Download - Memória de Cálculo

Transcript
Page 1: Memória de Cálculo

MEMÓRIA DE CÁLCULO Verificação da estabilidade do muro de contenção da

barragem

Page 2: Memória de Cálculo

CALCULISTAS:

Geiza Thamirys Correia Gomes

Graduanda em Engenharia Civil/ UFAL

Seiko Imai

Graduanda em Engenharia Civil/ UFAL

SUPERVISOR E ORIENTADOR:

Moacyr Alves Barbosa de Oliveira Engenheiro Civil – CREA-RJ 24350 D

Page 3: Memória de Cálculo

1. APRESENTAÇÃO

O documento em questão apresenta a memória de cálculo para verificação

de estabilidade do muro de contenção da barragem de Guapiaçu, assim como

dimensionamento de armadura e verificação do volume de concreto .

2. CONSIDERAÇÕES

As NBRs 6118 e 6120 do ano 1980, apresentam prescrições, peso

específicos de alguns materiais e carregamentos uniformemente distribuídos usais

em edificações. No entanto, para estruturas hidráulicas de barramento de controle

ou geração, algumas cargas consideradas são adotadas a partir de normas

internacionais ou da experiência em projetos anteriormente desenvolvidos no

Brasil.

2.1. Parâmetros adotados

Para o cálculo de estabilidade e dimensionamento de armaduras foram

adotados os parâmetros apresentados abaixo.

Peso específico do concreto armado: γconcreto = 25 kN/m³;

Peso específico do concreto massa: γmassa = 24 kN/m³;

Peso específico da água: γágua = 10 kN/m³

Peso específico do solo: γsolo = 18 kN/m³;

Ângulo de atrito: ∅ = 40° ⇒ Ka = tg2 (45° −∅

2) = tg2 (45° −

40°

2) = 0,466

Classe do aço: CA-50

Sobrecarga: q = 20 kN/m²

Coesão do solo: c = 1 MPa = 10 Kg/ cm²

Viscosidade do fluido: μ = 0,55

3. VERIFICAÇÃO DE ESTABILIDADE

O cálculo da força de pressão ou empuxo que os fluidos em repouso

exercem sobre as superfícies sólidas que os limitam, é efetuado com base nos

princípios da hidrostática e encontra aplicação em inúmeros problemas de

engenharia, como nos projetos de barragens, comportas, reservatórios, etc.

No caso das Barragens, as forças atuantes são: empuxos horizontais -

exercidos pelo nível de água de montante e jusante, empuxos verticais - exercidos

Page 4: Memória de Cálculo

pela subpressão de água, sobrepressão de água a montante e jusante e peso

próprio da estrutura, e empuxos quaisquer exercidos por esforços externos.

Calcula-se a estabilidade da barragem principalmente aos esforços de

escorregamento e tombamento.

3.1. Verificação ao escorregamento

O caso de deslizamento ocorre quando no plano de escorregamento não há

coesão, fato que acontece normalmente em juntas falhas na rocha de fundação.

Porém, os fatores de minoração e os coeficientes de segurança permanecem

inalteráveis. O escorregamento é verificado utilizando a equação apresentada

abaixo.

Fsd =[ (

∑VtagϕFsd

) + (AC

Fsdc ) ]

∑H ≥ 1

Sendo:

∑ V : somatório dos pesos;

∑ H : somatório dos empuxos;

Fsd = 1,5 e Fsdc = 3 coeficentes de segurança.

3.2. Verificação ao tombamento

A verificação ao tombamento é a relação entre a soma dos momentos

estabilizantes e o somatório dos momentos tombadores. O tombamento é

verificado utilizando a equação apresentada abaixo.

ε2 =Mresistente

Mativo

≥ 1,5

3.3. Cálculos de verificação de estabilidade

Para verificação da estabilidade, o muro de contenção foi dividido em 8

trechos.

Page 5: Memória de Cálculo

3.3.1. MC-BL.1

Figura 1 – Vista lateral (MC-BL.1).

