Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de...

90
Biotecnologia Biotecnologia Paulo Marques Paulo Marques

Transcript of Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de...

Page 1: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

BiotecnologiaBiotecnologia

Paulo MarquesPaulo Marques

Page 2: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Processos biológicosProcessos biológicos → difícil de definir o começo → funcionam de forma → difícil de definir o começo → funcionam de forma muito integrada.muito integrada.

  

CÉLULAS: Unidade fundamental da vida – Menor parte de um ser vivo capaz CÉLULAS: Unidade fundamental da vida – Menor parte de um ser vivo capaz de desenvolver, de forma autônoma, as funções básicas que de desenvolver, de forma autônoma, as funções básicas que caracterizam a vida: Reprodução e Crescimento.caracterizam a vida: Reprodução e Crescimento.

  

Organismos vivos → unicelulares e pluricelularesOrganismos vivos → unicelulares e pluricelulares

↓ ↓

células assumem diferentes formas e células assumem diferentes formas e

se especializam em várias funçõesse especializam em várias funções

↓ ↓

diferenciação celulardiferenciação celular

Page 3: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

CÉLULAS – local de muitas reações químicas e CÉLULAS – local de muitas reações químicas e suas funções dependem das substâncias suas funções dependem das substâncias químicas que produzem. químicas que produzem.

  CÉLULAS ENTRE AS ESPÉCIES – com muitas CÉLULAS ENTRE AS ESPÉCIES – com muitas

diferenças, mas também com muitas diferenças, mas também com muitas similaridades → TODOS OS ORGANISMOS similaridades → TODOS OS ORGANISMOS DESCENDEM DE UM ANCESTRAL COMUM!DESCENDEM DE UM ANCESTRAL COMUM!

↓ ↓ PROCARIONTES PROCARIONTES

EUCARIONTESEUCARIONTES

Page 4: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 5: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

CONSTITUIÇÃO QUÍMICA DAS CÉLULAS: CONSTITUIÇÃO QUÍMICA DAS CÉLULAS: inorgânicos inorgânicos e e orgânicosorgânicos ↓ ↓ ↓ ↓ água, sais min. Carboidratos, lipídioságua, sais min. Carboidratos, lipídios

proteínas e ác. Nucléicosproteínas e ác. Nucléicos    PROTEÍNAS E ÁC. NUCLÉICOS – IMPORTANTES PARA A BIOL. MOLECULARPROTEÍNAS E ÁC. NUCLÉICOS – IMPORTANTES PARA A BIOL. MOLECULAR  ÁCIDOS NUCLÉICOS – DNA E RNA ÁCIDOS NUCLÉICOS – DNA E RNA → controlam de forma integrada a síntese de proteínas→ controlam de forma integrada a síntese de proteínas  O código do DNA – moléculas de DNA e proteínas são lineares O código do DNA – moléculas de DNA e proteínas são lineares

↓ ↓ linear segundo a seqüência de nucleotídeoslinear segundo a seqüência de nucleotídeos

↓ ↓ cada 3 letras = 1 aminoácidocada 3 letras = 1 aminoácido  SÍNTESE DE PROTEÍNAS – DNA →RNAm → ProteínaSÍNTESE DE PROTEÍNAS – DNA →RNAm → Proteína ↓ ↓ Quando ocorre um erro - Quando ocorre um erro - MUTAÇÃOMUTAÇÃO

Page 6: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

1. HISTÓRICO

O advento da Biologia Molecular

•1940 - Bases da Biologia Molecular: estudo da estrutura e função das moléculas biológicas.

•1944 – Avery, MacLeod e McCarty – ácido desoxirribonucléico (DNA) continha a informação genética.

Page 7: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

•1952 – Hershey e Chase - DNA tem a capacidade de controlar as células : experiência com bacteriófagos.

•1950 – Chargaff – distribuição dos nucleotídeos (identificados pelas bases nitrogenadas) possuia um padrão: quantidade de timina era igual a de adenina e guanina igual a de citosina.

