CINÉTICA QUÍMICAPodemos observar que algumas reações químicas acontecem com mais rapidez e outras mais lentamente. Nem toda reação química acontece no mesmo tempo. Umas demoram horas, dias, anos. Outras levam uma fração de segundo para ocorrer. 

As reações químicas ocorrem em velocidades diferentes, como por exemplo o processo de digestão dos alimentos que leva algumas horas e uma explosão que é instantânea.

Veja algumas reações químicas:- ácido e uma base é uma reação instantânea;- formação da ferrugem, que levam anos para se formar;- dissolução de uma pastilha efervescente, que levam alguns segundos;

Page 114: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- decaimento radioativos, que levam muitas vezes bilhões de anos;- queima de uma vela, que levam algumas horas;- queima de um palito de fósforo, que levam alguns segundos;- formação das rochas, que levam alguns milhões de anos.

         

As vezes é importante controlar estas reações, tornando-as mais rápidas ou mais lentas. 

A cinética química é uma área da Química que estuda a velocidade das reações químicas e os fatores que alteram esta velocidade.

VELOCIDADE MÉDIA

A velocidade média de uma reação química pode ser dada através da razão da variação de concentração pelo tempo de reação.

Onde:Vm = velocidade média (mol/L/s)

variação de concentração (mol/L)

variação de tempo (s, min)

módulo (resultado tem que ser positivo, a velocidade tem que ser positiva)

As unidades podem variar.

Exemplo:Observe a transformação do acetileno em benzeno:

Pode-se calcular a velocidade média (até o processo final) ou parcial:Dados:

[C2H2] (mol) 3,5 2,7 2,0 1,5 0,9

t (min) 0 1 2 3 4

Page 115: INTRODUÇÃO AO ESTUDO DE QUÍMICA

1. cálculo da velocidade ao final de 4 minutos:

 

              

1. cálculo da velocidade entre 1 e 2 minutos:

 

                

A velocidade média de uma reação química pode também estar relacionada com a reação de desaparecimento e com a reação de aparecimento, desta forma:

As unidades podem ser: 

Conhecendo as informações sobre um dos participantes da reação, podemos calcular a velocidade dos outros participantes e até mesmo a velocidade média da reação. 

Veja o caso da síntese da amônia:

Dividindo-se a velocidade calculada para qualquer um dos participantes pelo seu próprio coeficiente estequiométrico, será encontrado um resultado igual ao mesmo cálculo feito aos demais participantes.

Onde:

Estes cálculos podem ser feitos também, através de regra de três.

Exemplos: De acordo com a reação da síntese da amônia, veja o problema seguinte:O gás hidrogênio é consumido a uma taxa de 18mols a cada 4 minutos. Calcule:

a) a velocidade de consumo do N2

b) a taxa de formação do NH3

Page 116: INTRODUÇÃO AO ESTUDO DE QUÍMICA

c) a massa consumida de H2 por minuto

d) a massa obtida de NH3 por minuto

Durante uma reação química, a concentração dos reagentes (B) vai diminuindo, enquanto a concentração dos produtos vai aumentando (A).

 

 Fonte: http://cesarmauriciosantos-fisqui.blogspot.com/2008_09_01_archive.html 

A concentração dos reagentes pode ou não chegar a zero. Se a concentração dos reagentes for diminuindo, a velocidade da reação também vai diminuindo. Quando terminar a reação, a velocidade será zero.

FONTE: http://inorgan221.iq.unesp.br/quimgeral/respostas/graph.gif

Velocidade de Consumo e de Produção

A velocidade média de consumo é a medida de reagente que é consumida, “desaparece” na reação, por unidade de tempo.

A velocidade média de produção é a medida de produto formado durante a reação, por unidade de tempo.

Seja a reação genérica:

Page 117: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Neste caso, o reagente também pode ser chamado de reatante.

A equação química pode apresentar o coeficiente estequiométrico de cada reagente. Este coeficiente representa o número de mols da substância. Veja uma equação química genérica, onde a, b, c e d são coeficientes estequiométricos e A, B, C e D são as substâncias químicas.

Velocidade de Consumo dos Reagentes: 

Exemplo: 

Velocidade de Formação dos Produtos: 

Condições para que ocorra uma reação química

Para que uma reação química ocorra é necessário que haja contato e afinidade química entre os reagentes. Uma das condições mais importantes para a ocorrência de uma reação química é a energia de ativação e as colisões entre as moléculas dos reagentes.

 

TEORIA DAS COLISÕES

Os átomos das moléculas dos reagentes estão sempre em movimento gerando muitas colisões (choques). Parte destas colisões aumentam a velocidade da reação química. 

Quanto mais choques com energia e geometria adequada houver, maior a velocidade da reação.  

Há dois tipos de colisões:- horizontal – colisão mais lenta- vertical – colisão mais rápida, colisão efetiva

Veja os dois modelos de colisões para a formação de duas moléculas de HCl:

Colisão Horizontal

Observe que após a primeira colisão há a formação de apenas uma molécula de HCl. A segunda molécula se formará na segunda colisão.

Page 118: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Colisão Vertical

Observe que molécula de H2 se aproxima da molécula de Cl2 com muita velocidade.  Em seguida, se chocam violentamente formando duas moléculas de HCl que se afastam logo. A primeira colisão forma o complexo ativado (duas molécuas de HCl). Esta colisão acontece com muita velocidade e, portanto, mais rápida mais efetiva. Torna a reação química mais rápida.

O estado intermediário da reação, onde forma-se o complexo ativado é um estado de transição onde há um alto valor de energia envolvido. 

O complexo ativado é a espécie química com maior valor energético em toda a reação química que tem vida curtíssima.

ENERGIA DE ATIVAÇÃO(Eat)

É a energia mínima que os reagentes precisam para que inicie a reação química. Esta energia mínima é necessária para a formação do complexo ativado. 

Quanto maior a energia de ativação mais lenta é a reação porque aumenta a dificuldade para que o processo ocorra.

Quanto menor a energia de ativação menor a “barreira” de energia, mais colisões efetivas e, portanto uma reação mais rápida.

 

Gráficos Endotérmicos e Exotérmicos para a Energia de Ativação

A energia de ativação varia de acordo com o tipo de reação química. Nas reações endotérmicas ela é maior do que nas exotérmica.

                 

Onde:

Endotérmico

Page 119: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Fonte: http://luizclaudionovaes.sites.uol.com.br/enerat1.gif

Exotérmico

 

Fonte: http://luizclaudionovaes.sites.uol.com.br/enerat1.gif

FATORES QUE ALTERAM A VELOCIDADE DAS REAÇÕES QUÍMICAS

Alguns fatores podem aumentar ou diminur a velocidade de uma reação química. São eles:- temperatura- superfície de contato- pressão- concentração- presença de luz- catalisador- inibidores

Temperatura

A temperatura está ligada à agitação das moléculas. Quanto mais calor, mais agitadas ficam as moléculas. Se aumenta a temperatura, aumenta a energia cinética das moléculas (movimento).

Se as moléculas se movimentam mais, elas se chocam mais e com mais energia, diminuindo a energia de ativação e em consequência, aumenta o número de colisões efetivas e portanto a velocidade da reação também aumenta.

Por este motivo, aumentamos a chama do fogão para cozinhar e utilizamos a geladeira para evitar a deterioração dos alimentos.

Page 120: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Superfície de Contato

A área de contato entre os reagentes também interfere na velocidade das reações químicas.

Quanto maior a superfície de contato, maior o número de moléculas reagindo, maior o número de colisões eficazes e portanto, aumenta a velocidade da reação.

Isto explica porque devemos tomar um comprimido de aspirina, por exemplo, inteiro do que em pó. O comprimido em pó reage mais rapidamente, causando lesões no nosso estômago. Se ele for ingerido inteiro, levará mais tempo para reagir, evitando lesões.

    

Uma substância em pó reage mais rápido do que uma substância inteira porque possui maior superfície de contato.

Veja outros exemplos:- a carne é digerida mais facilmente quando mastigada do que inteira;- gravetos queimas mais rápido do que um pedaço de madeira de mesma massa;- palha de aço queima mais rápido do que um pedaço de ferro de mesma massa.

Pressão

Pressão é a razão entre força e área, ou seja, fazer força sobre uma determinada área. Com o aumento da pressão em um recipiente, diminui o volume e desta forma aumenta a concentração dos reagentes. As moléculas se chocam mais, aumentando o número de colísões e portanto, aumenta a velocidade da reação.

Fonte: http://www.brasilescola.com/upload/e/pressao.jpg

Concentração

Concentração está relacionado à quantidade de soluto e de solvente de uma substância. Se aumenta a concentração de reagentes , aumenta o número de moléculas dos reagentes, aumentando o número de colísões e aumentando também a velocidade da reação. Está associada à Lei Cinética (Lei de Guldber-Waage).

Quando se aumenta a concentração de oxigênio numa queima, a combustão acontece mais rápido.

Page 121: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Presença de Luz

Algumas reações químicas ocorrem com maior velocidade quando estão na presença de luz. A luz influencia na velocidade das reações porque é uma energia em forma de onda eletromagnética que ajuda a quebrar a barreira da energia de ativação. 

A água oxigenada, por exemplo, se decompõe mais facilmente quando está exposta à luz, por isso devemos deixá-la guardada em local escuro. A fotossíntese realizada pelas plantas é um tipo de reação que é influenciada pela presença da luz. Outra reação onde é muito utilizada a luz é a decomposição do AgBr que dá origem aos filmes fotográficos.

CATALISADOR

Catalisador é uma substância química que não participa da reação química. Diminui a energia de ativação e aumenta a velocidade da reação.

O catalisador acelera a reação mas não altera a composição química dos reagentes e produtos envolvidos. A quantidade de substância produzida na reação não se altera com o uso de catalisadores. 

Se a reação for reversível, a reação inversa também será acelerada, pois sua energia de ativação também terá um valor menor. 

O catalisador não altera a variação de entalpia.

Gráficos com e sem catalisadores:

 http://clientespeedy.klickeducacao.com.br/2006/arq_img_upload/paginas/558/

cineticanew2.jpg

Catálise é o aumento de velocidade da reação, provocado pelo catalisador. A palavra catálise, do grego katálysis,  foi introduzida, em 1835, por Berzeliu.

No nosso organismo existem muitos catalisadores, que são chamados de enzimas. A saliva e o suco gástrico (que contém ácido clorídrico) são exemplos de enzimas que aumentam a velocidade da reação, no caso, a digestão. 

Nas indústrias químicas, principalmente a petroquímica, os catalisadores são muito utilizados para acelerar as reações, deixando o processo mais barato.  

Uma forma de ver a ação dos catalisadores é adicionando açúcar ao refrigerante. Os refrigerantes carbonatados contém dióxido de carbono (gás carbônico) e pode ser eliminado mais facilmente com adição de açúcar. A reação de eliminação do gás acontece com mais velocidade e percebe-se a formação de bolhas do gás deixando a solução. 

Na equação química, coloca-se o catalisador em cima da seta que representa a reação química.Em função dos estados físicos dos reagentes e produtos, a catálise pode ser homogênea ou heterogênea.

Page 122: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- catálise homogênea: quando reagentes e catalisador estão no mesmo estado físico formando um sistema monofásico.

- catálise heterogênea: quando reagentes e catalisador não estão no mesmo estado físico formando um sistema heterogêneo.

Não existe um tipo ideal de catalisador. Para cada reação química existe um tipo diferente de catalisador. Os catalisadors mais comuns são: 

- metais - principalmente os de transição: Co, Ni, Pt, Pd- ácidos - que catalisam muitas reações orgânicas: H2SO4- óxidos metálicos – Al2O3, Fe2O3- bases - NaOH- enzimas – produzidas pelos organismos vivos: lipase, suco gástrico.

Inibidores

São substâncias, que ao contrário dos catalisadores, aumentam a energia de ativação e como consequência diminuem a velocidade da reação química. Pode ser chamado também de veneno de catalisador ouanticatalisador. Antigamente era chamado de catalisador negativo.

Velocidade Instantânea

Nas reações químicas a velocidade a cada instante é diferente da velocidade média. As velocidades instantâneas nunca são as mesmas, possuindo valores diferentes durante a reação.

Se os intervalos de tempo utilizados nas medidas da velocidade média forem ficando cada vez menores, a velocidade média tenderá a assumir valores cada vez mais próximos da velocidade em certo instante.

Velocidade Instantânea é o valor para o qual tende a velocidade média quando os intervalos de tempo vão se tornando cada vez menores.

Pode ser calculada de acordo com a “Lei Cinética ou Equação de Velocidade”, proposta por Guldberg e Waage.

LEI DE GULDBERG E WAAGE

A Lei da Velocidade ou Lei de Guldberg-Waage foi proposta em 1867, pelos cientistas norugueses Cato Maximilian Guldberg (1836-1902) e Peter Waage (1833-1900). Foi enunciada da seguinte forma:

“ A velocidade de uma reação é diretamente proporcional ao produto das concentrações molares dos reagentes, para cada temperatura, elevada a expoentes experimentalmente determinados.”

Os expoentes que constam na lei irão determinar a ordem da reação.

Para uma reação genérica, temos:

Onde:V = velocidade da reação

K = constante de velocidade

Page 123: INTRODUÇÃO AO ESTUDO DE QUÍMICA

[A] = concentração molar de A[B] = concentração molar de B

X e Y = expoentes experimentalmente determinados

Em uma reação elementar, onde ocorre em uma única etapa, o expoente é o coeficiente dos reagentes.

Exemplo: 

 

Alguns processos químicos oorrem em várias etapas. As reações globais são as que ocorrem em mais de uma etapa. A velocidade desta reação depende da velocidade das etapas participantes.

