A lógica química do

24
A lógica química do... Ciclo de Krebs O piruvato produzido na glicólise ainda contém bastante poder redutor (verifique o estado de oxidação de cada um dos seus carbonos e compare-o com o estado de oxidação do carbono no CO 2 ). Este poder redutor vai ser aproveitado pela célula no ciclo de Krebs. Em primeiro lugar, o piruvato é utilizado para produzir acetil-CoA, que é uma forma activada de acetato (CH 3 COO - ) Nesta reacção intervém a piruvato desidrogenase. É uma enzima bastante complexa, que contém bastantes cofactores: lipoamida, FAD, coenzima A. A hidrólise da ligação tioéster (S-C=O) do acetil-CoA é bastante exergónica, pelo que a sua formação exige energia. Essa energia provém da descarboxilação do piruvato (note que o piruvato tinha três carbonos e a porção acetil do acetilCoA apenas possui dois: o grupo carboxilato migrou como CO 2 ). A energia proveniente de descarboxilações é frequentemente usada pela célula para empurrar um equilíbrio no sentido da formação de produtos, como se verá em várias reacções do ciclo de Krebs e na gluconeogénese .

Transcript of A lógica química do

Page 1: A lógica química do

A lógica química do... Ciclo de Krebs

O piruvato produzido na glicólise ainda contém bastante poder redutor (verifique o estado de oxidação de cada um dos seus carbonos e compare-o com o estado de oxidação do carbono no CO2). Este poder redutor vai ser aproveitado pela célula no ciclo de Krebs. Em primeiro lugar, o piruvato é utilizado para produzir acetil-CoA, que é uma forma activada de acetato (CH3COO-)

Nesta reacção intervém a piruvato desidrogenase. É uma enzima bastante complexa, que contém bastantes cofactores: lipoamida, FAD, coenzima A. A hidrólise da ligação tioéster (S-C=O) do acetil-CoA é bastante exergónica, pelo que a sua formação exige energia. Essa energia provém da descarboxilação do piruvato (note que o piruvato tinha três carbonos e a porção acetil do acetilCoA apenas possui dois: o grupo carboxilato migrou como CO2). A energia proveniente de descarboxilações é frequentemente usada pela célula para empurrar um equilíbrio no sentido da formação de produtos, como se verá em várias reacções do ciclo de Krebs e na gluconeogénese.

Na primeira reacção do ciclo de Krebs, o acetil-CoA é adicionado a oxaloacetato, dando origem a citrato, numa reacção de adição aldólica. A hidrólise do tioéster ajuda a deslocar o equilíbrio no sentido da formação de produtos:

Page 2: A lógica química do

O citrato é depois isomerizado a isocitrato. Este é então descarboxilado a a -cetoglutarato . Se o citrato não tivesse sido isomerizado a isocitrato antes da descarboxilação, esta produziria um composto de carbono ramificado, mais difícil de metabolizar.

Page 3: A lógica química do

Tal como o piruvato, o -cetoglutarato é um -cetoácido, i.e., possui um grupo carbonilo adjacente ao grupo ácido carboxílico. É portanto de prever que reaja exactamente como o piruvato, i.e., que a sua descarboxilação forneça energia suficiente para que se forme uma ligação tioéster com a coenzima A. E é isto que de facto ocorre... A enzima responsável por esta reacção, a -cetoglutarato desidrogenase, é aliás bastante análoga à piruvato desidrogenase na sua composição e cofactores.

A ligação tioéster do succinil-CoA é, como todas as ligações tioéster, bastante energética.A sua hidrólise vai constituir o único ponto do ciclo de Krebs onde ocorre produção directa de ATP (ou equivalente).

O succinato é, tal como o oxaloacetato, um produto com quatro carbonos. A parte final do ciclo de Krebs consiste em regenerar o oxaloacetato a partir do succinato. O succinato é primeiro oxidado a fumarato, pelo complexo succinato desidrogenase (também denominado complexo II), que

Page 4: A lógica química do

se encontra na face matricial da membrana interna da mitocôndria. A oxidação de ligação simples a dupla (alcanos a alcenos) tem um potencial demasiado elevado para que os electrões possam ser aceites pelo NAD+ (E0=-320 mV). A célula utiliza portanto FAD (E0= 0 mV)como aceitador destes electrões. A hidratação do fumarato produz malato, que depois é oxidado a oxaloacetato, completando o ciclo. Uma sequência semelhante de reacções ocorre na b -oxidação dos lípidos .