•1953 – utilizando os dados sobre a molécula de DNA obtidos através de cristalografia de raios X por Rosalind Franklin, James Watson e Francis Crick propuseram o modelo dupla hélice do DNA: duas cadeias de nucleotídeos enroladas em espiral e ligadas entre sí pelas bases - como o material genético se duplica e produção do RNA , síntese protéica e controle da atividade celular).

Page 8: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 9: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

•1956 – processos de autoduplicação do DNA

•1960 – decifração do código genético dos aminoácidos

•1961 – processo de transcrição do RNA.

•1962 – processo de tradução do RNA para sintetizar proteínas.

Page 10: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Estrutura do DNA

Page 11: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Estrutura de Dupla Hélice

(Watson e Crick - 1953)

Capacidade de Replicação

Page 12: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

                                                         

Page 13: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 14: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 15: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

A Molécula de DNA

Page 16: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 17: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Tipos de DNA

Page 18: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Há pelo menos três modelos de DNA :

Modelos A, B e Z

O DNA B é de longe o mais frequente, mas o DNA Z tamém é encontrado na célula. Admite-se que o DNA Z é "silencioso", isto é, não pode ser transcrito. A transição B-Z seria, assim, um recurso para silenciar grandes blocos de genes. A forma Z é também a única que é imunogênica, isto é, quando um paciente tem anticorpos contra DNA, é contra esta forma que eles são produzidos.

Page 19: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

DNA: A, B e Z. Nesta figura está bem visível a fenda maior entre a volta verde de cima e a vermelha de baixo e a menor, entre a vermelha de baixo e a verde da base, no modelo B. Também fica claro que os dois modelos A e B são hélices destrógiras, enquanto o Z é levógiro. DNA Z não tem duas fendas nítidas, mas uma escancarada e outra muito discreta.

Page 20: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 21: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 22: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

CLASSES DE DNAO DNA das células eucariontes apresenta três frações caracterizadas pelo grau de repetição:

•DNA Singular ou de Cópia ÚnicaConstitui a maior parte do DNA no genoma. As sequências que codificam proteínas (isto é, a porção codificadora dos genes) compreendem apenas uma pequena proporção do DNA de cópia única. A maior parte do DNA de cópia única encontra-se em extensões curtas, entremeadas com diversas famílias de DNA repetitivo . Proporção do genoma: 75% .

Page 23: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

•DNA Repetitivo DispersoDNA Repetitivo Disperso

Consiste em sequências relacionadas que se Consiste em sequências relacionadas que se espalham por todo o genoma, em vez de espalham por todo o genoma, em vez de

ficarem localizadas. ficarem localizadas. Os elementos repetidos dispersos mais Os elementos repetidos dispersos mais

exatamente estudados pertencem à família exatamente estudados pertencem à família Alu e à família L1.Alu e à família L1.

Page 24: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

•DNA SatéliteDNA SatéliteEnvolve sequências repetidas (em Envolve sequências repetidas (em tandem) agrupadas em um ou em tandem) agrupadas em um ou em

alguns locais, intercaladas com alguns locais, intercaladas com sequências de cópia única ao longo do sequências de cópia única ao longo do

cromossomo. cromossomo. As famílias de DNA satélite variam As famílias de DNA satélite variam quanto à localização no genoma, quanto à localização no genoma,

comprimento total da série em tandem, comprimento total da série em tandem, comprimento das unidades repetidas comprimento das unidades repetidas

que constituem a série.que constituem a série.

Page 25: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

TRANSPOSONSTransposons - moléculas que “copiam e colam”Transposons são pedaços de DNA que podem copiar e inserirem-se em regiões não-homólogas de outros DNAs na mesma célula.