Quando isto acontecer, determina-se a velocidade da reação através da etapa lenta. É fácil entender porque utiliza-se a etapa lenta para determinar a velocidade da reação. Imagine por exemplo uma viagem de ônibus entre as cidades de São Paulo e Rio de Janeiro.

Aparentemente, temos a impressão que a viajem vai acontecer em uma única etapa (sair de São Paulo e chagar ao Rio). Mas na prática, há três etapas. A primeira etapa é chegar até a rodoviária (10 minutos), a segunda pegar o ônibus, mais 5horas (300 minutos) e por último, já no Rio de Janeiro, pegar um ônibus até o seu destino (5 minutos). Como a segunda etapa gastou mais tempo, arredondamos a viagem para 5 horas. Com as reações químicas é mais ou menos assim que acontece.

Exemplo:

_____________________________________

Velocidade da reação:    

Ordem da Reação e Molecularidade

A ordem de uma reação química só pode ser determinada experimentalmente. 

A molecularidade representa o número mínimo de moléculas ou íons reagentes necessários para que ocorram colisões e a reação possa se processar em uma única etapa (elementar).

Os expoentes que estão na lei da velocidade podem determinar a ordem da reação.

Onde: 

Page 124: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Exemplo: 

Lei da velocidade:       

Molecularidade: 3 - trimolecular

A ordem da reação pode indicar o que acontece com a velocidade da reação quando é alterada a concentração dos reagentes.

Ordem O que acontece com a concentração

1ª Igual

2ª Duplica (quadrado)

3ª Ao cubo

Veja o exemplo:

Seja a equação química:

Responda:

a) equação da velocidade: 

b) ordem da reação: 2ª ordem

c) o que acontece com a velocidade quando a concentração de NO2 é dobrada? 2² = 4 (a velocidade aumenta 4 vezes).

d) o que acontece com a velocidade quando a concentração do CO é dobrada? Não acontece nada porque a concentração do CO não altera nada. A sua ordem é zero.

 FORMULAS E DICAS:

CINÉTICA QUÍMICACálculo para a velocidade média

Onde:

Vm = velocidade média (mol/L/s)

variação de concentração (mol/L)

variação de tempo (s, min)

módulo

Dica:

Usa-se módulo porque o resultado deve ser positivo, já que não existe velocidade negativa.

Page 125: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Cálculo para velocidade de consumo (reagentes)

Sendo a reação química:     

 

Cálculo para velocidade de produção ou formação (produtos)

Sendo a reação química:     

Energia de Ativação e Variação de Entalpia

Uma forma de calcular, nos gráficos de reação exotérmica e endotérmica, a energia de ativação e a energia do complexo ativado. Também pode-se calcular a variação de entalpia através da entalpia dos reagentes e a entalpia dos produtos.

Onde:

Energia de Ativação com Catalisador

O catalisador aumenta a velocidade da reação química, mas não participa da reação. Nos gráficos, observe que com a presença do catalisador, a energia de ativação diminui. 

 

Lei da Velocidade

Para encontrar a lei da velocidade, usa-se a seguinte fórmula:

Para uma reação genérica, temos:      

Page 126: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Onde:V = velocidade da reação

K = constante de velocidade[A] = concentração molar de A[B] = concentração molar de B

X e Y = expoentes experimentalmente determinados

A lei de velocidade pode indicar também a ordem de reação e a molecularidade.

Dica: A lei da velocidade é importante porque é ela quem determina a ordem de reação. Sabendo a ordem de reação, pode-se prever o que acontece com a velocidade de determinada reação química quando se altera a concentração de um dos reagentes.

Resumo de fórmulas:

              

  

 

             

        

 

Page 127: INTRODUÇÃO AO ESTUDO DE QUÍMICA

EQUILÍBRIO QUÍMICOA maior parte das reações químicas termina quando termina a quantidade de regentes. Alguns processos não se completam. O fato disto ocorrer pode ser explicado pela reversibilidade da reação. Após formar os produtos, estes produtos voltam a formar os reagentes originais. Se certas modificações não forem modificadas, essas reações não chegarão ao final. Elas tendem a atingir o equilíbrio químico. 

O equilíbrio químico é representado por setas inversas:  ↔

REAÇÕES REVERSÍVEIS

Seja a reação genérica:

Onde:

V1 e V2 são as velocidades

No momento do equilíbrio, as concentrações [A], [B], [C], [D] são constantes, mas não necessariamente iguais.

Reação Reversível = É aquela que ocorre simultaneamente nos dois sentidos. Ao mesmo tempo, os reagentes se transformam em produtos e os produtos se transformam em reagentes.

No gráfico abaixo, os regentes são representados por B e os produtos por A.

Page 128: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Fonte: http://curriculodequimica.blogspot.com/2009_05_01_archive.html

Fonte: cesarmauriciosantos-fisqui.blogspot.com/2008

No início da reação, há uma grande quantidade de reagentes. À medida que o tempo vai passando, essa quantidade vai diminuindo e a velocidade também. Enquanto isso, no início da reação, não há produtos, a quantidade é zero. Ao decorrer da reação, os produtos vão sendo formados e a velocidade inicial é zero e vai aumentando até igualar com a velocidade dos reagentes. Neste momento, as velocidades permanecerão iguais e constantes. As concentrações também serão constantes. Quando as velocidades dos produtos e dos reagentes chegam neste ponto, dizemos que a reação está em equilíbrio.

Classificação do Equilíbrio

Podem-se classificar os equilíbrios em função das fases das substâncias envolvidas na reação química.

Equilíbrio Homogêneo

É aquele onde todas as substâncias estão na mesma fase (estado físico). Geralmente, ocorrem em sistemas gasosos e aquosos.

Exemplos:

Equilíbrio Heterogêneo

É aquele onde as substâncias estão em fases diferentes. Geralmente, envolvem substâncias sólidas e líquidas.

Exemplos:

CONSTANTE DE EQUILÍBRIO ( Kc )

Observe a seguinte reação química,Sendo a reação direta 1 e a reação inversa 2.

Page 129: INTRODUÇÃO AO ESTUDO DE QUÍMICA

De acordo com a lei cinética ou lei da velocidade:

No instante do equilíbrio: 

Isolando K :    

A divisão de duas constantes, em matemática origina uma terceira constante:

KC = constante de equilíbrio em função das concentrações

Então: 

Conhecendo-se o valor das concentrações das substâncias no momento do equilíquio, pode-se calcular a constante KC. A constante de equilíbrio não possui unidade, é adimensional. A constante de equilíbrio KC é dada pela razão (divisão) das concentrações dos produtos pela concentração dos reagentes da reação direta, elevados a expoentes iguais aos seus coeficientes estequiométricos da reação química.

Esta fórmula representa a Lei da ação das massas ou a Lei de Guldberg-Waage.

Propriedades das Constantes

É possível, a partir das constantes de equilíbrio da reação direta, obter a constante de equilíbrio da reação inversa. Também podemos multiplicar as constantes.

Reação Inversa

Seja a reação química:

Exemplo:

 

A sua reação inversa será:

Adição de uma  Reação

Se duas reações são adicionadas, o novo KC será o produto das constantes originais.

Page 130: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Multiplicação de uma Reação

Se duas reações são multiplicadas por um determinado número, a sua nova KC será elevada à este valor.

Veja o modelo:

Divisão de uma Reação

Se duas reações são divididas por um determinada número, a sua nova KC será a sua raíz.

Veja o modelo:

Reação com Substância Pura Líquida ou Sólida

As substâncias puras líquidas e sólidas possuem concentração constante,  onde o valor está incorporado ao da constante KC. Por este motivo, nas expressões de constante de equilíbrio, não se coloca as suas concentrações no cálculo da KC.

Exemplo:

Constante de Equilíbrio em Função das Pressões Parciais(Kp )

Se uma determinada reação química apresentar substâncias no estado gasoso, a constante de equilíbrio pode ser dada em função das suas pressões parciais.

Exemplo:

Para o cálculo da pressão parcial, utiliza-se o conceito de fração molar (x).  Calcula-se a fração molar e em seguida, a pressão parcial do gás.

Exemplo:

3 mols de PCl5(g) são colocados em um recipiente, atingindo o seguinte equilíbrio:

No momento do equilíbrio, 60% do reagente sofre dissociação. Sabendo que a pressão total do sistema é 4,8atm, calcule o valor de KP:

1°) calcular a quantidade de mols, sendo 60%:

2°) montar a tabela do equilíbrio químico:

Page 131: INTRODUÇÃO AO ESTUDO DE QUÍMICA

PCl5 PCl3 Cl2

início 3 - -

reagiu/formou 1,8 1,8 1,8

equilíbrio 3 -1,8=1,2 1,8 1,8

3°) calcular as frações molares:

nT = número total de mols

4°) calcular a pressão parcial dos gases:

O somatório das pressões parciais deve ser igual à pressão total:

Ou seja: 

5°) calcular a KP :

DESLOCAMENTO DE EQUILÍBRIO QUÍMICO

Para que um sistema esteja em equilíbrio químico, a velocidade da reação direta deve ser igual a velocidade da reação inversa. As condições que envolvem estas reação não devem ser modificadas. Caso isso ocorra, haverá uma alteração no equilíbrio. Estas modificações podem ser:

- concentração de reagentes e produtos- pressão- temperatura- presença de catalisador

Estas modificações podem beneficiar a reação em um dos sentidos (direto ou inverso). Chamamos estas perturbações de deslocamento do equilíbrio.

Page 132: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Deslocamento do Equilíbrio – É toda e qualquer alteração da velocidade da reação direta ou da reação inversa, causando modificações nas concentrações das substâncias e levando o sistema a um novo estado de equilíbrio químico.

Quando a velocidade da reação direta aumenta é porque o equilíbrio está se deslocando para a direita.

Quando a velocidade da reação inversa aumenta é porque o equilíbrio está se deslocando para a esquerda.

Princípio de Le Chatelier

O estudo dos deslocamentos de equilíbrio foi desenvolvido pelo químico francês Le Chatelier.

É possível prever o que acontece com a reação, de acordo com a alteração que é feita.  Enunciado de Le Chatelier:

“Quando um fator externo age sobre um sistema em equilíbrio, este se desloca, procurando minimizar a ação do fator aplicado.” 

Influência da Concentração

Um aumento em qualquer das concentrações resulta em um deslocamento de equilíbrio para o outro lado. 

A retirada de alguma substância provoca o deslocamento para o seu lado. Durante as modificações, os valores de todas as concentrações são alteradas, porém o valor de KC mantém-se o mesmo.

Sendo:

Se aumentar a concentração de reagente, a reação precisa produzir mais quantidade de produto, por isso desloca-se para a direita.

Se diminuir a concentração de reagente, a reação precisa produzir mais quantidade do próprio reagente, por isso desloca-se para a esquerda.

Se aumentar a concentração de produto, a reação precisa produzir mais quantidade de reagente, por isso desloca-se para a esquerda.

Se diminuir a concentração de produto, a reação precisa produzir mais quantidade do próprio produto, por isso desloca-se para a direita.

Influência da Pressão

A pressão de um gás está associada ao volume deste gás. 

Page 133: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O aumento da pressão beneficia a reação com menor volume e a diminuição da pressão beneficia a reação com maior volume.

Aumento do volume do gás = EXPANSÃODiminuição do volume do gás = CONTRAÇÃO

Seja a reação química:

O volume ocupado por regentes e produtos, obedece à proporção estequiométrica. Neste caso, o produto possui menor volume. Com um aumento da pressão, o equilíbrio será deslocado para o sentido dos produtos, sentido direito, porque tem menor volume.

Aumento da pressão = EQ para lado com menor volumeDiminuição da pressão = EQ para lado com maior volume

Para estas alterações, não há modificação no valor da KC.

Influência na Temperatura

É a única alteração que pode modificar o valor da KC.

O aumento da temperatura beneficia a reação endotérmica.A diminuição da temperatura beneficia a reação exotérmica.

Influência da Presença de Catalisador

A presença de um catalisador (substância química que acelera a reação química) não altera o valor da KC. O catalisador promove a diminuição do momento do equilíbrio. Altera tanto na reação direta como na reação inversa.

Resumo de Deslocamento de Equilíbrio Químico

Perturbação Externa Deslocamento do Equilíbrio Alteração de Kc ou Kp

Adição de um participante No sentido oposto ao do participante Não

Retirada de um participante No sentido do participante Não

Aumento da pressão total No sentido do menor volume Não

Diminuição da pressão total No sentido do maior volume Não

Aumento da temperatura No sentido endotérmico Sim

Diminuição de temperatura No sentido exotérmico Sim

Presença de catalisador Não Não

 

Equilíbrio Químico – 2

Page 134: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Constante de Acidez (Ka) e Constante de Basicidade (Kb)

Quando um ácido entra em contato com água dizemos que ocorreu uma ionização. Para as bases, utilizamos o termo dissociação. Veja o que acontece quando ácido clorídrico é adicionado em água:

A sua constante de equilíbrio é dada por:

Observe que a substância líquida água não deve participar da constante de equilíbrio porque a sua concentração é constante. Então se a concentração de água for multiplicada por KC, teremos o aparecimento de uma nova constante, a constante de acidez, Ka. 

A constante de acidez indica a força do ácido. Quanto menor o valor do Ka, mais fraco é o ácido. Menos ionizado é este ácido. Utiliza-se esta constante para os ácidos fracos. Ácidos fortes não tem Ka , já que dissociam completamente e não apresentam equilíbrio (reação direta  e inversa).

A constante de acidez está ligada ao grau de ionização de um ácido.

Quanto maior o Ka , maior é o grau de ionização, portanto, ácido forte.Quanto menor o Ka , menor o grau de ionização, portanto, ácido fraco.