Peso do concreto

Pconcreto1 = 13,83 ∗ 1 ∗ 25 = 345,75 kN/m

Pconcreto2 =

1,88 ∗ 13,06

2∗ 25 = 306,91 kN/m

Pconcreto3 = 1,58 ∗ 1,88 ∗ 25 = 113,76 kN/m

Pconcreto4 =

1,43 ∗ 17,16

2∗ 25 = 306,73 kN/m

Pconcreto5 = 0,15 ∗ 17,16 ∗ 25 = 64,35 kN/m

Pconcreto6 = 1 ∗ 20,57 ∗ 25 = 514,25 kN/m

ΣPconcreto = 345,75 + 306,91 + 113,76 + 306,7 + +64,35 + 514,25= 1651,75 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 19,04 ∗ 18 = 263,89 kN/m

Psolo2 = 13,06 ∗ 17,16 ∗ 18 = 4033,97 kN/m

Psolo3 =

17,16 ∗ 1,43

2∗ 18 = 220,86 kN/m

Psolo4 =

13,06 ∗ 1,88

2∗ 18 = 220,97 kN/m

ΣPsolo = 263,89 + 4033,9 + 220,86 + 220,97 = 4739,7 kN/m

Empuxo do solo

Page 6: Memória de Cálculo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 20,04²

2= 1684,32 kN/m

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 20,57 = 191,71 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 1684,32 ∗20,04

3+ 191,71 ∗

20,57

2= 13223 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 345,75 ∗13,83

2+ 113,76 ∗ 14,62 + 306,91 ∗ (2 ∗

13,06

3+ 0,77)

+306,73 ∗ (2 ∗1,43

3+ 13,83) + 64,35 ∗ (

0,15

2+ 1,43 + 13,83)

+514,25 ∗ (1

2+ 15,41) + 4033,97 ∗ (

13,06

2+ 0,77)

+220,85 ∗ (1,43

3+ 13,06 + 0,77) + 220,98 ∗ (

13,06

3+ 0,77)

= 20665,61 + 34322,33 = 54987,94 kN

Mresultante = Mresistente − Mativo = 54987,94 − 13223 = 41764,94 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗(1651,75 + 4739,7)

(1684,32 + 191,71)= 1,78

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

Page 7: Memória de Cálculo

ε2 =Mresistente

Mativo

=54987,94

13223= 4,16

Posição do centro de pressão

Cp =Mresultante

Ptotal

=54987,94 − 13223

1651,75 + 4739,7= 6,53 m

Excentricidade

e = (b

2− Cp) =

16,41

2− 6,53 = 1,68 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

6391,45

16,41∗ (1 +

6 ∗ 1,68

16,41) = 628,02

kN

m2= 0,63 MPa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

6391,45

16,41∗ (1 −

6 ∗ 1,68

16,41) = 150,95

kN

m2= 0,15 MPa

Diagrama de tensões

3.3.2. MC-BL.2

0,63 MPa

0,15 MPa

Page 8: Memória de Cálculo

Figura 2 – Vista lateral (MC-BL.2).

Peso do concreto

Pconcreto1 = 16,05 ∗ 1 ∗ 25 = 401,25 kN/m

Pconcreto2 = 1,58 ∗ 3 ∗ 25 = 118,5 kN/m

Pconcreto3 =

15,28 ∗ 2

2∗ 25 = 382 kN/m

Pconcreto4 =

1,43 ∗ 20,09

2∗ 25 = 359,11 kN/m

Pconcreto5 = 0,15 ∗ 20,09 ∗ 25 = 75,34 kN/m

Pconcreto6 = 1 ∗ (23,09 + 0,53) ∗ 25 = 590,5 kN/m

ΣPconcreto = 401,25 + 118,5 + 382 + 14,36 + 75,34 + 590,5 = 1926,7 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 22,09 ∗ 18 = 306,18 kN/m

Psolo2 = 15,28 ∗ 20,09 ∗ 18 = 5525,55 kN/m

Psolo3 =

20,09 ∗ 1,43

2∗ 18 = 258,55 kN/m

Psolo4 =

15,28 ∗ 2

2∗ 18 = 275,04 kN/m

ΣPsolo = 306,18 + 5525,55 + 258,55 + 275,04 = 6265,33 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 23,09²

2= 2336,02 kN/m

Page 9: Memória de Cálculo

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 23,62 = 220,14 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 2339,85 ∗23,09

3+ 220,14 ∗

23,62

2= 19809,75 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 401,25 ∗16,05

2+ 118,5 ∗ (

1,58

2+ 16,05) + 382 ∗ (

2 ∗ 15,28

3+ 0,77) + 359,11

∗ (2 ∗ 1,43

2+ 16,05) + 75,33 ∗ (

0,15

2+ 1,43 + 16,05) + 590,5

∗ 17,63 + 306,18 ∗ 0,385 + 5525,55 ∗ (15,28

2+ 0,77) + 258,55

∗ (2 ∗ 1,43

3+ 16,05) + 275,04 ∗ (

2 ∗ 15,28

3+ 0,77) = 81409,69 kN

Mresultante = Mresistente − Mativo = 81409,69 − 19809,75 = 61599,94 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗1926,7 + 6365,33