Transposons = Transposição

Page 26: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 27: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 28: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

DNA: Processos de replicação, Transcrição e

Tradução

Page 29: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 30: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 31: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 32: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Controle da expressão gênica

Page 33: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Jacob e Monod criaram um modelo no qual o sítio promotor, associado a um outro sítio chamado operador, controlava a expressão de todos os genes imediatamente “abaixo”, isto é, 3’, do promotor. A este conjunto chamaram operon. Como os genes que estudavam eram os responsáveis pela síntese das proteínas que degradavam lactose, chamaram a este arranjo de genes operon lac.

Page 34: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 35: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

TECNOLOGIA DO DNA RECOMBINANTETECNOLOGIA DO DNA RECOMBINANTE  

À partir do conhecimento da molécula de DNA, os cientistas agora querem À partir do conhecimento da molécula de DNA, os cientistas agora querem administrar essa administrar essa fábrica de proteínasfábrica de proteínas!!!!

  DNA – molécula relativamente simples e muito regular; varia só nas 4 bases DNA – molécula relativamente simples e muito regular; varia só nas 4 bases

(com caract. químicas muito semelhantes) e são macromoléculas com as (com caract. químicas muito semelhantes) e são macromoléculas com as mesmas propriedades químicas.mesmas propriedades químicas.

↓ ↓pelo comportamento químico é impossível separar uma molécula de DNApelo comportamento químico é impossível separar uma molécula de DNA

↓ ↓TECNOLOGIA DO DNA RECOMBINANTETECNOLOGIA DO DNA RECOMBINANTE

↓ ↓O DNA é extraído da célula com o gene de interesse – cortado em fragmentos O DNA é extraído da célula com o gene de interesse – cortado em fragmentos

menores de modo controlado - cada fragmento é ligado em uma outra menores de modo controlado - cada fragmento é ligado em uma outra molécula de DNA – célula hospedeiramolécula de DNA – célula hospedeira

↓ ↓célula com a molécula híbrida, passa a copiá-la, duplicando-a em cada divisão célula com a molécula híbrida, passa a copiá-la, duplicando-a em cada divisão

celular – com grande quantidade da molécula é possível localizar o gene.celular – com grande quantidade da molécula é possível localizar o gene.  

Isolar o gene – multiplicá-lo e obter grande quantidade da proteínaIsolar o gene – multiplicá-lo e obter grande quantidade da proteína ↓↓

ENZIMAS DE RESTRIÇÃO (endonucleasesENZIMAS DE RESTRIÇÃO (endonucleases))

  

Page 36: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

2. Introdução à Engenharia Genética

Utilizando as enzimas de restrição bacterianas, tornou-se possível cortar dois DNAs diferentes e, pela ação de enzimas ligases, unir os segmentos resultantes e formar um DNA recombinante - Tecnologia do DNA Recombinante – início da Engenharia Genética.

Assim, os cientistas têm desenvolvido técnicas que possibilitam transferir os genes de um tipo celular para outro (por exemplo, de plantas e animais para as bactérias).

Page 37: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Aplicações comerciais: o futuro da engenharia genética é considerado muito amplo, sendo que já resolveu alguns dos maiores problemas de pesquisa. Por exemplo, genes que codificam a produção de compostos importantes, com produção reduzida em seu tecido normal, podem ser retirados de células animais ou vegetais e inseridos na célula bacteriana- esta sintetiza em quantidades ilimitadas os produtos codificados pelos genes. Muitos exemplos de sua aplicação são observados na medicina.

Outra aplicação importante é a transformação de plantas, animais e microrganismos para a obtenção de Transgênicos (OGM).

Page 38: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

3. Importância dos Microrganismos e das Enzimas na Engenharia Genética

As células animais e vegetais usualmente não podem ser cultivadas para produção de compostos específicos – estas perdem a habilidade de síntese quando são isoladas e cultivadas em laboratório. Também , o cultivo de células de tecido em laboratório é dispendioso e requer meios complexos altamente enriquecidos.