Observe a tabela de ácidos com diferentes valores de Ka  e sua força ácida:

ÁCIDOS Ka (25°C) FORÇA ÁCIDA

HClO4 10+10 Muito Forte

HCl 10+7 Muito Forte

H2SO4 10+3 Forte

H2SO3 1,5.10-2 Forte

H3PO4 7,6.10-3 Fraco

HNO2 4,3.10-4 Fraco

HF 3,5.10-4 Fraco

CH3COOH 1,8.10-5 Fraco

H2CO3 4,3.10-7 Fraco

H2S 1,3.10-7 Fraco

HCN 4,9.10-10 Muito Fraco

Podemos utilizar, também para demonstrar o valor da constante de acidez, a constante de ionização, Ki.

A constante de basicidade é dada por Kb, e indica a força da base e o seu grau de dissociação. É semelhante ao Ka, porém agora, refere-se às bases.

EFEITO DO ÍON COMUM

Em um equilíbrio de íons, a adição de espécies químicas pode contemplar íons que já existam no sistema ou não. Se o íon adicionado já existe no equilíbrio (íon comum), seu comportamento será como na adição de qualquer substância que já existe na reação. Se for adicionada alguma espécie

Page 135: INTRODUÇÃO AO ESTUDO DE QUÍMICA

que não possui no sistema e ela reagir com algum presente no equilíbrio, devemos estudar o efeito da diminuição da concentração desta segunda substância. Se a substância adicionada não reagir no equilíbrio, seu acréscimo não modificará o sistema.

Veja o exemplo a seguir:

De acordo com o lado que o equilíbrio se desloca, a solução troca de cor.

Veja o que pode acontecer se for adicionado a esta reação:

- adição de HCl(aq) – o ácido HCl se ioniza formando o íon cátion H+(aq). Provoca, portanto o aumento da concentração deste íon no sistema. Desloca o equilíbrio para a direita, até consumir o excesso adicionado. O íon H+(aq) é o íon comum ao sistema.

- adição de NaOH – a base NaOH se dissocia formando o íon ânion OH-(aq) que reage com o cátion H+(aq), provocando a formação de água e diminuindo a concentração de H+(aq). Desloca o equilíbrio para a esquerda para repor a quantidade removida deste íon. O  íon OH-(aq) é o íon não comum ao equilíbrio.

EQUILÍBRIO IÔNICO DA ÁGUA (KW)

A água pura se ioniza muito fracamente da seguinte forma:

A constante de equilíbrio KC é dada pela expressão:

Como a água está no estado líquido, a sua concentração mantém-se constante então não participa da fórmula e podemos mulitiplicá-la pelo KC obtendo uma nova constante. Neste caso, a KW, ou

seja, o produto iônico da água.

O KW é a constante de equilíbrio iônico da água. A letra w vem da palavra inglesa water que significa água. 

Esta constante depende da temperatura. A 25°C a constante de equilíbrio iônico da água vale:

A unidade é adimensional, assim como as demais constantes de equilíbrio.

Veja algumas constantes para temperaturas diferentes:

TEMPERATURA (°C) KW

0 0,11.10-14

40 3,0.10-14

100 51,3.10-14

Tipos de Soluções Aquosas

As soluções aquosas das substâncias quimicas podem ser classificadas em três tipos: - solução ácida- solução básica- solução neutra

Solução Ácida

Page 136: INTRODUÇÃO AO ESTUDO DE QUÍMICA

É a solução que contém a concentração do íon H+ maior do que a concentração do íon OH-.

Solução Básica

É a solução que contém a concentração do íon OH- maior do que a concentração do íon H+.

Solução Neutra

É a solução que contém a concentração do íon OH- igual à concentração do íon H+. 

PRODUTO HIDROGENIÔNICO (pH)

Sendo KW = [H+] . [OH-] e KW =1.10-14, calcule o valor da concentração de íons H+ e de íons OH-:

Então se 1.10-7 é a solução neutra. Se houver maior quantidade de íons H+,  a solução será ácida. Se houver maior quantidade de íons OH-, a solução será básica. Os químicos inventaram uma maneira mais simplificada para expressar esses valores. Foi utilizado o conceito de pH para calcular a quantidade de íons nestas soluções aquosas. 

pH é o produto hidrogeniônico da água e é uma escala criada para medir a acidez de soluções aquosas. 

pOH mede a quantidade de íon OH- nas soluções aquosas.

Veja a escala feita com os valores calculados anteriormente:

CONCENTRAÇÃO (mol/L)1.10-141.10-71.10-1

TIPO DE SOLUÇÃOBásicaNeutraÁcida

pH1471

A faixa de pH varia de 0 a 14. O logaritmo é uma função utilizada para reduzir a escala.De acordo com cada um dos pH, há um tipo de solução:

0  1  2  3  4  5  6 7 8  9  10  11  12  13  14

Ácida Neutra Básica

Page 137: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A determinação do pH hoje em dia, é muito importante, como por exemplo, em piscinas, num aquário, no solo, em um rio, no nosso organismo, etc. 

Pode determinar se uma solução é mais ácida ou mais básica.

Observe a tabela com diferentes valores de pH encontrados no nosso cotidiano:

SISTEMA pH a 25°C

Água de bateria 1,0

Suco gástrico 1,6

Suco de limão 2,2-2,4

Vinagre 2,6-3,0

Suco de laranja 3,0-4,0

Vinho 3,5

Cerveja 4,0

Chuva ácida 4,0

Café 5,0

Saliva 6,5

Leite de vaca 6,7

Água pura 7

Água potável 7,2

Sangue e lágrima 7,4

Clara do ovo 8,0

Água do mar 8,0

Creme dental 9,9

Sabonete 10,0

Leite de magnésia 10,5

 Alvejante 12,0

Soda cáustica “diabo-verde” 14,0

Resumindo:

Água Pura pH = 7 pOH = 7

Solução ácida pH < 7 pOH > 7

Solução básica pH > 7 pOH < 7

 

Exemplo:

- Calcule o pH de uma solução 0,1mol/L de NaOH:

                 

pH + 1 = 14

Page 138: INTRODUÇÃO AO ESTUDO DE QUÍMICA

pH = 14-1pH = 13

Observe que a mesma concentração da solução de NaOH é a mesma concentração de íons OH-. Calcula-se primeiro o pOH e em seguida o pH.

- Calcule o pH de uma solução 0,002mol/L de HCl. Dado: log 2 = 0,3

A concentração da solução é igual a concentração de íons H+.

Como medir o pH na prática?

O aparelho utilizado para medir o pH é o peagâmetro. 

São aparelhos que medem a condutividade elétrica da solução e possuem uma escala já graduada em valores de pH.

Coloca-se o eletrodo dentro da solução que deseja-se descobrir o pH e faz-se a leitura do peagâmetro.

 

 Também é utilizado diversos indicadores ácido-base (substâncias orgânicas que mudam de cor em contato com substância ácida e básica), como a fenolftaleína, azul de bromotimol, alaranjado de metila.  

Veja a coloração que os principais indicadores podem adquirir ao entrar em contato com um ácido ou uma base:

INDICADOR ÁCIDO BASE NEUTRO

FENOLFTALEÍNA INCOLOR ROSA INCOLOR

TORNASSOL ROSA AZUL -

Fenolftaleína em meio básico

Geralmente, a viragem de pH destes indicadores ocorre em faixas de pH diferentes.

Utilizam-se muito também os indicadores universais, que são mistura de várias substâncias indicadoras. É uma escala com valores de pH e cores. A cor destes indicadores varia

Page 139: INTRODUÇÃO AO ESTUDO DE QUÍMICA

gradativamente, mostrado qual é o pH da solução. É muito utilizado em laboratórios químicos. 

 Outro indicador muito utilizado em laboratórios é o papel tornassol, que é um papel filtro impregnado com tornassol. É impróprio para indicar um valor exato de pH. Mostra apenas se a solução é ácida ou básica.

Se o papel fica vermelho, a solução é ácida. Se o papel fica azul, a solução é básica.

FORMULAS E DICAS

EQUILÍBRIO QUÍMICO * Constante de Equilíbrio

Onde:KC = constante de equilíbrio em função das concentraçõesP = concentração dos produtosp = coeficiente estequiométrico dos produtosR = concentrações dos reagentesr = coeficiente estequiométrico dos reagentes

Dica: a constante de equilíbrio é adimensional, ou seja, não tem unidade.

 

* Constante de equilíbrio com substância líquida e sólida

Não se coloca a concentração de substância em estado físico líquido ou sólido, assim como a água. Apenas substâncias no estado gasoso e em meio aquoso.

Exemplo:

O CaO e o CaCO3 está no estado sólido então não devemos colocá-lo na constante de equilíbrio.

* Constante de equilíbrio em função das pressões parciais

Para a constante Kp (em função das pressões parciais) também não coloca-se sunstância no estado sólido e líquido.

Exemplo:

aA + bB <----------> cC + dD

Qc = [C]^c [D]^d........---------------........[A]^a [B]^b

 

Page 140: INTRODUÇÃO AO ESTUDO DE QUÍMICA

* Constante de acidez e basicidade

Para o Ka calcula-se da mesma forma que as demais constantes.

Exemplo:

Dica: O Ka  serve para dizer o quanto um ácido é forte ou fraco. Quanto menor o Ka mais fraco é o ácido. 

Geralmente ácido forte não tem Ka, já que significa equilíbrio. Se um ácido é forte ele dissocia completamente, portanto não está em equilíbrio.

O mesmo serve para a constante de basicidade (Kb). Quanto menor o valor de Kb mais fraca é a base.

* Kw

O produto iônico da água é dado por:

* pH

O cálculo de pH serve para calcular o valor da concentração de íons H+ em uma solução. 

É uma função de p, assim como pOH é uma função, mas que calcula a quantidade de íons OH- em uma solução.

Dica: A faixa de pH varia de 0 a 14. Se uma solução está entre 0 e 7 ela é considerada ácida. Se é 7, será considerada neutra. Se a faixa está entre 7 e 14 é uma solução básica. 

Pode-se calcular o pH através do pOH e vice-versa:Veja a fórmula utilizada:

ELETROQUÍMICA

Page 141: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Eletroquímica é uma área da química que estuda as reações que produzem corrente elétrica através de reações chamadas de oxidação e redução. Também estuda as reações que ocorrem por intermédio do fornecimento de corrente elétrica, conhecidas como eletrólise.

As reações ocorrem trocas de elétrons entre os átomos e os íons. A eletroquímica está muito presente no nosso dia-a-dia. Está presente basicamente em pilhas e baterias utilizadas em aparelhos eletrônicos, como celular, controle remoto, lanternas, filmadoras, calculadoras, brinquedos eletrônicos, rádios à pilha, computadores, e muitos outros.

       

As reações de oxirredução (oxidação e redução) também estão presentes no cotidiano, como na oxidação do ferro (formação da ferrugem), redução de minérios metálicos para a produção de metais, formação do aço, corrosão de navios, etc.

       

A conversão de energia química em energia elétrica é um processo espontâneo, chamado de pilha ou célula galvânica.

A conversão de energia elétrica em energia química é um processo não espontâneo, chamado de eletrólise.

Page 142: INTRODUÇÃO AO ESTUDO DE QUÍMICA

QUÍMICA ORGÂNICAAté as primeiras décadas do século XIX, muitos cientistas acreditavam que os compostos orgânicos eram obtidos a partir de organismos, como vegetais e animais. Eles acreditavam nisso porque desde a Antiguidade, as civilizações retiravam corantes de plantas para tingir vestimentas ou para preparar bebidas a partir da fermentação de uvas. 

No século XVIII, Carl Wihelm Sheel conseguiu isolar o ácido tartárico da uva, o ácido cítrico do limão, o ácido lático do leite, a glicerina da gordura e a uréia da urina. 

Por este motivo, em 1777, Torbern Olof Bergam definiu que a Química Orgânica era a química dos compostos existentes nos organismos vivos e que a Química Inorgânica era a química dos minerais.

Neste mesmo período, Antoine Laurent de Lavoisier analisou muitos compostos orgânicos e verificou a presença do elemento químico carbono em todos eles. 

Em 1807, o químico sueco Jöns Jakob Berzeluis defendeu a teoria da Força Vital onde somente os seres vivos são capazes de produzir os compostos orgânicos. Isto queria dizer que era impossível de se obter uma substância orgânica se não fosse a partir de um ser vivo. Não poderiam ser sintetizadas (preparadas artificialmente).

Porém, esta teoria da Força Vital foi derrubada pelo químico alemão Friedrich Wöhler.Em 1828, Wöhler sintetizou a uréia, a partir de um composto mineral, de acordo com a reação a seguir:

A partir do cianato de amônio, foi possível sintetizar a uréia, que antes só podia ser obtida através da urina dos animais. 

Outras sínteses também foram feitas, como a do metanol e acetileno, também por Wöhler. Em 1845, Adolphe Wilhelm Hermann Kolbe sintetizou pela primeira vez um composto orgânico a partir de seus elementos químicos. Sintetizou então o ácido acético (vinagre). 

Desta época em diante, os químicos acreditavam que qualquer outro composto organio poderia ser sintetizado. A ideia de que todo composto orgânico vinha de seres vivos, foi abandonada.  

Page 143: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Friedrich August Kekulé, em 1858 propôs um novo conceito para Química Orgânica, utilizado até hoje.

“Química Orgânica é a parte da Química que estuda os compostos que contém carbono.”

Se a Química Orgânica estuda os compostos com carbono, a Química Inorgânica estuda os demais compostos, em geral minérios. 

Nem toda substância que contém carbono é parte da Química Orgânica. Há algumas exceções, porque apesar de conter carbono, tem comportamento de uma substância inorgânica.   São eles: C(grafite), C(diamante), CO, CO2, HCN, H2CO3, Na2CO3. 

Os compostos orgânicos são, na sua maioria, formados por C, H, O e N. estes átomos são chamados de elementos organógenos. Os átomos diferentes do carbono, em uma substância orgânica, são chamados de heteroátomos.