O resultado do ciclo de Krebs é portanto:

Acetil-CoA + oxaloacetato + 3 NAD+ + GDP + Pi +FAD --> oxaloacetato + 2 CO2 + FADH2 + 3 NADH + 3 H+ + GTP

A lógica química da... Glicólise

Page 5: A lógica química do

A concentração de glucose na corrente sanguínea é mantida a níveis sensivelmente constantes de cerca de 4-5 mM. A glucose entra nas células por difusão facilitada. Este processo não permite a acumulação na célula de concentrações de glucose superiores às existentes no sangue, pelo que a célula deve ter um processo para acumular glucose no seu interior. Isto é feito por modificação química da glucose pela enzima hexocinase:

A membrana celular é impermeável à glucose-6-fosfato, que pode por isso ser acumulada na célula. A glucose-6-fosfato será utilizada na síntese do glicogénio (uma forma de armazenamento de glucose) , para produzir outros compostos de carbono na via das pentoses fosfato, ou degradada para produzir energia - glicólise.

Para poder ser utilizada na produção de energia, a glucose-6-fosfato é primeiro isomerizada a frutose-6-fosfato. A frutose-6-fosfato é depois fosforilada a frutose-1,6-bisfosfato numa reacção catalizada pelafosfofrutocinase. Este é o ponto de não-retorno desta via metabólica: a partir do momento em que a glucose é transformada em frutose-1,6-bisfosfato já não pode ser usada em nenhuma outra via.

Page 6: A lógica química do

Seguidamente, numa reacção inversa da adição aldólica, a frutose-1,6-bisfosfato é clivada em duas moléculas de três carbonos cada:

Page 7: A lógica química do

Estas duas moléculas (dihidroxiacetona fosfatada e gliceraldeído-3-fosfato) são facilmente interconvertíveis por isomerização. Portanto, basta uma via metabólica para degradar as duas. É por esta razão que a glucose-6-P foi isomerizada a frutose-6-P: a clivagem da glucose pela reacção inversa da condensação aldólica daria origem a duas moléculas bastante diferentes, de dois e quatro átomos de carbono, respectivamente, que exigiriam duas vias metabólicas diferentes para a sua degradação.

Os aldeídos têm potenciais de oxidação redução bastante baixos (cerca de -600 a -500 mV). A reacção de oxidação do gliceraldeído-3-fosfato pelo NAD+ (E0=-320 mV) é portanto bastante espontânea. É uma reacção tão exergónica que pode ser usada para produzir ATP (a produção de ATP a partir de ADP e Pi pode ser realizada se existir uma diferença de potencial de cerca de 180 mV). A produção de ATP é feita em dois passos. No primeiro, dá-se a oxidação do gliceraldeído-3-fosfato e a fosforilação do ácido produzido.

Page 8: A lógica química do

Os ácidos fosforilados (tal como os fosfoenóis e os fosfoguanidinos) têm grupos fosfatos bastante energéticos: a saída do grupo fosfato dá origem a espécies muito mais estabilizadas por ressonância. O grupo fosfato do carbono 1 do 1,3-bisfosfoglicerato pode por isso ser transferido para ADP, produzindo ATP.

O 3-fosfoglicerato é isomerizado a 2-fosfoglicerato, que depois de desidratado (i.e. perder H2O) dá origem a um fosfoenol:

Page 9: A lógica química do

Devido ao seu elevado potencial de transferência de fosfato o fosfoenolpiruvato pode transferir um fosfato ao ADP:

Na glicólise gastam-se portanto dois ATP, e produzem-se quatro ATP. O NAD+ tem de ser regenerado, caso contrário a glicólise pára, uma vez que é substrato de uma das reacções. Em condições aeróbicas, o NADH transfere os seus electrões para a cadeia transportadora de electrões. Na ausência de O2 o NADH transfere os seus electrões para o próprio piruvato, dando origem a lactato. É o que se denomina fermentação : um processo em que o aceitador final dos electrões provenientes da degradação é um produto orgânico da própria degradação.

Page 10: A lógica química do

A lógica química do... metabolismo dos ácidos gordos

-oxidação dos ácidos gordos

A maior parte da reserva energética do organismo encontra-se armazenada sob a forma de triacilglicéridos. Estes podem ser hidrolizados por lipases a glicerol e ácidos gordos:

O glicerol pode seguir para a glicólise depois de oxidado a dihidroxiacetona fosfatada na face externa da membrana interna da mitocôndria. Os dois electrões libertados nesta oxidação são recebidos pela ubiquinona (Q), que os transfere para a cadeia transportadora de electrões.