2236,02 + 220,14= 1,85

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=81409,69

19809,75= 4,1

Posição do centro de pressão

Cp =Mresultante

Ptotal

=81409,69 − 19809,75

1926,6955 + 6365,33= 7,43 m

Excentricidade

Page 10: Memória de Cálculo

e = (b

2− Cp) =

18,63

2− 7,43 = 1,88 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

8292,03

18,63∗ (1 +

6 ∗ 1,88

18,63) = 715,3

kN

m2= 0,72 Mpa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

8292,03

18,63∗ (1 −

6 ∗ 1,88

18,63) = 174,88

kN

m2= 0,17 MPa

Diagrama de tensões

3.3.3. MC-BL.3

Figura 3 – Vista lateral (MC-BL.3).

Peso do concreto

Pconcreto1 = 17,48 ∗ 1 ∗ 25 = 437 kN/m

Pconcreto2 = 2,59 ∗ 3,5 ∗ 25 = 226,63 kN/m

Pconcreto3 =

16,71 ∗ 2,5

2∗ 25 = 522,19 kN/m

0,72 MPa 0,17 MPa

Page 11: Memória de Cálculo

Pconcreto4 =

2,44 ∗ 22,8

2∗ 25 = 695,4 kN/m

Pconcreto5 = 0,15 ∗ 22,8 ∗ 25 = 85,5 kN/m

Pconcreto6 = 1 ∗ 26,83 ∗ 25 = 670,75 kN/m

ΣPconcreto = 437 + 226,625 + 522,1875 + 695,4 + 85,5 + 670,75 = 2637,46 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 225,20 ∗ 18 = 350,66 kN/m

Psolo2 = 16,71 ∗ 22,8 ∗ 18 = 6857,78 kN/m

Psolo3 =

2,44 ∗ 22,8

2∗ 18 = 500,69 kN/m

Psolo4 =

16,71 ∗ 2,5

2∗ 18 = 375,98 kN/m

ΣPsolo = 350,6 + 6857,7 + 27,82 + 375,98 = 8085,11 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 26,30²

2= 2900,95 kN/m

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 26,83 = 250,05 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 2900,95 ∗26,30

3+ 250,05 ∗

26,83

3= 28786,14 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 437 ∗17,48

2+ 226,62 ∗ (

2,59

2+ 17,48) + 522,19 ∗ (

2 ∗ 16,71

3+ 0,77) + 695,4

∗ (2 ∗ 2,44

2+ 17,48) + 85,5 ∗ (

0,15

2+ 2,44 + 17,48) + 670,75

∗ (20,07 +1

2) + 350,69 ∗ (

0,77

2) + 6857,78 ∗ (

116,71

2+ 0,77)

+ 500,69 ∗ (1,43

3+ 17,48) + 375,97 ∗ (

16,71

3+ 0,77)

= 43087,19 + 76176,59 = 117342,4 kN

Page 12: Memória de Cálculo

Mresultante = Mresistente − Mativo = 117342,4 − 28786,14 = 88556,26 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗2637,46 + 8085,11

2900,95 + 250,05= 1,87

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=117342,4

28786,14= 4,08

Posição do centro de pressão

Cp =Mresultante

Ptotal

=117342,4 − 28786,14

2637,46 + 8085,11= 8,25 m

Excentricidade

e = (b

2− Cp) =

21,07

2− 8,25 = 2,29 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

10722,57

21,07∗ (1 +

6 ∗ 2,29

21,07) = 840,04

kN

m2= 0,84 MPa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

10722,57

21,07∗ (1 −

6 ∗ 2,29

21,07) = 177,77

kN

m2= 0,18 MPa

Diagrama de tensões

3.3.4. MC-BL.4

0,84 MPa 0,18 MPa

Page 13: Memória de Cálculo

Figura 4 – Vista lateral (MC-BL.4).