Se a Química Orgânica estuda os compostos com carbono, a Química Inorgânica estuda os demais compostos, em geral minérios. 

Nem toda substância que contém carbono é parte da Química Orgânica. Há algumas exceções, porque apesar de conter carbono, tem comportamento de uma substância inorgânica. 

São eles: C(grafite), C(diamante), CO, CO2, HCN, H2CO3, Na2CO3. 

Os compostos orgânicos são, na sua maioria, formados por C, H, O e N. estes átomos são chamados de elementos organógenos. Os átomos diferentes do carbono, em uma substância orgânica, são chamados de heteroátomos.

Utilidade da Química Orgânica

Os compostos orgânicos existem em maior quantidade em relação aos inorgânicos. 

Até 2005 já eram conhecidos 18.000.000 compostos orgânicos e hoje é uma das áreas mais estudadas na indústria química, a indústria do petróleo. Foi possível fabricar plásticos, como o náilon, poliéster, teflon, raiom, etc.

Plataforma Petrolífera

Como compostos naturais orgânicos podemos citar o petróleo, gás natural, carvão mineral, etc.

Como compostos orgânicos sintéticos podemos citar os plásticos, corantes, medicamentos, inseticidas, roupas, etc.

Page 144: INTRODUÇÃO AO ESTUDO DE QUÍMICA

  

Corantes, medicamentos e garrafas de polietileno (PET)

ÁTOMO DE CARBONO

O átomo de carbono possui massa atômica (A) igual a 12,01u e número atômico (Z) igual a 6. Veja a sua configuração eletrônica:

O átomo de carbono possui 6 elétrons, sendo 4 elétrons na última camada (camada de valência). Por esse motivo, chamamos o átomo de carbono de tetravalente.

POSTULADOS DE KEKULÉ

O químico alemão Friedrich August Kekulé foi quem estudou as principais características do átomo de carbono. Explicou as propriedades em forma de três postulados:

1° Postulado de Kekulé: O carbono é tetravalente

Como o átomo de carbono possui 4 elétrons na sua última camada, ele tem quatro valências livres e pode fazer quatro ligações covalentes, formando moléculas. Desta forma, o átomo fica estável.

 2° Postulado de Kekulé: O carbono tem 4 valências livres

O átomo de carbono tem as quatro valências livres. A posição do heteroátomo não difere os compostos.

Exemplo: clorofórmio (CH3Cl)

3° Postulado de Kekulé: O carbono forma cadeias carbônicas

Page 145: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os átomos de carbono agrupam-se entre si, formando estruturas de carbono, ou cadeias carbônicas. 

Alguns elementos (enxofre e fósforo) também conseguem formar cadeias, assim como o carbono, mas não cadeias tão longas, estáveis e variadas como o carbono.

Propriedade Geral dos Compostos Orgânicos

Por apresentarem ligações predominantes covalentes, são moléculas e possuem as seguintes propriedades:

- P.F. e P.E. baixos- Solubilidade em solventes apolares- Solução aquosa não conduz eletricidade- Podem apresentar polimeria e isomeria

Tipos de União entre Átomos de Carbono

Dois átomos de carbono podem se ligar entre si através de um, dois ou três pares de ligação. 

1 par eletrônico – ligação simples   C – C  2 pares eletrônicos – ligação dupla C = C3 pares eletrônicos – ligação tripla  C ≡ C

Fórmulas

Para representar uma molécula podem-se usar diversas fórmulas:

- fórmula eletrônica- fórmula estrutural- fórmula molecular- fórmula geométrica

Para representar o gás metano veja as diversas fórmulas que podemos utilizar:

Fórmula Eletrônica

Mostram na fórmula os pares eletrônicos entre as ligações dos átomos. É a chamada fórmula de Lewis. 

Fórmula Estrutural

Fórmula mais utilizada do que a eletrônica. Os pares eletrônicos são representados por um traço. Indicam as ligações covalentes entre os átomos.

Page 146: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Fórmula Molecular

É uma representação mais simplificada da molécula. Indica os átomos e a sua quantidade na substância.

Fórmula Geométrica

Essas fórmulas indicam como poderia ser vista a molécula no espaço. Mostra os ângulos e as suas ligações.

Classificação do Átomo de Carbono

Classificamos o átomo de carbono de acordo com o número de carbonos que estão ligados a ele. 

Exemplo: 

Neste caso, as ligações que faltam são completadas com hidrogênio, porque o carbono sempre deve fazer 4 ligações. 

Observe que o carbono 1,4,5,6 e 8 estão ligados a somente um carbono, então são chamados de Carbonos Primários.

O carbono 3 está ligado a dois carbonos, então é chamado de Carbono Secundário.

O carbono 7 está ligado a três carbonos, então é chamado de Carbono Terciário.

O carbono 2 está ligado a quatro carbonos, então é chamado de Carbono Quaternário.

CADEIAS CARBÔNICAS

Page 147: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O átomo de carbono tem a propriedade de formar cadeias carbônicas. Elas são classificadas em aberta, fechada ou mista.

Cadeias Abertas

As cadeias abertas são chamadas também de cadeias acíclicas ou alifáticas. 

Apresentam duas extremidades ou pontas de cadeia. 

Classificam-se de acordo com a presença de um heteroátomo ou não entre carbonos.

- homogênea – não possui heteroátomos entre carbonos.

 - heterogênea – possui heteroátomo entre carbonos.

As cadeias abertas também podem ser classificadas de acordo com a presença de radicais (ramificações) na cadeia carbônica.

- normal – não possui radicais.

- ramificada – possui radicais.

As cadeias carbônicas abertas podem ser classificadas de acordo com o tipo de ligação química.

- saturada – quando há na cadeia carbônica apenas ligações simples.

Page 148: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- insaturada – quando há nas cadeias carbônicas ligações duplas ou triplas.

 Cadeias Fechadas

As cadeias fechadas são também chamadas de cadeias cíclicas. 

Apresentam seus átomos ligados entre si formando um ciclo figura geométrica ou anel. 

Podem ser classificadas quanto à presença de uma anel aromático ou não.- alicíclica ou não aromática – são cadeias fechadas que não possuem o anel bezênico. 

- aromática – são cadeias fechadas que possuem o anel aromático, ou anel benzênico. Possuem ressonância entre seus elétrons. Estas cadeias em geral têm seis átomos de carbono que alternam ligações duplas e ligações simples. 

            ou            ou         

As cadeias aromáticas podem ser classificadas de acordo com o número de anéis aromáticos:- mononuclear: quando possui apenas um núcleo (anel aromático)

        

- polinuclear: quando possui vários anéis aromáticos.

        

Page 149: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os aromáticos polinucleares podem ser classificados em:

- polinucleares isolados: quando os anéis não possuem átomo de carbono em comum.

- polinuclear condensado: quando os anéis possuem átomos de carbono em comum. 

 

As cadeias carbônicas fechadas ou alicíclicas podem ser classificadas de diversas formas, assim como as cadeias aberta.

Podem ser classificadas de acordo com à saturação:- saturada: cadeia que possui apenas ligações simples enre os átomos. 

    - insaturada: cadeia que possui uma dupla ligação entre carbonos.

Podem ser classificadas de acordo com a presença ou não de um heteroátomo:- homogênea ou homocíclicas: possuem somente átomos de carbonos ligados entre si.

- heterogênea ou heterocíclica: possuem um heteroátomos entre átomos de carbono.

Page 150: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Cadeias Mistas

As cadeias carbônicas mistas são abertas e também fechadas.

 

Resumo das Cadeias Carbônicas

Exemplo:

O linalol é uma substância isolada do óleo de alfazema e possui a seguinte fórmula estrutural:

Page 151: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Como poderia ser classificada esta estrutura?

- acíclica- ramificada- insaturada- homogênea

Ressonância

É a deslocalização dos pares eletrônicos π (pi) das ligações duplas do anel aromático, exercendo um efeito igual em todas as regiões da estrutura. O efeito de ressonância dá estabilidade à molécula. 

Este deslocamento é representado por um círculo no centro do anel.Cada anel possui três ligações π (pi).

 

          

O comprimento da ligação dupla é menor do que a ligação simples.

C = C é equivalente a 1,40Å C – C é equivalente a 1,54Å

O Angstron (Å) é uma unidade de medida dez bilhões de vezes menores que o metro usado para medir comprimentos de ligações dos átomos, moléculas, etc.

Chamamos o anel aromático, que contém a ressonância, de híbrido de ressonância ou híbrido ressonante.

O modo como se monta a estrutura do anel aromático é uma forma canônica.As formas canônicas do anel aromático são teóricas. Na prática, elas não existem. O que existe é uma forma intermediária entre elas, que são os híbridos de ressonância.

LIGAÇÕES COVALENTES E HIBRIDIZAÇÕES

Orbital

Orbital  é a região de um átomo onde existe a maior probabilidade de encontrar um elétron.

O orbital mostra a forma do átomo, de acordo com o subnível energético.

subnível s um só orbital s (0)

subnível p três orbitais p (-1) (0) (+1)

subnível d cinco orbitais d (-2) (-1) (0) (+1) (+2)

subnível f sete orbitais f (-3) (-2) (-1) (0) (+1) (+2) (+3)

Veja a forma de cada orbital:

s – possui a forma esférica

Page 152: INTRODUÇÃO AO ESTUDO DE QUÍMICA

p – possui a forma de halteres

Os orbitais d e f também apresentam forma de halteres, mas são mais alongadas.

Segunda o Princípio da Exclusão de Pauli, um orbital só comporta dois elétrons de cada vez.

Spin

Spin é o sentido do movimento de rotação do elétron em torno do seu próprio eixo.

Os valores de Spin são convencionados e obedecem setidos horários e anti-horários.

Para o sentido horário usa-se 

Para o sentido anti-horário usa-se 

Ligação Covalente pelo Modelo do Orbital Molecular

Uma ligação A = B forma-se pela interpenetração (mistura) de um orbital semi-cheio do átomo A com um orbital semi-cheio do átomo A com um orbital semi-cheio do átomo B, que possuem elétrons de Spins contrários. Desta interpenetração resulta um orbital molecular contendo um par eletrônico compartilhado.

Ligação Sigma (σ) e Pi (π)

A interpenetração entre dois orbitais atômicos, resultando num orbital molecular pode se dar de forma linear, quando eles pertencem a um mesmo eixo (ligação sigma) ou pode se dar de forma paralela, quando eles pertencem a eixos paralelos (ligação pi) quando no mesmo eixo chamamos de interpenetração em paralelo.

Page 153: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A ligação sigma se estabelece quando dois átomos se liga por uma ligação simples, uma ligação dupla ou uma ligação tripla. 

A ligação pi se estabelece quando dois átomos se ligam por uma ligação dupla ou uma tripla. 

As ligações pi são dependentes das ligações sigma. Isto quer dizer que uma ou duas ligações pi sempre estão acompanhadas de uma ligação sigma. 

Veja que tipo de ligação há em:

Ligação Simples = uma ligação sigmaLigação Dupla = uma ligação sigma e uma ligação piLigação Tripla = duas ligações pi e uma sigma

Exemplo:

A – B     uma ligação σ

A = B    uma ligação σ e uma ligação πA ≡ B    uma ligação σ e duas ligações π

Ligações Covalentes através de Orbitais Híbridos

Hibridização ou Hibridação de orbitais é uma interpenetração (mistura) que dá origem a novos orbitais, em igual número, denominados orbitais híbridos.

Veja o tipo de hibridização para diferentes tipos de ligações entre carbonos:

- sp3    H  |   H – C – H  |  H

Nesta molécula, o metano, todas as ligações são sp3. Toda molécula que possuir ligações simples, a sua hibridização será sp3.

- sp2

Nesta molécula, eteno, temos uma ligação dupla, então a hibridização nesta ligação será sp2 (ligação sigma) e p (ligação pi). As demais ligações são todas sp2.

- sp

H – C  ≡  C – H

Neste caso, o etino possui uma ligação tripla, sendo uma hibridização sp (ligação sigma) e duas p (ligação pi). A ligação entre carbonos e hidrogênios é sp.

Todas as ligações π são p puro.

Veja esta molécula:

= C =

Nesta molécula, há um ângulo de 180° entre as ligações duplas. A hibridização será sp e p para cada ligação dupla. 

Uma ligação entre H – C será s – sp.

Exemplo: Seja a seguinte molécula de etano, analise as suas ligações σ e π e o tipo de hibridização de cada ligação:

Page 154: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Carbono 1: H – C [σ: s – sp3 ]

C – C [σ: sp3 – sp3]

Carbono 2: C – C [σ : sp3 – sp3]H – C [σ: s – sp3]

No etano, não há nenhuma ligação π, portanto nenhum p puro.

Ângulo entre as Ligações

De acordo com a hibridização, veja o ângulo que se forma em cada uma delas:

sp3 – 109° 28´16”sp2 – 120°sp – 180°

FUNÇÃO ORGÂNICADevido ao elevado número de composto orgânico que existem, foi necessário agrupá-los em funções orgânicas. As substâncias foram classificadas de acordo com suas propriedades semelhantes e composição para melhorar o estudo destes compostos, assim como os compostos inorgânicos. 

As principais funções orgânicas são:- hidrocarboneto- álcool- fenol- aldeído- cetona- éter

Page 155: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- éster- ácido carboxílico- amina- amida- nitrila- haleto

HIDROCARBONETO

Os hidrocarbonetos são a função mais simples da Química Orgânica. A partir do conhecimento desta função é possível montar com facilidade as demais funções. 

Os hidrocarbonetos têm grande importância para a Indústria Química. O petróleo e o gás natural são fontes de hidrocarbonetos.  É o ponto de partida para a produção de combustíveis, plásticos, corantes e tantos outros produtos úteis ao homem.