Page 11: A lógica química do

Os ácidos gordos terão um destino diferente: a β-oxidação, que ocorre na mitocôndria. Antes de entrarem na mitocôndria, os ácidos gordos são activados. A reacção de activação ocorre no citoplasma, e consiste na sua transformação em acil-CoA. Como sabemos do ciclo de Krebs, as ligações tioéster são muito energéticas: para a fazer, um ATP é hidrolizado a AMP (equivalente à hidrólise de 2 ATP em 2 ADP).

A membrana da mitocôndria é impermeável aos acil-CoA. Para entrarem na mitocôndria estes reagem com um aminoácido "especial", a carnitina, libertando a coenzima A. A carnitina esterificada é transportada para dentro da mitocôndria por um transportador específico. Dentro da mitocôndria, a carnitina transfere o grupo acilo para uma outra molécula de CoA. A carnitina livre volta então para o citoplasma através do transportador. Note que neste processo não existe transporte de CoA para dentro da mitocôndria: as reservas citoplasmática e mitocondrial de CoA não se misturam.

A -oxidação dos ácidos gordos consiste num ciclo de 3 reacções sucessivas, idênticas à parte final do ciclo de Krebs: desidrogenação, hidratação da ligação dupla formada e oxidação do álcool a uma cetona:

Page 12: A lógica química do

 

Por acção da enzima tiolase, liberta-se acetil-CoA, e um acil-CoA com menos dois carbonos que o acil-CoA original.

 

A repetição do ciclo permite a degradação total de um ácido gordo de cadeia par em acetil-CoA, que pode entrar no ciclo de Krebs, onde é completamente oxidado a CO2. É por isso impossível utilizar acetil-CoA para produzir oxaloacetato para (a partir deste), realizar a gluconeogénese.

Page 13: A lógica química do

Os ácidos gordos insaturados seguem um percurso semelhante, embora novas enzimas sejam necessárias para a oxidação na proximidade da ligação insaturada. No caso desta ligação se localizar num carbono ímpar, intervém a Δ3, Δ2-enoil-CoA isomerase. Esta enzima transfere a ligação dupla do carbono 3 para o carbono 2, permitindo a continuação da β-oxidação. Neste ciclo de β-oxidação não se forma FADH2.

No caso da ligação dupla se localizar num carbono par, é necessária a intervenção da 2,4-dienoil-CoA reductase: a presença das ligações duplas conjugadas faz com que a reacção de hidratação tenha mais tendência a ocorrer no carbono 4 do que no carbono correcto (2). A 2,4-dienoil-CoA reductase transforma as ligações conjugadas Δ4, Δ2 numa única ligação dupla Δ3. Os electrões necessários para esta conversão provêm do NADPH. O processo continua seguidamente de forma análoga à oxidação de ácidos gordos insaturados em carbono ímpar.

Page 14: A lógica química do

Um ácido gordo de cadeia ímpar dá origem, na última ronda do ciclo a acetil-CoA e propionil-CoA. Para que este possa ser utilizado pelo ciclo de Krebs, é necessário adicionar-lhe um átomo de carbono, o que é feito por carboxilação. O metilmalonil assim formado é então rearranjado a succinil-CoA, numa reacção assistida pela cobalamina (a vitamina B12).

Page 15: A lógica química do

O succinil-CoA, além de ser um intermediário no ciclo de Krebs, é um precursor do hemo. Uma deficiência em vitamina B12 resulta por isso na dificuldade de sintetizar hemo, i.e., no desenvolvimento de anemia perniciosa. Esta doença é o resultado da dificuldade de sequestrar cobalamina a nível do estômago, e surge em indivíduos predispostos em idade avançada. Antes dos modernos meios de produção de cobalamina, o tratamento consistia na ingestão diária de quantidades razoáveis de fígado cru, que é bastante rico nesta vitamina. O aparecimento da doença quase só em indivíduos idosos é uma consequência do facto de termos no fígado uma reserva de B12 suficiente para cerca de 3-5 anos, pelo que deficiências na sua absorção têm um efeito muito retardado.

O succinil-CoA é oxidado pelo ciclo de Krebs a malato, que depois de passar para o citoplasma pode ser utilizado na gluconeogénese. No citoplasma pode também ser descarboxilado a piruvato pela enzima málica, com produção simultânea de NADPH:

O piruvato pode entrar na mitocôndria, e ser completamente oxidado a CO2 pelo ciclo de Krebs.

Page 16: A lógica química do

Degradação peroxissomal de ácidos gordos

Os peroxissomas são pequenos organelos onde decorre a -oxidação de ácidos gordos de cadeia longa, de forma a facilitar a sua degradação subsequente pela mitocôndria. As principais diferenças entre os dois processos são:

os ácidos gordos difundem-se livremente para dentro do peroxissoma, não precisando de ser transportados pela carnitina. Os produtos de oxidação seguem para a mitocôndria, depois de esterificarem a carnitina.

a oxidação do acil CoA não é feita pelo FAD, mas pelo oxigénio, produzindo peróxido de hidrogénio.