Uso de microrganismos – medicina: altamente empregado, pois evita muitos dos problemas associados com a obtenção de compostos importantes (insulina, interferom, hormônios, etc.). As bactérias que carregam os genes para os mais diversos compostos, podem ser cultivadas indefinidamente.

Page 39: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Por meio da introdução de genes estranhos em microrganismos, é possível desenvolver cepas que oferecem novas soluções para problemas diversos, como poluição, escassez de alimento e energia , controle de doenças e até mesmo terapia gênica.

ENZIMAS: fundamental para a tecnologia do DNA recombinante.

•Endonucleases de restrição: apresentam papel fundamental, clivando o DNA em seqüências específicas, gerando um conjunto de fragmentos menores.•DNA ligase: os fragmentos separados para serem clonados podem ser unidos a um vetor de clonagem apropriado usando a DNA ligase.

Assim, o vetor recombinante é introduzido numa célula hospedeira que o “clona”, a medida que a célula realiza muitas gerações de divisões celulares.

Page 40: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 41: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 42: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 43: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Vetores de Clonagem

Plasmídios – bacteriófagos – cosmídios - E. coli.

Plasmídios : moléculas de DNA circulares que se replicam separadamente do cromossomo hospedeiro.

-Plasmídios bacterianos naturais – 5.000 a 400.000 pares de bases.-Plasmídios introduzidos nas células por técnicas de transformação

Utilizados para clonar segmentos de DNA até 15.000 pares de bases.

Page 44: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 45: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 46: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Construção de uma Bactéria pela Engenharia Genética

•Obtenção do gene do organismo doador ou, em alguns casos, pode ser sintetizados em laboratório pôr nucleotídeos artificiais.•DNA plasmidial (ou outro vetor de clonagem) é isolado para servir como carreador de determinado gene.•O DNA doador e o plasmidial são tratados com a mesma enzima, uma endonuclease de restrição, que cliva o DNA, formando fitas simples com terminais complementares (“terminais coesivos”). Esses são capazes de ligar-se a outros fragmentos de DNA que apresentam o mesmo terminal complementar das fitas simples.

Page 47: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

•O terminal coesivo de um fragmento de DNA doador liga-se com o terminal coesivo do DNA plamidial através da DNA ligase → plasmídio com o fragmento do DNA doador.•O plasmídio é adicionado a uma suspensão de bactérias receptoras transformação.•As bactérias geneticamente construídas são propagadas em grande quantidade e o produto (proteína) codificado pelo gene transferido é extraído da cultura e purificado. Ou outro caminho é colocar esta bactéria transformada com outro tecido e fazer a transferência do gene.

Page 48: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Isolamento e amplificação Isolamento e amplificação de plasmídiosde plasmídios

Page 49: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 50: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 51: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 52: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 53: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 54: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 55: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 56: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 57: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 58: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 59: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Bacteriófago λ : clonagem de segmentos de DNA maiores. Bacteriófago λ – 48.502 pares de bases. Clonagem do DNA no Bacteriófago λ é baseado em duas carcaterísticas-chave do genoma do genoma do λ: a) um terço do genoma não é essencial e pode ser substituído pelo DNA estranho b) o DNA será empacotado em partículas do fago infecciosas, apenas se possuírem entre 40.000 e 50.000 pares de bases de comprimento.

Utilizados para clonar fragmentos de DNA até 23.000 pares de bases.

Page 60: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 61: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Cosmídios : plasmídios recombinantes com características úteis tanto dos plasmídios quanto do bacteriófago λ. Cosmídios – são moléculas de DNA circulares pequenas (5.000 a 7.000 pares de bases), que contém:

a) uma origem plasmidial de replicação; b) um ou mais marcadores de seleção; c) um certo número de sítios únicos de restrição onde o DNA estranho pode ser inserido e; d) um sítio cos (seqüência de DNA do bacteriófago λ). Utilizados para clonar fragmentos de DNA até 45.000 pares de bases.