Hidrocarbonetos são compostos orgânicos formados exclusivamente por hidrogênio e carbono.

Por isso o nome hidrocarboneto (hidro = H e carboneto = C).

Sua fórmula geral é CxHy

Exemplos:

Propano (C3H8): presente no gás de cozinha GLP

       

Octano (C8H18): gasolina

       

 

Os hidrocarbonetos se dividem de acordo com a sua estrutura e tipo de ligações entre carbonos. São tipos de hidrocarbonetos:- alcanos- alcenos- alcinos

Page 156: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- alcadienos- cicloalcanos-cicloalcenos-aromáticos

Alcanos

Alcanos são hidrocarbonetos formados apenas por ligações simples entre seus carbonos.

Possuem cadeia aberta (acíclicos) e ligações simples (satudadas).Sua fórmula é CnH2n+2

A principal fonte de alcanos é o petróleo e o gás natural. A partir deles é possível produzir combustíveis como a gasolina, óleo diesel e querosene. Estes alcanos possuem baixo teor de carbono. Para as cadeias mais longas é possível obter a parafina (fabricação de velas).

Propriedades Físicas

Os alcanos são pouco reativos, ou seja, não reagem com quase nenhuma substância. Por este motivo são chamados também de parafinas ou parafínicos. Em latim  para affinis significa pouca afinidade. 

Não são muito reativos porque a ligação entre C – H e C – C são muito estáveis e difíceis de serem quebradas. São mais utilizados para a queima, por isso, são usados como combustíveis, para o fornecimento de energia.

São insolúveis em água e  menos denso que a água.  Os alcanos de até quatro carbonos são gases a temperatura ambiente (25°C). De cinco a dezessete carbonos são líquidos e os demais, sólidos.

Observe o número de carbonos, o estado físico e a substância:

Composto N° de Carbono Estado físico (25°C) Produto

Metano 1 gasoso Gás natural

Propano 3 gasoso GLP

Butano 4 gasoso GLP

Octano 8 líquido Gasolina

Decano 10 líquido Querosene

Tricosano 30 sólido Piche (asfalto)

* GLP = gás liquefeito do petróleo

Nomenclatura

Para dar nome aos alcanos, assim como os demais compostos orgânicos, devemos seguir as regras estabelecidas pela União Internacional de Química Pura e Aplicada (IUPAC).

Prefixo + Parte Central + Terminação

Prefixos: Indica o número de carbonos na cadeia. São de origem grega ou latina.1C – met2C – et3C – prop4C – but5C – pent6C – hex7C – hept8C – oct9C – non10C – dec11C – undec12C – dodec20C - eicos30C – tricos

Estes prefixos servem também para as demais funções orgânicas.

Page 157: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Parte Central: Indica o tipo de ligação química entre carbonos. Para os alcanos, usamos an. an = ligação simplesen = ligação duplain = ligação tripla

Terminação ou Sufixo: Indica a função química. Como a função é hidrocarboneto, usamos a letra o.

Exemplos:CH4 – metanoC2H6 – etano

        C8H18 = octano

                          C5H12 = pentano

Radicais

Os alcanos acima possuem a cadeia normal, porém alguns alcanos possuem ramificações ao longo da cadeia carbônica. Para essas ramificações damos o nome de radicais. Os radicais dos alcanos são as alquilas ou radical alquila.

A alquila é um alcano que perde um H.

Observe:

Para dar nome às alquilas, modifica-se apenas a terminação para ila.

Outros radicais alquilas:

Page 158: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Para dar nome às cadeias carbônicas de alcanos ramificados, utilizamos as seguintes regras:

- determinar a maior cadeia possível de carbonos;- determinar os radicais ligados à cadeia principal;- a numeração da cadeia principal se dá para que a ramificação possua os menores números possíveis;- os radicais são colocados em função da sua ordem alfabética;- os prefixos di, tri,tetra, sec, terc não são considerados para efeito de ordem alfabética exceto ISO.

Exemplo:

PETRÓLEOO petróleo é uma matéria orgânica formada há milhões de anos. Sua origem é a partir de seres vegetais e animais marinhos que foram soterrados por rochas sedimentares (rochas porosas formadas por calcário e areia). Com a ação do calor, da pressão, dos microrganismos e do tempo, esta matéria orgânica se transformou em petróleo. A palavra petróleo vem do latim petra, que significa pedra e oleum, que significa óleo. O petróleo é um líquido oleoso, denso, de cor geralmente escura .

Page 159: INTRODUÇÃO AO ESTUDO DE QUÍMICA

   

Pode ser encontrado no fundo do mar, mas também é encontrado em terra firme. É mais comum encontrarmos petróleo sobre água salgada, por isso a sua origem marinha, e embaixo de uma camada com gases, como o metano (CH4), etano (C2H6), e outros, em altas pressões. As descobertas dos poços de petróleo são feitas de várias maneiras. A mais comum é feita com a detonação de cargas explosivas no solo e com a medição das ondas de choque refletidas nas várias camadas do subsolo. A partir do estudo destas ondas é possível indicar o local provável de se encontrar petróleo. Após encontrar petróleo é preciso fazer a extração. Ela é feita através das plataformas petrolíferas. A extração do petróleo do mar é uma das tarefas mais difíceis.

Plataforma Petrolífera em alto mar

Veja o esquema da extração do petróleo:

Fonte: http://www.cdb.br/prof/arquivos/79472_20080429052718.gif

 O petróleo extraído dos poços é enviado por bombeamento para os depósitos mais próximos. Fica em repouso para decantar a água salgada, argila e algumas impurezas existentes. Uma das piores impurezas do petróleo é o enxofre (S). Em seguida, é bombeado para tanques de armazenamento  e enviados por oleodutos, que são tubulações especiais para o petróleo, para a refinaria. A refinaria é o local onde acontece a purificação e separação dos componentes do petróleo. É transformado em uma série de derivados através de diversos métodos.

Page 160: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Fonte: http://www.supletivounicanto.com.br/modulos/quimica/moduloqui1.htm

Um dos processos realizados é a destilação fracionada. É realizada em grandes colunas de destilação. Cada fração do petróleo apresenta uma mistura de várias moléculas, que de acordo com o seu tamanho, vão ocupando a coluna de destilação. As frações mais levem ficam na parte de cima da torre, como por exemplo, os gases metano e etano.

Veja como se distribui as frações do petróleo em uma coluna de destilação:

COMPOSIÇÃO P.E. (°C) UTILIDADES

1 a 4 C – Gás de Petróleo

menos de 20

Gás de cozinhaClorofórmioEtanolAcetonaPlásticos

5 a 6 C - Éter 20 a 60

Solvente de tintaAnilinaNáilonOrlon

6 a 7 C - Nafta 20 a 100

Tecido de fibra sintéticaFenolHidroquinonaCiclohexanoNitrobenzeno

5 a 10 C - Gasolina 40 a 200 Combustível de motores

11 a 18 C - Querosene 175 a 275 Combustível de aviões

15 a 18 C – Óleo Diesel 275 a 400

Combustível de trator, trem, ônibus, caminhão, óleo diesel.

Acima de 17 C – Graxa e Óleo Lubrificante

acima de 350 Lubrificante de peças e máquinas

Acima de 30 C – Asfalto (piche)

acima de 400

Pavimentação de ruas, estradas, parafinas e vaselinas

Alcenos

Os alcenos são hidrocarbonetos que acíclicos, insaturados, que contém uma dupla ligação entre átomos de carbono. 

São também chamados de olefinas, alquenos ou hidrocarbonetos etilênicos. Sua fórmula geral é CnH2n 

Alguns alcenos:

Page 161: INTRODUÇÃO AO ESTUDO DE QUÍMICA

eteno  CH2=CH2     fórmula molecular: C2H4

1-buteno  CH2=CH – CH2 – CH3   fórmula molecular: C4H8

Reatividade

Os alcenos são mais reativos do que os alcanos, por possuírem uma ligação dupla, que é mais fácil de ser quebrada.

Sofrem reações de adição e também de polimerização.

Utilidade

O composto mais comum dos alcenos é o eteno, ou etileno. É produzido em frutos verdes e atua no amadurecimento desses frutos. Por este motivo enrolamos as frutas com jornal para que ela amadureça mais rápido. Desta forma o gás eteno está sendo aprisionado e acelera a velocidade de amadurecimento.

O etileno é produzido na indústria química e é obtido através do refino do petróleo e do gás natural. É utilizado, ainda para a fabricação de polietileno usado para fazer plásticos.

Nomenclatura

Para nomear os alcenos, utilizamos a nomenclatura parecida com a dos alcanos. Quanto ao número de carbonos é a mesma (met, et, prop, but...). Quanto ao tipo de ligação, usamos en, porém, deve-se indicar o local da ligação dupla. 

Para nomear, dá-se a prioridade à ligação dupla na contagem de carbonos e depois, aos radicais.

Veja os exemplos:

1) CH2=CH – CH2 – CH3  

Nomenclatura antiga: 1- buteno Nomenclatura IUPAC: but-1-eno

2) CH3 – CH = CH – CH3

Nomenclatura antiga: 2-butenoNomenclatura IUPAC: but-2-eno

Para os alcenos ramificados, a cadeia principal (mais longa) é aquela que contém a ligação dupla. A contagem de carbonos é feita a partir da extremidade mais próxima da ligação dupla.

Veja os exemplos:

Nomenclatura antiga: 5-metil-2-hexenoNomenclatura IUPAC: 5-metil-hex-2-eno

Nomenclatura antiga: 3-propil-1-heptenoNomenclatura IUPAC: 3-propil-hept-1-eno

Radicais

O radical derivado do eteno é o vinil ou etenil.CH2=CH –      vinil ou etenil

Page 162: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Alcinos

São hidrocarbonetos acíclicos que contém uma ligação tripla entre carbonos. São caracterizados pela ligação sp. 

Sua fórmula geral é CnH2n-2

Utilidade

O alcino mais utilizado é o acetileno C2H2 (H – C ≡ C – H). É um gás incolor, instável e  muito combustível. Ele é obtido a partir do carbureto ou carbeto de cálcio em presença de água.

A combustão (queima) do acetileno produz uma chama muito quente e luminosa.

Antigamente, era utilizado como lanternas em cavernas e hoje é um combustível para efetuar soldas e corte de metais. Sua temperatura chega a 3000°C e por este motivo pode ser usado para soldar navios, mesmo embaixo da água.

A partir deste alcino também são produzidos muitas matérias-primas para a indústria como plásticos, fios têxteis, borrachas sintéticas, etc.

Nomenclatura

Para os alcinos, a cadeia principal é aquela que contém a ligação tripla. A numeração é feita a partir da extremidade mais próxima da ligação tripla. A partir de quatro carbonos, deve-se localizar a posição da ligação tripla. Quando se tem radicais ou demais elementos, dá-se prioridade à ligação tripla.

Page 163: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Alcadienos ou Dienos

São hidrocarbonetos acíclicos que possuem duas ligações duplas em sua cadeia carbônica. 

Sua fórmula geral é CnH2n-2. O dieno mais conhecido é o 2-metil-buta-1,3-dieno (isopreno).

Alguns dienos:

Ciclanos (ou Cicloalcanos)

Os ciclanos são hidrocarbonetos cíclicos que contém apenas uma ligação simples. Portanto, é um hidrocarboneto saturado. 

Sua fórmula geral é CnH2n

Pode ser representado por uma figura geométrica, indicando o ciclo. 

Os ciclanos são obtidos através do petróleo. É usado como solvente e removedor de tintas e vernizes. A partir dele é produzido o náilon.

Exemplos dos principais cicloalcanos:

ciclopropano           ciclobutano           ciclohexano

                       C3H6                      C4H8              C6H12

 

metil-ciclopropano

Os cicloalcenos são hidrocarbonetos cíclicos que possuem uma ligação dupla.

Veja alguns exemplos:

Page 164: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 ciclopenteno

 

1-metilciclopropeno

 

Aromáticos

Os hidrocarbonetos aromáticos são aqueles que têm um ou mais anéis aromáticos na sua molécula. É uma cadeia fechada, portanto cíclica. Alternam ligações simples e duplas entre os carbonos, formando uma ressonância. 

O principal aromático é o benzeno C6H6Veja as formas de se representar o benzeno.

                                    

O benzeno é um líquido incolor, volátil, inflamável e muito tóxico. É um composto altamente perigoso que não deve ser inalado (respirado). Pode causar sérias doenças, inclusive leucemia. 

A maioria dos aromáticos são perigosos à saúde. Além do benzeno, há também o benzopireno, que forma-se sobre a carne assada na brasa e em carnes e peixes defumados, além de ser liberado na queima do cigarro.

Benzopireno: aromático cancerígeno

Principais aromáticos:

 

Tolueno – extraído de uma árvore originária da Colômbia, bálsamo-de-tolu. Pode ser usado como solvente. Tem cheiro característico.

Page 165: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Naftaleno – conhecido como naftalina vendido em  bolinhas para matar insetos. A partir dele podem-se produzir plásticos, solventes e corantes.

Antraceno – sólido incolor que sublima facilmente. A partir dele podem ser produzidos corantes inseticidas e conservantes.

Fenantreno – encontrado na fumaça do cigarro, obtido de uma fração do petróleo do antraceno.

Nomenclatura

Para dar nome aos aromáticos que contém apenas um anel aromático e mais o grupo alquil, devemos numerar o anel começando com o radical mais simples. Em seguida colocar em ordem alfabética. O prefixo di, tri, tetra não entram na ordem alfabética.

etilbenzeno             2-etil-1-metil-benzeno

Para duas ramificações, usamos os radicais ortos (o), meta (m) e para (p).