Peso do concreto

Pconcreto1 = 23,22 ∗ 1 ∗ 25 = 580,5 kN/m

Pconcreto2 = 3,03 ∗ 4 ∗ 25 = 303 kN/m

Pconcreto3 =

22,45 ∗ 3

2∗ 25 = 841,87 kN/m

Pconcreto3 =

2,88 ∗ 30,52

2∗ 25 = 1098,72 kN/m

Pconcreto5 = 0,15 ∗ 30,52 ∗ 25 = 114,45 kN/m

Pconcreto6 = 1 ∗ 35,05 ∗ 25 = 876,25 kN/m

ΣPconcreto = 580,5 + 303 + 841,87 + 1098,72 + 114,45 + 876,25 = 3814,8 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 33,52 ∗ 18 = 464,59 kN/m

Psolo2 = 22,45 ∗ 30,52 ∗ 18 = 12333,1 kN/m

Psolo3 =

2,88 ∗ 30,52

2∗ 18 = 791,1 kN/m

Psolo4 =

22,45 ∗ 3

2∗ 18 = 606,15 kN/m

ΣPsolo = 464,59 + 12333,1 + 791,1 + 606,15 = 14194,95 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 34,52²

2= 4997,7 kN/m

Page 14: Memória de Cálculo

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 35,05 = 326,74 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 4997,7 ∗34,52

3+ 326,74 ∗

35,05

2= 63232,96 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 580,5 ∗23,22

2+ 303 ∗ (

3,03

2+ 23,22) + 841,87 ∗ (

2 ∗ 22,45

3+ 0,77) + 1098,72

∗ (2 ∗ 2,88

2+ 23,22) + 114,45 ∗ (

0,15

2+ 2,88 + 23,22) + 876,25

∗ (26,25 +1

2) + 464,58 ∗ (

0,77

2) + 12333,13 ∗ (

22,45

2+ 0,77)

+ 791,08 ∗ (2,88

3+ 23,22) + 606,15 ∗ (

22,45

3+ 0,77)

= 81539,85 + 181688,44 = 263228,29 kN

Mresultante = Mresistente − Mativo = 263228,29 − 63232,96 = 199995,3 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗3814,8 + 14194,95

4997,7 + 326,74= 1,86

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=263228,29

63232,96= 4,16

Posição do centro de pressão

Cp =Mresultante

Ptotal

=263228,29 − 63232,96

3814,8 + 14194,95= 11,10 m

Excentricidade

e = (b

2− Cp) =

27,25

2− 11,10 = 2,53 m

Page 15: Memória de Cálculo

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

18009,75

27,25∗ (1 +

6 ∗ 2,53

27,25) = 1028,35

kN

m2= 1,03 MPa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

18009,75

27,25∗ (1 −

6 ∗ 2,53

27,25) = 293,47

kN

m2= 0,29 Mpa

Diagrama de tensões

3.3.5. MC-BL.5

Figura 5 – Vista lateral (MC-BL.5).

Peso do concreto

Pconcreto1 = 23,22 ∗ 1 ∗ 25 = 580,5 kN/m

Pconcreto2 = 3,03 ∗ 4 ∗ 25 = 303 kN/m

Pconcreto3 =

22,45 ∗ 3

2∗ 25 = 841,87 kN/m

Pconcreto3 =

2,88 ∗ 30,52

2∗ 25 = 1098,72 kN/m

1,03 MPa 0,29 MPa

Page 16: Memória de Cálculo

Pconcreto5 = 0,15 ∗ 30,52 ∗ 25 = 114,45 kN/m

Pconcreto6 = 1 ∗ 35,05 ∗ 25 = 876,25 kN/m

ΣPconcreto = 580,5 + 303 + 841,87 + 1098,72 + 114,45 + 876,25 = 3814,8 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 33,52 ∗ 18 = 464,59 kN/m

Psolo2 = 22,45 ∗ 30,52 ∗ 18 = 12333,1 kN/m

Psolo3 =

2,88 ∗ 30,52

2∗ 18 = 791,1 kN/m

Psolo4 =

22,45 ∗ 3

2∗ 18 = 606,15 kN/m

ΣPsolo = 464,59 + 12333,1 + 791,1 + 606,15 = 14194,95 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 34,52²

2= 4997,7 kN/m

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 35,05 = 326,74 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 4997,7 ∗34,52

3+ 326,74 ∗

35,05

2= 63232,96 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 580,5 ∗23,22

2+ 303 ∗ (

3,03

2+ 23,22) + 841,87 ∗ (

2 ∗ 22,45

3+ 0,77) + 1098,72

∗ (2 ∗ 2,88

2+ 23,22) + 114,45 ∗ (

0,15

2+ 2,88 + 23,22) + 876,25

∗ (26,25 +1

2) + 464,58 ∗ (

0,77

2) + 12333,13 ∗ (

22,45

2+ 0,77)