Page 62: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 63: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 64: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 65: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

PORQUE CONSTRUIR UMA MOLÉCULA DE DNA PORQUE CONSTRUIR UMA MOLÉCULA DE DNA RECOMBINANTE?RECOMBINANTE?

-         ESTUDO DA ESTRUTURA DOS GENES-         ESTUDO DA ESTRUTURA DOS GENES-         DIAGNÓSTICO CLÍNICO-         DIAGNÓSTICO CLÍNICO

-         TERAPIA GÊNICA-         TERAPIA GÊNICA-         MELHORAMENTO ANIMAL E VEGETAL-         MELHORAMENTO ANIMAL E VEGETAL

-         OBTENÇÃO DE GRANDES QUANTIDADES -         OBTENÇÃO DE GRANDES QUANTIDADES DE PROTEÍNAS RARAS. DE PROTEÍNAS RARAS.

- CONSTRUÇÃO DE BIBLIOTECAS DE - CONSTRUÇÃO DE BIBLIOTECAS DE GENESGENES  

Vetores de clonagemVetores de clonagem

Page 66: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Isolamento de um gene Isolamento de um gene específicoespecífico

Como exemplo – gene humanoComo exemplo – gene humano

Page 67: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 68: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 69: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 70: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Quanto maior o número de fragmentos ou clones Quanto maior o número de fragmentos ou clones produzidos, mais difícil será encontrar o clone produzidos, mais difícil será encontrar o clone com o gene de interesse.com o gene de interesse.

BANCOS GENÔMICOS DE ORGANISMOS BANCOS GENÔMICOS DE ORGANISMOS COMPLEXOS (P. EX. HOMEM), DEVEM SER COMPLEXOS (P. EX. HOMEM), DEVEM SER CONSTRUÍDOS COM FRAGMENTOS DE DNA NÃO CONSTRUÍDOS COM FRAGMENTOS DE DNA NÃO MUITO PEQUENOS.MUITO PEQUENOS.

BANCO CROMOSSÔMICOBANCO CROMOSSÔMICO - Banco genômico - Banco genômico para cada cromossomo.para cada cromossomo.

CROMOSSOMOS - são isolados por fluorescência.CROMOSSOMOS - são isolados por fluorescência.

Page 71: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Seqüenciamento de DNA: Identificação daSeqüência de Nucleotídeos que compõem amolécula de DNA

Molécula de DNA Informação Genética

DNA- Polímero, cujasunidades são osnucleotídeos. Cadanucleotídeo consiste deum açúcar, uma basenitrogenada e um grupofosfato

Page 72: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

6. Problemas Envolvidos na Clonagem do Gene

•Endonucleases de restrição – podem cortar e destruir os genes a serem clonados. Também mais que um gene pode estar envolvido na expressão de uma característica.

•Inserção incorreta do gene doador no plasmídio vetor – resultando na falha da bactéria em expressar o gene.

•A proteína sintetizada pode estar dentro da célula como agregados grandes e insolúveis – ocorrem dificuldades no isolamento da proteína.

•Pode ocorrer síntese em excesso do produto do gene – às vezes pode ser letal para a bactéria.

Page 73: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

DNA recombinanteDNA recombinante

Uso de enzimas bacterianas Uso de enzimas bacterianas conhecidas como conhecidas como enzimas de enzimas de restriçãorestrição;;

As enzimas de restrição são As enzimas de restrição são altamente específicas;altamente específicas;

Corta o DNA apenas nos locais onde Corta o DNA apenas nos locais onde existem certas seqüências de existem certas seqüências de bases bases nitrogenadasnitrogenadas..

Page 74: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 75: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 76: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Enzimas de restriçãoEnzimas de restrição

Importância:Importância:

Foi empregada no Projeto Genoma Foi empregada no Projeto Genoma Humano;Humano;

É empregado em laboratórios de É empregado em laboratórios de Genética molecular Genética molecular

Page 77: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

P.G.H.P.G.H.