A posição orto (o) é 1-2.A posição meta (m) é 1-3.A posição para (p) é 1-4.

o-xileno                    m-xileno                    p-xilenoo-dimetil-benzeno      m-dimetil-benzeno      p-dimetil-benzeno

1,2-dimetil-benzeno    1,3-dimetil-benzeno   1,4-dimetil-benzeno

Alguns aromáticos condensados:

Page 166: INTRODUÇÃO AO ESTUDO DE QUÍMICA

1-etil-3,7-dimetil-naftaleno

 

1,3,7-trimetil-naftaleno   

                     Radicais derivados dos aromáticos

Os gupos derivados dos hidrocarbonetos aromáticos que perderam um H são chamados de grupo arilou arila. Podem ser representados por –Ar

Algumas arilas:

                         

Fenil          Benzil       o –Toluil      m –Toluil      p – Toluil

 

ÁLCOOL

Álcool é toda substância orgânica que contém um ou mais grupos oxidrila ou hidroxila (OH) ligado diretamente a átomos de carbono saturados. 

Representa-se, em geral, um monoálcool assim:

Onde:R = radicalOH = oxidrila ou hidroxila

Exemplos:

Page 167: INTRODUÇÃO AO ESTUDO DE QUÍMICA

                                                                                       álcool cíclico        álcool aromático

Utilidade

Quando ouvimos falar em álcool, seja na TV, rádio, etc. na verdade estão se referindo a um tipo específico de álcool. Neste caso, é o álcool etílico, também chamado de etanol.

O etanol está presente nas bebidas álcoolicas. É tóxico e age no organismo como depressivo do sistema nervoso. 

Possui grande importância na indústria química, na fabricação de perfumes, solventes, combustível.

       

O álcool como combustível e perfume

O álcool metílico é um dos mais perigosos e não deve ser ingerido, pois pode causar cegueira. É chamado também de carbinol e ainda, “álcool de madeira”. Este nome foi dado porque antigamente era obtido a partir do aquecimento da madeira em retortas.

Nomenclatura

De acordo com a IUPAC, os álcoois devem ter a terminação OL, quem vem da palavra álcool. A cadeia principal é aquela que contém o carbono ligado à hidroxila. A numeração é feita a partir da extremidade que contém o grupo OH. O nome do álcool será o do hidrocarboneto correspondente á cadeia principal, porém sem a terminação o. deve ser trocado por OL.

Exemplos:

    ciclopentanol              álcool benzílico

Classificação

Page 168: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os álcoois podem ser classificados de duas maneiras:- de acordo com a posição da hidroxila- de acordo com o número de hidroxila

Posição da Hidroxila

Álcool Primário – tem a hidroxila ligada a carbono primário. 

 

Álcool Secundário – tem a hidroxila ligada a carbono secundário.

 

Álcool Terciário – tem a hidroxila ligada a carbono terciário. 

Número de Hidroxila

- Monoálcool – álcool que contém uma hidroxila.

- Diálcool ou Diol – álcool que contém duas hidroxilas.

- Triálcool ou Trióis – álcool que contém três hidroxilas.

 

Fenol

Fenol é todo composto orgânico que contém uma ou mais hidroxilas (OH) ligadas diretamente a um anel aromático.

Exemplos:

Page 169: INTRODUÇÃO AO ESTUDO DE QUÍMICA

                     

fenol                  m-cresol            vanilina

 

Utilidade

O fenol mais comum é o fenol. É conhecido também como benzenol, hidróxi-benzeno, fenol comum ou ácido fênico.

É uma substância sólida a temperatura ambiente, cristalina, com cheiro forte. É utilizado para fazer peeling para evitar o enrugamento da pele. É corrosivo para a pele. Pouco solúvel em água e solúvel em álcool e éter. Foi utilizado em 1834, a partir da destilação do carvão mineral. 

Foi muito utilizado como desinfetante de instrumentos cirúrgicos, mas por ser muito tóxico, foi substituído aos poucos por outros desinfetantes.

Um desinfetante muito utilizado hoje, em agropecuárias, é a creolina, que é uma solução aquosa alcalina da mistura dos cresóis. É usado como desinfetante porque atua no mecanismo de coagulação das proteínas de microrganismos.

m-cresol       o-cresol       p-cresol

O desinfetante lisol é uma emulsão de cresóis em sabão. 

Os fenóis servem também para a preservação da madeira, protegendo contra o ataque dos insetos. Na indústria química, serve como matéria-prima para fabricar plásticos, perfumes, corantes, explosivos, resinas, vernizes, desodorantes, adesivos, cosméticos, tintas.

Nomenclatura

De acordo com a IUPAC, o nome dos fenóis é dado a partir do termo hidróxi. A numeração inicia-se na hidroxila e prossegue no sentido que proporciona números menores.

Exemplos:

 1-hidróxi-3-metil-benzeno

m-hidróxi-toluenom-cresol

Page 170: INTRODUÇÃO AO ESTUDO DE QUÍMICA

1-hidróxi-naftalenoα – naftol (alfa-naftol)

 Alguns fenóis importantes:

Vanilina – essência de baunilha, usado em bolos, na  fabricação de doces e sorvetes.

               

Eugenol – essência do cravo-da-índia. Pode ser usado como antisséptico.

    

Hidroquinona – também chamado de quinol, usado em filmes reveladores e como creme no tratamento de clareamento da pele.

ALDEÍDOS

Aldeído é todo composto orgânico que possui o grupo funcional – CHO – ligado à cadeia carbônica.

                                                                           Exemplos de aldeídos:

Page 171: INTRODUÇÃO AO ESTUDO DE QUÍMICA

                          

Utilidade

O aldeído mais conhecido é o metanal. Também é chamado de aldeído fórmico ou formaldeído. É um gás incolor, com cheiro muito forte e irritante. Muito solúvel em água. Em geral, é usado como solução aquosa, contendo 40% de aldeído fórmico, e esta solução é chamadas de formol ou formalina. É usado como desinfetante e na medicina, como conservador de cadáveres e peças anatômicas. Usado para a fabricação de medicamentos, plásticos e explosivos. Usado também em produtos de beleza. 

O etanal ou aldeído acético ou ainda acetaldeído tem cheiro forte e é solúvel em água. É obtido a partir do acetileno. É o ponto de partida para a fabricação de pesticidas, medicamentos, inseticidas e espelhos. Usado na produção de anidrido acético e ácido acético (presente no vinagre) e resinas.

Nomenclatura

Deve ser utilizada na terminação dos aldeídos a palavra AL, de acordo com a IUPAC. A cadeia principal deve conter o grupo – CHO e a numeração é feita a partir desse grupo.

Exemplos:

                  Metanal                    Propanal                   2 – metil – butanal          Benzaldeído

Aldeído fórmico Formaldeído

CETONA

Cetona é todo composto orgânico que possui o grupo funcional – CO – Tanto para aldeídos quanto para cetonas, chamamos este grupo de carbonila. Aldeídos e cetonas fazem parte do grupo dos carbonilados.

As cetonas possuem a carbonila ligada a dois átomos de carbono.

Exemplos de Cetonas:

Page 172: INTRODUÇÃO AO ESTUDO DE QUÍMICA

      propanona                     butanona                            ciclobutano

                         

 

Utilidade

A cetona mais comum é a propanona, mais conhecida como acetona. Ela é usada como  solvente de esmaltes, graxas, vernizes e resinas. Também é utilizada na extração de óleos de sementes vegetais, na fabricação de anidrido acético e medicamentos. 

A propanona é um líquido inflamável, incolor, com cheiro agradável e solúvel em água. As cetonas são encontradas na natureza em flores e frutos. Em geral, são líquidos de odor agradável. Muitas cetonas artificiais e naturais são usadas como perfumes e alimentos. Algumas são substâncias medicinais, como os compostos cetônicos da urina.

Algumas cetonas presentes em compostos naturais:

Jasmona ou Cis-jasmona – óleo de jasmim

                  Ionona – odor de violeta

              

Nomenclatura

A nomenclatura IUPAC das cetonas possui a terminação ONA. A cadeia que possui a carbonila é cadeia principal, ou cadeia mais longa. A numeração é feita a partir da extremidade mais próxima da carbonila.

Exemplos:

propan-2-ona ou propanona

 

butan-2-ona

Page 173: INTRODUÇÃO AO ESTUDO DE QUÍMICA

4-metilpentan-2-ona

pentan-2-ona

3-isopropilhexanon-2-ona

Algumas cetonas podem ser cíclicas. Veja os exemplos:

ciclobutanona        ciclohexanona           ciclopentanona

                                       

As cetonas também podem apresentar mais de um grupo carbonila. Veja os exemplos a seguir:

1,3-ciclohexadiona

butanodiona O   O ||    ||H3C – C – C – CH3

ÉTER

Page 174: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Éter é todo composto orgânico onde a acadeia carbônica apresenta – O – entre dois carbonos. O oxigênio deve estar ligado diretamente a dois radicais orgâncios (alquila ou arila). 

A fórmula genérica do éter é R – O – R, onde o R é o radical e o O é o oxigênio.Veja alguns exemplos:

 

Utilidade

O éter mais conhecido é o éter comum, ou etóxietano ou ainda éter dietílico. Ele é encontrado em farmácia e hospitais. É um líquido muito volátil, com ponto de ebulição em torno de 35°C, muito inflamável, incolor e com odor característico. Pode ser utiizado como solvente de graxas, óleos, resinas e tintas.

Passou a ser usado, como anestésico por inalação, em 1842. Provocava grande mal estar nos pacientes após a anestesia e foi então substuído por outros anestésicos. 

Éter comum       CH3 – CH2 – O – CH2 – CH3          

Pintura da primeira demostração de cirurgia com anestesia com éter, nos EUA, em 1842.

Outro éter muito utilizado é o metóxi-terciobutano que funciona como antidetonante na gasolina.

Nomenclatura

O nome oficial dos éteres, ou nomenclatura IUPAC, contém a palavra ÓXI entre o nome dos dois grupos. O primeiro nome deve ficar com o prefixo do menor número de carbonos. E o último nome com o nome do hidrocarboneto que contém o maior número de carbonos.

Grupo menor + óxi – grupo maior

Exemplos:

Page 175: INTRODUÇÃO AO ESTUDO DE QUÍMICA

    metóxi-benzeno

Os éteres podem ser cíclicos, ou seja, com a cadeia fechada. Neste caso, o oxigênio é o heteroátomo.

ÉSTER

Éster é todo composto orgânico que apresenta a seguinte fórmula genérica:

onde R e R´ são radicais, não necessariamente iguais.

Alguns ésteres:

Page 176: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Reação de Esterificação

Os ésteres podem ser obtidos através da reação de esterificação. Um ácido carboxílico reage com um álcool para formar ésteres e água.

Utilidade

Os ésteres possuem grande importância na indústria de alimentos. Formam as essências, que são derivados de ácidos e álcoois de cadeia curta. Na indústria de alimentos imitam o sabor e o aroma de frutas. Por este motivo são chamamos de aromatizantes ou flavorizantes. São usados em doces, balas, sorvetes, sucos artificiais, etc.

Exemplos de flavorizantes:

- etanoato de butila – essência que imita o sabor da maçã verde. Utilizado em balas e gomas de marcar.

- acetato de pentila – essência que imita o sabor da banana.

Page 177: INTRODUÇÃO AO ESTUDO DE QUÍMICA

- antranilato de metila – essência natural da uva. Usado em sucos artificiais .

    

- acetato de propila – essência sabor pera usada em goma de mascar e balas.

Os ésteres de cadeia longa são óleos e gorduras. O óleo de oliva, manteiga, margarina e sabão estão muito presentes no nosso cotidiano.

Estes produtos são ésteres derivados de álcool e ácidos carboxílicos.Os triglicerídeos são triésteres da glicerina, que formam os óleos e gorduras.

Page 178: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Se o R é longo, resulta um óleo ou uma gordura.

As ceras  são ésteres obtidos da reção de um ácido e um álcool com grande número de carbonos.  As ceras são usadas na fabricação de graxas para sapatos, velas, cera para dar brilho em pisos, papel-manteiga.

Nomenclatura

A nomenclatura oficial IUPAC para os ésteres é feita a partir do hidrocarboneto correspondente terminado em ATO. A seguir, deve-se colocar a preposição DE mais o prefixo da ramificação terminada em ILA.

hidrocarboneto + ato de (prefixo da ramificação) + ila

Exemplos:

Etanoato de etila

Outro nome oficial deste ácido é acetato de etila.

Observe que neste éster, o nome etanoato vem do ácido etanóico, enquanto o nome acetato vem do ácido acético. Portanto, um das maneiras de se nomear os ésteres é partir do seu ácido correspondente. Isto porque o éster resulta da reação de esterificação do ácido com álcool formando éster e água.

Outros exemplos com as duas nomenclaturas:

Metanoato de propila (ácido metanóico) - IUPACFormiato de propila (ácido fórmico)

Propanoato de propila ( ácido propanóico) - IUPACProprionato de propila ( ácido propiônico)

Page 179: INTRODUÇÃO AO ESTUDO DE QUÍMICA

                      

Etanoato de butila (ácido etanóico) - IUPACAcetato de butila (ácido acético)

Apesar de existir as duas nomenclaturas, a recomendada é a da IUPAC.

ÁCIDO CARBOXÍLICO

Os ácidos carboxílicos são compostos orgânicos que apresentam um ou mais grupos – COOH – ligados à cadeia de carbonos.

Este grupo chama-se carboxila (carbonila + hidroxila).

Alguns ácidos carboxílicos:

Utilidade

Os ácidos carboxílicos estao muito presentes no nosso cotidiano. 

O ácido mais simples é o que contém apenas um carbono, o ácido metanóico ou ácido fórmico.

Recebeu este nome (fórmico) porque vem da picada de formigas e de abelhas.