+ 791,08 ∗ (2,88

3+ 23,22) + 606,15 ∗ (

22,45

3+ 0,77)

= 81539,85 + 181688,44 = 263228,29 kN

Mresultante = Mresistente − Mativo = 263228,29 − 63232,96 = 199995,3 kN

Page 17: Memória de Cálculo

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗3814,8 + 14194,95

4997,7 + 326,74= 1,86

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=263228,29

63232,96= 4,16

Posição do centro de pressão

Cp =Mresultante

Ptotal

=263228,29 − 63232,96

3814,8 + 14194,95= 11,10 m

Excentricidade

e = (b

2− Cp) =

27,25

2− 11,10 = 2,53 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

18009,75

27,25∗ (1 +

6 ∗ 2,53

27,25) = 1028,35

kN

m2= 1,03 MPa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

18009,75

27,25∗ (1 −

6 ∗ 2,53

27,25) = 293,47

kN

m2= 0,29 Mpa

Diagrama de tensões

3.3.6. MC-BL.6

1,03 MPa 0,29 MPa

Page 18: Memória de Cálculo

Figura 6 – Vista lateral (MC-BL.6).

Peso do concreto

Pconcreto1 = 19,58 ∗ 1 ∗ 25 = 489,5 kN/m

Pconcreto2 = 2,62 ∗ 3,55 ∗ 25 = 232,52 kN/m

Pconcreto3 =

18,81 ∗ 2,55

2∗ 25 = 599,57 kN/m

Pconcreto4 =

2,47 ∗ 25,37

2∗ 25 = 783,3 kN/m

Pconcreto5 =

0,15 ∗ 25,37

2∗ 25 = 47,57 kN/m

Pconcreto6 = 1 ∗ 29,45 ∗ 25 = 736,25 kN/m

ΣPconcreto = 489,5 + 232,52 + 599,57 + 783,3 + 47,57 + 736,25 = 2888,71 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 27,92 ∗ 18 = 386,96 kN/m

Psolo2 = 18,81 ∗ 25,37 ∗ 18 = 8589,77 kN/m

Psolo3 =

2,47 ∗ 25,37

2∗ 18 = 563,94 kN/m

Psolo4 =

18,81 ∗ 2,55

2∗ 18 = 431,64 kN/m

ΣPsolo = 386,96 + 8589,77 + 563,94 + 431,64 = 9972,31 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 28,92²

2= 3507,72 kN/m

Page 19: Memória de Cálculo

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 29,45 = 274,47 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 274,47 ∗29,45

3+ 3507,72 ∗

28,92

2= 37856,05 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 489,5 ∗19,58

2+ 232,52 ∗ (

2,62

2+ 19,58) + 599,57

∗ (2 ∗ 18,81

3+ 0,77) + 783,3 ∗ (

2 ∗ 2,47

2+ 19,58) + 47,57

∗ (0,15

2+ 2,47 + 19,58) + 736,25 ∗ (22,2 +

1

2) + 386,96 ∗ (

0,77

2)

+ 8589,77 ∗ (18,81

2+ 0,77) + 563,94 ∗ (

2,47

3+ 19,58) + 431,64

∗ (18,81

3+ 0,77) = 52022,09 + 102094,94 = 154117,04 kN

Mresultante = Mresistente − Mativo = 154117,04 − 37856,05 = 116261 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗2888,71 + 9972,31

3507,72 + 274,47= 1,87

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=154117,04

37856,05= 4,07

Posição do centro de pressão

Page 20: Memória de Cálculo

Cp =Mresultante

Ptotal

=154117,04 − 37856,05

2888,71 + 9972,31= 9,04 m

Excentricidade

e = (b

2− Cp) =

23,2

2− 9,04 = 2,56 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

12861,02

23,2∗ (1 +

6 ∗ 2,56

23,2) = 921,38

kN

m2= 0,92 MPa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

12861,02

23,2∗ (1 −

6 ∗ 2,56

23,2) = 187,33

kN

m2= 0,19 MPa

Diagrama de tensões

3.3.7. MC-BL.7

Figura 7 – Vista lateral (MC-BL.7).