Objetivos:Objetivos:

Mapeamento genético;Mapeamento genético; Determinar a seqüência de bases de Determinar a seqüência de bases de

todos os genes de nossa espécie. todos os genes de nossa espécie.

Curiosidade: O número total de genes Curiosidade: O número total de genes apresentado pelo projeto foi de 30 a 31 apresentado pelo projeto foi de 30 a 31 mil mil

Page 78: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 79: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

P.G.H.P.G.H.

Perspectivas:Perspectivas:

Cura de doenças por substituição de Cura de doenças por substituição de genes anormais;genes anormais;

Questão da Bioética (uso para o bem Questão da Bioética (uso para o bem comum e não por interesses comum e não por interesses individuais).individuais).

Page 80: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

EletroforeseEletroforese

É uma técnica que separa moléculas É uma técnica que separa moléculas DNA, RNA e proteínas de acordo com DNA, RNA e proteínas de acordo com seu tamanho e carga elétrica;seu tamanho e carga elétrica;

Velocidade de migração através de Velocidade de migração através de um suporte de material gelatinoso um suporte de material gelatinoso (gel de agarose), submetido a um (gel de agarose), submetido a um campo elétrico.campo elétrico.

Page 81: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

DNA tem carga geral negativa;DNA tem carga geral negativa; Migração inversamente Migração inversamente

proporcional ao tamanhoproporcional ao tamanho

Page 82: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 83: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

Reação em Cadeia da PolimeraseReação em Cadeia da Polimerase(PCR)(PCR)

É uma técnica para amplificar É uma técnica para amplificar pedaços de DNA por meio de uma pedaços de DNA por meio de uma reação em cadeia utilizando enzimas reação em cadeia utilizando enzimas

Muitos técnicas de manipulação de Muitos técnicas de manipulação de DNA requerem muita amostra de DNA requerem muita amostra de DNA e que este esteja puroDNA e que este esteja puro

Page 84: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 85: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

PCRPCR

Algumas aplicações:Algumas aplicações:

Diagnóstico de doenças genéticas;Diagnóstico de doenças genéticas; Detecção de infecções;Detecção de infecções; Monitoração de terapia contra o Monitoração de terapia contra o

câncer;câncer; Sequenciamento de DNA;Sequenciamento de DNA; FingerprintingFingerprinting forense. forense.

Page 86: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

NanotecnologiaNanotecnologia

É a utilização de partículas que são É a utilização de partículas que são medidos na ordem de nanômetros medidos na ordem de nanômetros em várias ciências;em várias ciências;

Richard Feynman.Richard Feynman.

Page 87: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.
Page 88: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

NanobiotecnologiaNanobiotecnologia

Aplicação na Biologia;Aplicação na Biologia; Perspectivas:Perspectivas:

superfícies nanofabricadas com superfícies nanofabricadas com padrões estruturais poderiam fazer padrões estruturais poderiam fazer crescer artificialmente ilhas crescer artificialmente ilhas pancreáticas e reverter os efeitos da pancreáticas e reverter os efeitos da diabetes;diabetes;

Page 89: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.

NanobiotecnologiaNanobiotecnologia

nanodispositivos poderiam funcionar nanodispositivos poderiam funcionar como kits de reparo de neurônios como kits de reparo de neurônios para pessoas com mal de Parkinson para pessoas com mal de Parkinson ou doença de Alzheimer;ou doença de Alzheimer;

destruir vírus ou células cancerosas;destruir vírus ou células cancerosas; descoberta acelerada de drogas, com descoberta acelerada de drogas, com

menor custo menor custo

Page 90: Biotecnologia Paulo Marques. Processos biol ó gicos dif í cil de definir o come ç o funcionam de forma muito integrada. C É LULAS: Unidade fundamental.