       

Este ácido é um líquido incolor, solúvel em água, com odor apimentado, forte e irritante. O contato com a pele pode causar bolhas parecidas com as causadas  por queimaduras, coceira e inchaço. 

Page 180: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O ácido metanóico pode ser usado no tingimento de lã, curtimento de peles de animais, como conservante de sucos de frutas e na produção de desinfetante.

O ácido etanóico é o ácido carboxílico mais conhecido. Também conhecido como ácido acético, é o reponsável pelo cheiro e gosto azedo do vinagre. A palavra acetum significa azedo, vinagre. 

A origem do ácido etanóico é desde a Antiguidade, a partir de vinhos azedos. 

No vinagre, que é usado para temperar saladas, é usado apenas 5% de ácido etanóico e o restante de água.

           

O ácido etanóico é um líquido incolor, de cheiro penetrante, sabor azedo e solúvel em água, éter e álcool. 

Comercialmente, é vendido como ácido acético glacial porque ele tem a propriedade de congelar a 16,7°C ficando com aspecto de gelo. 

É usado na alimentação e na produção de alguns compostos orgânicos como plásticos, ésteres, acetatos de celulose e acetatos inorgânicos. 

A reação que forma o ácido etanóico é a seguinte:

Um dos componentes da uva e também do vinho é o ácido 2,3-hidróxi-butanóico ou ácido tartárico. Foi descoberto pelo químico Louis Pasteur, em 1848. 

É usado também em efervescentes, como os sais de frutas.

Outro ácido que pode ser encontrado em algumas frutas é o ácido ascórbico. É conhecido como vitamina C. Podemos encontrar este ácido nas frutas cítricas, como a laranja, tangerina, limão, acerola, kiwi, ameixa e tomate.

         

Page 181: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Nomenclatura

A nomenclatura IUPAC dos ácido carboxílicos deve ser feita colocando a palavra ácido seguida do hidrocarboneto correspondente com a terminação ÓICO. A cadeia principal, ou mais longa é a que possui a carbonila. A numeração é feita a partir do primeiro carbono após a carbonila. 

Alguns casos, é utilizado o nome usual.

Exemplos:

Ácido metanóico – IUPACÁcido fórmico – usual

Ácido etanóico – IUPACÁcido acético – usual

Ácido 4-metil-pentanóico

Ácido benzóico

AMINAS

As aminas são compostos orgânicos nitrogenados derivados teoricamente, da amônia (NH3), pela substituição de um, dois ou três hidrogênios por grupos alquila ou arila.

Exemplos:

     

Page 182: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Existem alguns tipos de aminas, de acordo com o número de radicais que substituem o hidrogênio.

- aminas primárias:um hidrogênio substituído por radical orgânico.

- aminas secundárias: dois hidrogênio substituídos por radicais orgãnicos.

- aminas terciárias: três hidrogênios substituídos por radicais orgânicos.

Utilidade

As aminas estão muito presentes no nosso cotidiano.

Estão presentes nos aminoácidos que formas as proteínas dos seres vivos.

A partir destas substâncias, decorre a presença de aminas na decomposição de animais mortos:

A trimetilamina é uma amina que faz parte do cheiro forte de peixe podre. A putrescina e a cadaverina são formadas na decomposição de cadáveres humanos.

Na indústria, são utilizadas como corantes, em alguns sabões e diversas sínteses orgânicas. O corante mais conhecido é a anilina. É um óleo incolor com odor aromático.

Page 183: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Algumas aminas são usadas como protetor solar como o ácido p-aminobenzóico. Também é conhecido como PABA.

 

Nomenclatura

As aminas, de acordo com a IUPAC, devem ser nomeadas com a terminação AMINA.

Exemplos:

fenilamina 

AMIDAS

Amida é todo composto orgânico derivado teoricamente da amônia (NH3) ela substituição de um átomo de hidrogênio por um grupo acil.

Fórmula genérica das amidas:

Page 184: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Algumas amidas:

                                         

Utilidade

A amida mais conhecida é a diamida, a uréia. É um sólido branco e cristalino e solúvel em água. É um dos produtos finais do metabolismo dos animais eliminado pela urina. Na indústria química é muito utilizado como fertilizante químico para fornecer nitrogênio ao solo, na alimentação do gado, como matéria-prima para produzir plásticos e produtos farmacêuticos, medicamentos sedativos e como estabilizador de explosivos.

Aplicação de adubo no solo

Nomenclatura

O nome das amidas, de acordo com a IUPAC é dado a partir dos ácidos correspondentes. Troca-se a terminação óico por AMIDA.

Exemplos:

Etanamida (oficial) ou acetamida (usual)

2-metil-propanamida

Diamida (uréia)

Page 185: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Nitrilas

As nitrilas são compostos orgânicos nitrogenados que contém o grupo funcional – C ≡ N. Podem ser chamadas de cianetos.  As nitrilas mais comuns são o cianeto de hidrogênio.

Veja alguns exemplos:

- Metanonitrila ou cianeto de hidrogênio ou gás cianídrico - É um gás com cheiro de amêndoa amargo, descoberto em 1782.

- Etanonitrila ou acetonitrila ou cianeto de metila – líquido muito tóxico, sem coloração, com odor suave.

As nitrilas de cadeia aberta com até quatorze átomos de carbonos são líquidos a temperatura ambiente e insolúveis em água. São muito tóxicas.

A nitrila insaturada mais importante é a acrilonitrila. É usada na fabricação de polímeros acrílicos, como as lãs sintétitas, o orlon.      

HALETOS ORGÂNICOS

Os haletos orgânico são substâncias provenientes de compostos orgânicos pela troca de um ou mais hidrogênios por halogênio – F, Cl, Br, I.

Exemplos:

Os haletos podem ser classificados de acordo com o halogênio que está na cadeia carbônica, como fluoretos, cloretos, brometos iodetos ou mistos.

Também podem se classificar de acordo com o número de átomos de halogênio na molécula, como mono-haleto, di-haleto, tri-haleto, etc.

A classificação mais importante é quanto à grande reatividade de dois grandes grupos, os haleto de alquila e os haletos de arila.

Haletos de Alquila

Sua fórmula genérica é

R – XOnde:

R – grupo alquila ou radical alquilaX – halogênio

 

O haleto de alquila é o composto orgânico que possui um halogênio ligado a um carbono saturado de um hidrocarboneto de cadeia aberta.

Exemplos:

CH3Br              CH3 – CH2 – Cl          CH3                      CH3 – CH2 – CH2 – I |

Page 186: INTRODUÇÃO AO ESTUDO DE QUÍMICA

CH3 – C – CH3|Cl

Haleto de Arila

Sua fórmula genérica é

Ar – XOnde:

Ar – grupo arilaX - halogênio

O haleto de arila é o composto orgânico que possui o halogênio ligado diretamente a um anel benzênico.

Exemplos:

                                  

Utilidade

Os haletos orgânicos são muito utilizados como solventes, na fabricação de plásticos, inseticidas e gás de refrigeração.

O haleto mais importante usado como solvente é o CCl4, tetracloreto de carbono, muito tóxico. 

O BHC de fórmula molecular C6H6Cl6 é usado como inseticida.

O clorofórmio CCl3 foi muito usado como anestésico desde 1847, na Inglaterra. Hoje, já não é usado para esta finalidade porque é muito tóxico. 

Os freons CCl3, CCl2F2 e muitos outros eram usados como gás de refrigeração. Com o tempo, descobriu-se que prejudicava o meio ambiente, destruindo a camada de ozônio e foi reduzida a sua produção.

O DDT de fórmula C14H9Cl5 era um importante inseticida muito utilizado durante a Segunda Guerra Mundial. Sua produção foi proibida em vários países devido a sua alta toxicidade.

Nomenclatura

De acordo com a IUPAC, os halogênios são considerados uma ramificação que está ligada à cadeia principal.

Exemplos:

                                 

Bromo-benzeno            cloro-benzeno                            

MACROMOLÉCULAS

Page 187: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Dentro da Química Orgânica, estudamos moléculas de tamanho relativamente pequeno e também as moléculas grandes. Para estas moléculas damos o nome de macromoléculas. 

As macromoléculas também podem ser chamadas de polímeros. 

Elas dividem-se em macromoléculas naturais e sintéticas.

As macromoléculas naturais são biomoléculas fundamentais para todos os seres vivos, que são os glicídios, os lipídios e as proteínas. 

As macromoléculas sintéticas são a base para a fabricação dos plásticos.

Glicídios

Os glicídios são compostos que possuem função orgânica mista poliálcool-aldeído ou poliálcool-cetona, dentre outros compostos, que ao sofrerem hidrólise resultam em poliálcool-aldeído ou poliálcool-cetona.

Exemplos:

A palavra glicídios vem do grego glicos que significa doce. São os açúcares, desde o mais comum até os mais complexos, como o amido e a celulose. São produzidos em vegetais através da fotossíntese  transformado no processo de respiração. 

São fonte de glicídios a farinha, o açúcar, o papel, o mel, as frutas, o pão, etc.

      

Os glicídios se classificam em oses e osídios. As oses ou monossacarídios são os glicídios que não se hidrolisam. Os osídios são glicídios mais complexos que se hidrolisam. 

Os principais glicídios são:- glicose- frutose- sacarose- lactose- celulose- amido- glicogênio

Glicose

A glicose também pode ser chamada de glucose, dextrose ou açúcar de uva. É uma aldo-hexose, com fórmula química C6H12O6. pode ser encontrada nas uvas e em outras frutas. Na indústria é obtida pela hidrólise do amido.

Page 188: INTRODUÇÃO AO ESTUDO DE QUÍMICA

É muito utilizada na Indústria de Alimentos, na fabricação de doces, balas, etc.

Frutose

É uma cetose e possui fórmula molecular C6H12O6. Pode ser encontrada no mel e em muitas frutas. É também chamada de levulose. Pode ser obtida através da hidrólise de um polissacarídeo, a inulina.

ISOMERIAAlgumas substâncias podem apresentar a mesma fórmula molecular e possuir propriedades e nome diferentes.

Page 189: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Veja dois exemplos de substâncias químicas que possuem a mesma fórmula molecular, mas diferem no nome e em algumas propriedades:

Fórmula molecular: C2H6ONome: etanolFunção: álcoolPonto de fusão: -115°CPonto de ebulição: 78°CReatividade: altaEstado físico a 25°C: líquido

Fórmula molecular: C2H6ONome: metóxi-metanoFunção: éterPonto de fusão: -140°CPonto de fusão: -24°CReatividade: baixaEstado físico a 25°C: gás

Veja o outro exemplo análogo:

Que palavras você poderia escrever com as letras RMAO com diferentes arrumações? Poderíamos escrever as palavras: amor e roma.

O mesmo acontece com as substâncias. Para este fenômeno, que é tão comum, damos o nome de ISOMERIA.

Isomeria – é o fenômeno que ocorrem entre moléculas com mesma fórmula molecular mas diferem na sua estrutura, propriedade e nome.

Os compostos que sofrem este tipo de fenômeno são chamados de isômeros. A palavra isômero deriva de dois radicais gregos: iso, que significa igual e meros, que significa partes.

A isomeria pode ser dividida em:- isomeria plana (cadeia, posição, metameria, função e tautomeria)- isomeria espacial (geométrica cis-trans e óptica)

ISOMERIA PLANA

É a isomeria onde os compostos são identificados por meio de suas fórmulas estruturais planas.Dividem-se em isomeria plana de cadeia, posição, metameria, função e tautomeria.

 

ISOMERIA PLANA DE CADEIA

Esta isomeria ocorre quando isômeros pertencem à mesma função, mas diferem no tipo de cadeia carbônica.

Exemplos:

Page 190: INTRODUÇÃO AO ESTUDO DE QUÍMICA

ISOMERIA PLANA DE POSIÇÃO

Esta isomeria ocorre entre isômeros que pertenem à mesma função, possuem o mesmo tipo de cadeia, mas diferem na posição dos radicais, insaturações ou dos grupos funcionais.

Exemplos:

- diferença na posição dos radicais:

- diferença na posição da insaturação:

- diferença na posição do grupo funcional:

ISOMERIA DE METAMERIA OU COMPENSAÇÃO

Esta isomeria ocorre entre isômeros que pertencem à mesma função mas diferem na posição de um heteroátomo na cadeia carbônica. 

O heteroátomo deve sempre estar entre carbonos.

Exemplos:

Page 191: INTRODUÇÃO AO ESTUDO DE QUÍMICA

ISOMERIA DE FUNÇÃO

Esta isomeria ocorre quando os isômeros pertencem a funções diferentes. Os isômeros mais comuns para este tipo de isomeria são: 

- álcool e éter- aldeído e cetona- ácido carboxílico e éter

Exemplos:

-  álcool e éter: C2H6O

  

- aldeído e cetona: C3H6O

- ácido carboxílico e éster: C4H8O2

Page 192: INTRODUÇÃO AO ESTUDO DE QUÍMICA

ISOMERIA DE TAUTOMERIA

Esta isomeria é um caso especial da isomeria plana, onde os isômeros pertencem à funções químicas diferentes e estabelecem um equilíbrio químico dinâmico. Os casos mais comuns ocorre entre:

- aldeído e enol- cetona e enol

Exemplos:

- aldeído e enol

- cetona e enol

ISOMERIA ESPACIAL

Page 193: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A isomeria espacial é aquela que só pode ser explicada por meio de fórmulas estruturais espaciais.

Só será posivel diferencias os isômeros através de modelos moleculares espaciais. 

A isomeria espacial divide-se em dois tipos:- isomeria geométrica cis-trans- isomeria óptica

ISOMERIA ESPACIAL GEOMÉTRICA CIS-TRANS

A isomeria geométrica cis-trans ocorre quando um par de isômeros apresentam a mesma fórmula molecular, mas são diferentes em suas fórmulas estruturais. 