Peso do concreto

Pconcreto1 = 16,05 ∗ 1 ∗ 25 = 401,25 kN/m

0,92 MPa 0,19 MPa

Page 21: Memória de Cálculo

Pconcreto2 = 1,58 ∗ 3 ∗ 25 = 118,5 kN/m

Pconcreto3 =

15,28 ∗ 2

2∗ 25 = 382 kN/m

Pconcreto4 =

1,43 ∗ 20,09

2∗ 25 = 359,11 kN/m

Pconcreto5 = 0,15 ∗ 20,09 ∗ 25 = 75,34 kN/m

Pconcreto6 = 1 ∗ (23,09 + 0,53) ∗ 25 = 590,5 kN/m

ΣPconcreto = 401,25 + 118,5 + 382 + 14,36 + 75,34 + 590,5 = 1926,7 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 22,09 ∗ 18 = 306,18 kN/m

Psolo2 = 15,28 ∗ 20,09 ∗ 18 = 5525,55 kN/m

Psolo3 =

20,09 ∗ 1,43

2∗ 18 = 258,55 kN/m

Psolo4 =

15,28 ∗ 2

2∗ 18 = 275,04 kN/m

ΣPsolo = 306,18 + 5525,55 + 258,55 + 275,04 = 6265,33 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 23,09²

2= 2336,02 kN/m

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 23,62 = 220,14 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 2339,85 ∗23,09

3+ 220,14 ∗

23,62

2= 19809,75 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

Page 22: Memória de Cálculo

= 401,25 ∗16,05

2+ 118,5 ∗ (

1,58

2+ 16,05) + 382 ∗ (

2 ∗ 15,28

3+ 0,77) + 359,11

∗ (2 ∗ 1,43

2+ 16,05) + 75,33 ∗ (

0,15

2+ 1,43 + 16,05) + 590,5

∗ 17,63 + 306,18 ∗ 0,385 + 5525,55 ∗ (15,28

2+ 0,77) + 258,55

∗ (2 ∗ 1,43

3+ 16,05) + 275,04 ∗ (

2 ∗ 15,28

3+ 0,77) = 81409,69 kN

Mresultante = Mresistente − Mativo = 81409,69 − 19809,75 = 61599,94 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗1926,7 + 6365,33

2236,02 + 220,14= 1,85

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

ε2 =Mresistente

Mativo

=81409,69

19809,75= 4,1

Posição do centro de pressão

Cp =Mresultante

Ptotal

=81409,69 − 19809,75

1926,6955 + 6365,33= 7,43 m

Excentricidade

e = (b

2− Cp) =

18,63

2− 7,43 = 1,88 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

8292,03

18,63∗ (1 +

6 ∗ 1,88

18,63) = 715,3

kN

m2= 0,72 Mpa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

8292,03

18,63∗ (1 −

6 ∗ 1,88

18,63) = 174,88

kN

m2= 0,17 MPa

0,72 MPa 0,17 MPa

Page 23: Memória de Cálculo

Diagrama de tensões

3.3.8. MC-BL.8

Figura 8 – Vista lateral (MC-BL.8).