A tiolase peroxissomal é praticamente inactiva com acil-CoA com menos de 8 carbonos. Por isso, a degradação de ácidos gordos no peroxissoma é incompleta.

Síntese de corpos cetónicos (Cetogénese)

Uma grande quantidade do acetil-CoA produzido pela -oxidação dos ácidos gordos nas mitocôndrias do fígado é convertida em acetoacetato e -hidroxibutirato (também denominados corpos cetónicos). Estes compostos podem ser usados pelo coração e pelos músculos esqueléticos para produzir energia. O cérebro, que normalmente depende da glucose como fonte de energia, pode também utilizar

Page 17: A lógica química do

corpos cetónicos durante um jejum prolongado (maior do que 2-3-dias). A síntese de corpos cetónicos começa pela condensação de duas moléculas de acetil-CoA, para formar acetoacetil-CoA:

A condensação de outra molécula de acetil-CoA produz 3-hidroxi-3-metil-glutaril-CoA (HMG-CoA). Esta reacção é idêntica, no seu mecanismo, à condensação do oxaloacetato com o acetil-CoA para formar citrato, que ocorre no ciclo de Krebs.

O HMG-CoA é então degradado a acetoacetato e acetil-CoA:

Page 18: A lógica química do

O acetoacetato assim produzido passa para a corrente sanguínea e é distribuído pelos tecidos. Uma vez absorvido, reage na mitocôndria com o succinil-CoA, produzindo succinato e acetoacetil-CoA, que pode ser clivado em duas moléculas de acetil-CoA.

Síntese de ácidos gordos

Em situações de abundância de acetil-CoA, o fígado e o tecido adiposo sintetizam ácidos gordos. O processo de síntese apresenta bastantes semelhanças com o inverso da -oxidação, mas também tem diferenças importantes:

ocorre no citoplasma, e não na mitocôndria. usa NADPH como fonte de electrões o transportador de grupos acilo é a ACP (Acyl Carrier Protein), e não a coenzima A.

A síntese de ácidos gordos é feita a partir de acetil-CoA. No entanto, o processo é endergónico, pelo que o acetil-CoA deve ser previamente activado. Este é portanto carboxilado pela acetil-CoA carboxilase, uma enzima que tal como as outras carboxilases (p.ex., do  piruvato   ou do propionil-CoA) possui biotina:

Page 19: A lógica química do

O malonil é então transferido para a proteína transportadora de acilos (ACP), dando a origem a malonil-ACP. Este será então condensado com acetil-ACP (sintetizado de forma semelhante a partir de acetil-CoA).

Em animais, todos os passos da síntese do ácido palmítico (o ácido gordo saturado com 16 carbonos) são catalizados pela sintase dos ácidos-gordos, uma enzima bastante grande que leva a cabo todas as reacções seguintes desta via. O butiril-ACP produzido na primeira reacção vai ser transformado em butil-ACP. A sequência de reacções é o inverso da que ocorre na -oxidação, i.e., redução, desidratação e hidrogenação:

Page 20: A lógica química do

O butil-ACP pode então condensar com outra molécula de malonil-ACP. O ciclo repete-se sete vezes, até se formar palmitoil-ACP, que por hidrólise produz ácido palmítico. A estequiometria da síntese do ácido palmítico é portanto:

Acetil-CoA + 7 Malonil-CoA + 14 NADPH + 7 H+ ---> palmitato + 7 CO2 + 14 NADP+ + 8 CoA + 6 H2O

Ácidos gordos insaturados ou de cadeia mais longa são produzidos a partir do ácido palmítico por acção de elongases e desaturases.

Note que a síntese de ácidos gordos ocorre no citoplasma, ao passo a a síntese de acetil-CoA ocorre na mitocôndria. É por isso necessário transportar acetil-CoA para o citoplasma. Isto é feito pelo sistema de transporte dos ácidos tricarboxílicos, também chamado ciclo do citrato: o citrato formado na mitocôndria por condensação do acetil-CoA com oxaloacetato difunde-se para o citoplasma, onde é clivado pela citrato-liase em acetil-CoA e oxaloacetato, que é depois reduzido a malato, que se pode difundir de volta para a mitocôndria. Por acção da enzima málica, o malato também pode ser usado para produzir parte do NADPH necessário para a síntese dos ácidos gordos. O restante NADPH deve ser produzido pela via das pentoses-fosfato.

Page 21: A lógica química do