Pode ocorrer em dois casos:- em compostos com ligação dupla- em compostos cíclicos

Compostos com ligação dupla

Os isômeros deverão ter carbonos unidos por uma dupla ligação e ligantes diferentes presos a cada carbono da dupla ligação.

Seja a ligação dupla entre C = C e seus ligantes a, b, c, d, a condição para que ocorra a isomeria geométrica cis-trans deve ter seus ligantes a e b diferentes e c e d diferentes.

Assim:

Exemplos:

A fórmula molecular C2H2Cl2 pode representar duas moléculas com fórmulas estruturais diferentes.

Obseve que os átomos ligantes H e Cl estão no mesmo lado na fórmula à esquerda. Estão em posições opostas na fórmula à direita. Por este motivo, damos nomes diferentes para estes isômeros.

ISOMERIA CIS

– Indicando átomos iguais de um mesmo lado em relação aos carbonos da dupla. A palavra cis vem do latim e significa “aquém de”. 

ISOMERIA TRANS

– Indicando que os átomos estão em posições transversais ou opostas em relação aos carbonos da dupla. A palavra trans vem do latim e significa “além de”.

Nomenclatura correta destes isômeros:

Page 194: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Compostos Cíclicos

Para que esta isomeria ocorra em compostos cíclicos é necessário que pelo menos dois carbonos do ciclo apresentem ligantes diferentes entre si.

Nesta molécula os ligantes dos carbonos são diferentes:

Exemplos:

Fonte: http://www.colegioweb.com.br/quimica/compostos-de-cadeia-ciclica

Este caso especial de isomeria também pode ser chamado de isomeria baeyeriana, em homenagem ao cientista Adolf von Baeyer.

ISOMERIA ESPACIAL ÓPTICA

A isomeria espacial óptica é aquela que apresenta um carbono com quatro ligantes diferentes entre si. Para este carbono damos o nome de assimétrico. Está identificado com um asterisco (*).

Carbono Assimétrico ou Quiral – é o átomo de carbono que está ligado a quatro grupos diferentes entre si.

Exemplo: ácido lático ou ácido 2-hidróxi-propanóico

Observe que há quatro grupos diferentes nesta molécula: H, CH3, OH, COOH.

Se pudéssemos colocar um espelho na frente da molécula do ácido lático, visualizaremos a seguinte molécula:

O ácido lático recebe o nome D e a sua imagem especular (imagem do espelho), o nome L.

Page 195: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Substâncias que desviam a luz polarizada para a direita chamam-se dextrógira (do latim dexter, direito) e substâncias que desviam a luz polarizada para a esquerda chamam-se levógira (do latimlaevus, esquerda). 

Então as duas moléculas de ácido lático desviam a luz plano polarizada porém uma para um lado e a outra para o outro. 

Podemos esrever:- ácido lático dextrógiro, ácido d-lático ou ácido (+) lático- ácido lático levógiro, ácido l-lático ou ácido (-) lático

As propiredades físicas destes isômeros são as mesmas. A única diferença é a polarização da luz plano polarizada. 

Os dois isômeros de ácido lático podem ser chamado de par de enantiomorfos ou antípodas ópticos. 

Existem algumas moléculas que possuem diversos carbonos assimétricos ou quirais. Veja o exemplo do ácido α-hidróxi-β-metil-succínico:

Nesta substância, temos dois carbonos assimétricos e diferentes entre si. Este composto apresenta quatro isômeros opticamente ativos e distintos entre si, que podem ser representados desta forma:

A diferença entre os quatro compostos é indicada pelas posições dos grupos OH e CH3, que as vezes estão na esquerda e outra vez à direita da fórmula. 

Os isômeros A e B são antípodas ópticos, sendo que um é dextrógiro e o outro levógiro. Os isômeros C e D são antípodas ópticos, sendo que um é dextrógiro e o outro levógiro.Observe que A e B; C e D são imagens especulares uma da outra. É como se houvesse um espelho na frente de cada uma destas moléculas. 

Page 196: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Os isômeros ópticos que não são enantiomorfos entre si são chamados de diastereoisômeros.

Neste caso são A e C; A e D; B e C; B e D.

Para saber quantos isômeros ópticos existe, podemos calcular de acordo com o número de carbonos assimétricos.

2n

Onde:n = número de carbonos assimétricosExemplo:

Na molécula do ácido α-hidróxi-β-metil-succínico existem dois carbonos assimétricos. Então aplicando a fórmula:

2n2² = 4

Existem quatro isômeros para este composto. Formam-se dois dextrógiros e dois levógiros.

Page 197: INTRODUÇÃO AO ESTUDO DE QUÍMICA

REAÇÕES ORGÂNICASExistem na natureza milhões de substâncias orgânicas. A quantidade de reações químicas que podem ocorrem com estas substâncias é enorme. Algumas são previsíveis. 

As mais importantes reações orgânicas são as seguintes:- reação de adição- reação de substituição- reação de oxidação- reação de eliminação

REAÇÃO DE ADIÇÃO

As reações de adição são aquelas onde um átomo proveniente de uma substância orgânica ou inorgânica se adiciona à uma substância orgânica. Ocorre em hidrocarbonetos insaturados, como os alcenos e os alcinos. 

São caracterizadas pela quebra das ligações duplas e triplas. Nos hidrocarbonetos insaturados, a quebra ocorre na ligação mais fraca (ligação π) e ocorre a formação de duas novas ligações (ligações δ).

As principais reações de adição são:- hidrogenação catalítica- halogenação- adição de HX- adição de água- adição a aromático

Hidrogenação Catalítica

Esta reação de adição ocorre em alcenos e alcinos. O gás hidrogênio é adicionado com a ajuda de um catalisador. Pode ser usado o metal níquel (Ni) ou platina (Pt).  

Também podemos chamar esta reação de reação de Sabatier-Senderens. Na indústria química de alimentos é muito conhecida. Serve de base para a produção de margarinas a partir de óleos vegetais.

Os óleos vegetais possuem ligações duplas. A reação de adição, hidrogenação catalítica transforma esses óleos, que são líquidos em gorduras, que é sólida.

               Óleo    +    nH2      →     gordura 

(líquido insaturado)            (sólida saturada)

Hidrogenação catalítica nos alcenos e alcinos:

Observe que o produto desta reação é um alcano. Então, uma das sínteses de alcanos é a hidrogenação catalítica.

Halogenação

A halogenação é uma reação de adição onde adiciona-se halogênio (Cl2 e Br2) a um alceno ou alcadieno.

Em alceno:

Page 198: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Em alcadieno:

A halogenação forma como produto di-haletos vicinais, ou seja, dois halogênios vizinhos.

Adição de HX (hidrohalogenação)

Esta reação é feita adicionando HX aos alcenos.

HX, onde X é o halogênio.

Exemplos: HCl, HBr

Em alguns casos, obtemos dois produtos. O “teoricamente” esperado deve seguir a Regra de Markovnikov.

Regra de Markovnikov – “Nas reações de adição, o hidrogênio é adicionado ao carbono mais hidrogenado da ligação dupla”.

Esta regra serve somente para o cloro. Para o bromo, serve a regra Antimarkovnikov, que é o inverso da Markovnikov.

Exemplo de Markovnikov:

Exemplo de Antimarkovnikov:

 

Adição de Água

Esta reação de adição também é chamada de hidratação de alceno. Ocorre de maneira semelhante com a reação de adição de HX. 

É uma reação catalisada por ácido e também segue a regra de Markovnikov. O hidrogênio entra no carbono mais hidrogenado e a hidroxila no carbono menos hidrogenado. Formam como produto, álcool primário e secundário.

Exemplo:

Page 199: INTRODUÇÃO AO ESTUDO DE QUÍMICA

 

Adição a Aromático

Os aromáticos sofrem reações de substituição, porém em alguns casos ocorre uma adição.

Quando há hidrogenação total do anel benzênico, a reação é de adição. 

Esta reação não é tão fácil de ser feita.

Veja o exemplo do hidrogênio se adicionando ao benzeno formando um hidrocarboneto cíclico, o ciclo-hexeno:

    +        3H2        →             

Esta reação só é posível se for utilizado o catalisador metálico níquel (Ni) ou platina (Pt) a temperatura de 300°C e com uma pressão de 200atm.

REAÇÕES DE SUBSTITUIÇÃO

As reações de substituição são aquelas onde um átomo ou um grupo de átomos de uma molécula orgânica é substituído por outro átomo ou grupo de átomos. 

As principais reações de substituição são: - halogenação- nitração- sulfonação

Halogenação

Os halogênios utilizados nas reações de substituição devem ser o cloro (Cl) e o Bromo (Br). Reações com flúor (F) são muito perigosas devida à alta reatividade deste elemento e com iodo (I) as reações tornam-se muito lentas.

Os alcanos podem ser transformados em haletos de alquila.

Exemplos:

Page 200: INTRODUÇÃO AO ESTUDO DE QUÍMICA

A partir do metano, realizando sucessivas halogenações (excesso de halogênios) catalisadas por luz e calor, podemos obter:

 

  CH4       →       CH3Cl       →       CH2Cl2       →       CHCl3       →       CCl4metano        clorometano      diclorometano    triclorometano ou      tetracloreto clorofórmio              de carbono

Esta reação pode ser chamada de Reação em Cadeia.

O clorofórmio era muito utilizado como anestésico em cirurgias. Atualmente aboliu-se seu uso por ser muito tóxico e perigoso para a saúde. Pode causar sérios danos ao fígado.

A ordem de facilidade com que o hidrogênio “sai” do hidrocarboneto é:

CTERCIÁRIO > CSECUNDÁRIO > CPRIMÁRIO

Nitração

A reação de nitração é aquela onde reagimos um hidrocarboneto com ácido nítrico (HNO3).

Exemplo:

Sulfonação

A reação de sulfonação é aquela onde reagimos um hidrocarboneto com ácido sulfúrico (H2SO4).

Exemplo:

 

REAÇÃO DE OXIDAÇÃO

As reações de oxidação das substâncias orgânicas devem ser catalisadas por um agente oxidantes. São simbolizados por [O] e podem ser o permanganato de potássio (KMnO4), dicromato de potássio (K2Cr2O7) ou o tetraóxido de ósmio (OsO4). 

As reações mais importantes de oxidação são:- oxidação energética dos alcenos- oxidação de álcool primário- oxidação de álcool secundário

Oxidação Energética dos Alcenos

 Esta oxidação ocorre nos alcenos em contato com um agente oxidante em solução aquosa, concentrada e ácida (geralmente em ácido sulfúrico). Nesta reação, podemos obter vários produtos. Depende do tipo da posição da ligação dupla:

Observe:- carbono primário produz gás carbônico e água- carbono secundário produz ácido carboxílico- carbono terciário produz cetona

Esta reação serve como teste de insaturação de alceno, ou seja, para identificar que tipo de alceno se tem.

Alguns exemplos:         

Carbono secundário:          

Page 201: INTRODUÇÃO AO ESTUDO DE QUÍMICA

O //CH3 – CH = CH2   +   5[O]   →  CH3 – C         +   CO2    +   H2O \ OH

Carbono terciário:

CH3 – C = C – CH3   +   2[O]   →  CH3 – C – CH3       |     |                                     | | CH3  CH3                                 O

Oxidação de Álcoois Primários

Os álcoois primários se oxidam com oxidantes enegéticos, como o permanganato de potássio e dicromato de potássio, em meio sulfúrico. O produto desta oxidação é aldeído. Com mais quantidade de agente oxidante, obtemos um ácido carboxílico. 

Esta reação explica porque o vinho fica com gosto de vinagre quando deixamos muito tempo em contanto com o ar (oxigênio). O álcool sofre uma oxidação e tranforma-se em vinagre, que é um ácido carboxílico.

Exemplo:                                 

O                                O  //                                //CH3 – CH2OH  +  [O]   →   CH3 – C     +   [O]    →   CH3 – C      \                                    \ H                                   OH  álcool primário                    aldeído                            ácido carboxílico

Oxidação de Álcoois Secundários

Os álcoois secundários tem como produto as cetonas.

Exemplo:

CH3 – CH – CH3    +  [O]   →   CH3 – C – CH3  |                                           | | OH                                         O

álcool secundário                           cetona

Observação: Não existe oxidação de álcool terciário.

 

REAÇÃO DE ELIMINAÇÃO

São as reações onde alguns átomos ou grupos de átomos são eliminados da molécula orgânica. É o inverso das reações de adição. 

Tem grande importância para a indústria química, na produção de polietileno que é a matéria-prima para a obtençao de plásticos. 

As principais reações de eliminação são:- eliminação de hidrogênio (desidrogenação)- eliminação de halogênios (de-halogenação)- eliminação de halogenidreto - eliminação de água (desidratação de álcool)

Eliminação de Hidrogênio ou Desidrogenação

A partir de alcano é possível obter um alceno, catalisado por calor.

Page 202: INTRODUÇÃO AO ESTUDO DE QUÍMICA

Exemplo:

Eliminação de Halogênio ou De-Halogenação

Di-haletos vicinais regindo com zinco catalisado por um álcool formam alcenos.

 Exemplo:

Eliminação de Halogenidretos

Halogenidretos, como HCl, HBr e HI podem ser eliminados a partir de um haleto de alquila, catalisado por uma base, que pode ser o KOH e um álcool.

Exemplo:

Eliminação de Água

A desidratação intramolecular de álcool catalisada por ácido sulfúrico concentrado e calor (170°C) ocorre com a eliminação de água e alceno.

Outra desidratação que pode ocorrer é a intermolecular de dois álcoois formando éter e eliminando água. A reação deve ser catalisada por ácido sulfúrico concentrado e calor (140°C).

Então:

1 molécula álcool = desidratação intramolecular = alceno2 moléculas álcool = desidratação intermolecular = éter