Peso do concreto

Pconcreto1 = 11,6 ∗ 1 ∗ 25 = 290 kN/m

Pconcreto2 = 1,58 ∗ 2,33 ∗ 25 = 86,21 kN/m

Pconcreto3 =

10,83 ∗ 1,33

2∗ 25 = 180,05 kN/m

Pconcreto4 =

1,33 ∗ 14,7

2∗ 25 = 244,39 kN/m

Pconcreto5 = 0,15 ∗ 14,7 ∗ 25 = 55,12 kN/m

Pconcreto6 = 1 ∗ 17,56 ∗ 25 = 439 kN/m

ΣPconcreto = 290 + 86,21 + 180,05 + 244,39 + 55,12 + 439 = 1294,77 kN/m

Peso do solo

Psolo1 = 0,77 ∗ 16,03 ∗ 18 = 222,17 kN/m

Psolo2 = 10,83 ∗ 14,7 ∗ 18 = 2865,62 kN/m

Page 24: Memória de Cálculo

Psolo3 =

1,33 ∗ 14,7

2∗ 18 = 175,96 kN/m

Psolo4 =

10,83 ∗ 1,33

2∗ 18 = 129,6 kN/m

ΣPsolo = 222,17 + 2865,62 + 175,96 + 129,6 = 3518,14 kN/m

Empuxo do solo

Es =Ka ∗ γsolo ∗ h²

2=

0,466 ∗ 18 ∗ 17,03²

2= 1216,35 kN/m

Empuxo da sobrecarga

Eq = Ka ∗ q ∗ h = 0,466 ∗ 20 ∗ 17,56 = 163,66 kN/m

Momentos

Mativo = Eq ∗ h1 + Es ∗ h2 = 1216,35 ∗17,03

3+ 163,66 ∗

17,56

2= 8341,73 kN

Mresistente = Pconcreto1 ∗ d1 + Pconcreto

2 ∗ d2 + Pconcreto3 ∗ d3 + Pconcreto

4 ∗ d4

+ Pconcreto5 ∗ d5 + Pconcreto

6 ∗ d6 + Psolo1 ∗ d7 + Psolo

2 ∗ d8 + Psolo3 ∗ d9

+ Psolo4 ∗ d8

= 290 ∗ (11,6

2) + 86,21 ∗ (

1,48

2+ 11,6) + 180,05 ∗ (

2 ∗ 10,83

3+ 0,77) + 244,39

∗ (2 ∗ 1,33

2+ 11,6) + 55,12 ∗ (

0,15

2+ 1,33 + 11,6) + 439

∗ (1

2+ 13,08) + 222,18 ∗ (

0,77

2) + 2865,62 ∗ (

10,83

2+ 0,77)

+ 175,96 ∗ (2 ∗ 1,33

3+ 11,6) + 129,6 ∗ (

10,83

3+ 0,77)

= 34410,74 kN

Mresultante = Mresistente − Mativo = 34410,74 − 8341,73 = 26069,01 kN

Escorregamento

ε1 = μ ∗∑ P

∑ E ≥ 1,5

ε1 = 0,55 ∗1294,77 + 3393,35

1216,35 + 163,66= 1,87

Tombamento

ε2 =Mresistente

Mativo

≥ 1,5

Page 25: Memória de Cálculo

ε2 =Mresistente

Mativo

=34410,74

8341,73= 4,12

Posição do centro de pressão

Cp =Mresultante

Ptotal

=34410,74 − 8341,73

1294,77 + 3393,35= 5,56 m

Excentricidade

e = (b

2− Cp) =

14,08

2− 5,56 = 1,48 m

Tensões

σ1 =Ptotal

b∗ (1 +

6 ∗ e

b) =

4688,12

14,08∗ (1 +

6 ∗ 1,48

14,08) = 542,96

kN

m2= 0,54 Mpa

σ2 =Ptotal

b∗ (1 −

6 ∗ e

b) =

4688,12

14,08∗ (1 −

6 ∗ 1,48

14,08) = 122,97

kN

m2= 0,12 MPa

Diagrama de tensões

4. VERIFICAÇÃO DO VOLUME DE CONCRETO

Os volumes foram calculados utilizando o software Autodesk Revit

Structure®, e verificados utilizando fórmulas para os cálculos de volume de figuras geométricas espaciais.

4.1. Cálculos para verificação do volume de concreto

4.1.1. Laje

0,54 MPa 0,12 MPa

Page 26: Memória de Cálculo

V1 = 0,5 ∗ 2,32 ∗ 30 = 34,8 m³

V2 =(0,5 + 1) ∗ (3,47 − 2,32)

2∗ 30 = 25,875 m³

V3 = 1 ∗ 36,58 ∗ 30 = 1097,4 m³

Vtotal = 34,8 + 25,875 + 1097,4 = 1158,075 m3 = 1158,1 m³

Software Cálculos Comparativo 1157,92 m³ 1158,1 m³ 0,18 m³ 0,01 %

4.1.2. Vertedouro

Page 27: Memória de Cálculo

V1 =(2,88 + 22,88) ∗ 27

2∗ 28 = 9737,28 m³

V′2 =(19,87 + 22,88) ∗ 3,7

2∗ 3 = 237,2625 m³

V2 = 237,2625 ∗ 3 = 711, 7875 m3 = 711, 79 m³

Vtotal = 9737,28 − 711,7875 = 9025,5 m³

Software Cálculos Comparativo 9105,76 m³ 9025,5 m³ 80,26 m³ 0,88 %

4.1.3. Entrada das comportas

Page 28: Memória de Cálculo

Vm1 = 2 ∗ 1 ∗ 0,15 ∗ 1,85 = 0,555 m3

Vm2 = 19,56 ∗ 0,15 ∗ 1 = 2,934 m³

Vmuro = 0,555 + 2,934 = 3,5 m³

Vs = 19,56 ∗ 15 ∗ 2 = 586,8 m³

Ve.comp1 = 3 ∗ 3,3 ∗ 0,4 ∗ (15 − 3,7) = 44,75 m³

Ve.comp2 = 3 ∗ 3,7 ∗ 1,6 ∗ 3 = 53,28 m³

Ve.comp3 = 3 ∗(3,7 + 4,21) ∗ 0,4

2∗ 4 = 18,98 m³

Vtotal = 586,8 + 3,5 − 44,75 − 53,28 − 18,98 = 473,3 m³

Software Cálculos Comparativo

469,73 m³ 473,3 m³ 3,56 m³ 0,75 %

4.1.4. Ensecadeira do vertedouro

Page 29: Memória de Cálculo

Figura 9 – Croqui de armadura (MC-BL.2).

V1 = 2 ∗ 113,11 ∗ 1,25 = 332,78 m³

V2 = (1,2375 + 0,88 + 7,91 + 1,57 + 2 + 3,705) ∗ 9 ∗ 2 = 311,44 m³

Vtotal = 332,78 + 311,44 = 644,22 m³

Software Cálculos Comparativo 624,7 m³ 644,22 m³ 19,52 m³ 3,03 %

4.1.5. Escada

Figura 10 – Croqui de armadura (MC-BL.2).

V1 = 2 ∗ 13,07 ∗ 0,5 = 13,07 m³

V2 = 1 ∗ 3,74 ∗ 0,26 = 0,97 m³

V3 = 3,9 ∗ 1,24 ∗ 0,15 = 0,73 m³

V′4 = 3,24 ∗ 1,15 ∗ 0,15 = 0,56 m³

V′′4 = 2,72 ∗ 1,18 ∗ 0,15 = 0,48 m³

Page 30: Memória de Cálculo

V′′′4 = (1,15 + 2,5 + 1,15) ∗ 1,15 ∗ 0,15 = 0,828 m³

V4 = 0,56 + [(0,48 + 0,828) ∗ 8] − (1,15 ∗ 1,15 ∗ 0,15) = 10,82 m³

V5 = 1,15 ∗ 2,8 ∗ 0,15 = 0,483 m³

V′6 = 1,15 ∗ 2,8 ∗ 0,15 = 0,483 m³

V"6 = 0,175 ∗ 2,72 ∗ 1 = 0,48 m³

V6 = (0,483 ∗ 7) + (0,48 ∗ 8) = 7,22 m³

Vtotal = 13,07 + 0,97 + 0,73 + 10,82 + 7,22 = 32,81 m³

Software Cálculos Comparativo 32,41 m³ 32,81 m³ 0,4 m³ 1,22 %

4.1.6. Tomada d’água 1

Perspectiva

Lateral

Page 31: Memória de Cálculo

Frente

V1 = 2 ∗ 7 ∗ 44,96 = 629,44 m³

V2 = 5,75 ∗ 11,7 ∗ (42,31 + 44,96

2) = 2935,54 m³

V3 =(9,23 + 6) ∗ 4,3

2∗ 5,75 = 188,28 m³

A3−1 = 0,14 ∗ 0,85 = 0,119 m²

A3−2 =0,15 ∗ 0,85

2= 0,064 m²

A3−3 = 1 ∗ 0,30 = 0,30 m²

A3−4 =1 ∗ 0,60

2= 0,30 m²

A3−5 = 3 ∗ 0,60 = 1,80 m²

A3 = 5,166 m²

V3 = 5,166 ∗ 5 ∗ 20 = 26,86 m³

Vtotal = 629,44 + 2935,54 + 188,28 + 26,86 = 4030,25 m³

Software Cálculos Comparativo 3993,65 m³ 4030,25 m³ 36,6 m³ 0,9 %

4.1.7. Tomada d’água 2

Page 32: Memória de Cálculo

Perspectiva 1

Perspectiva 2

Lateral

Page 33: Memória de Cálculo

Topo

V1 = 23,85 ∗ 2,91 ∗ 21,51 = 1909,29 m³

V2 = 3,7 ∗ 15,87 ∗ 27,51 = 1615,36 m³

V3 =(7,21 + 3,72) ∗ 2,61

2∗ 27,51 = 392,393 m³

V4−1 =3,39 ∗ 2,94

2∗ 21,77 = 108,49 m³

V4−2 = 0,76 ∗ 17,01 ∗ 21,77 = 281,44 m³

V4−3 =2,63 ∗ 17,01

2∗ 21,77 = 486,95 m³

V4−4 = 4 ∗ (15,55 ∗ 0,62 ∗ 3,5) = 134,97 m³

V4 = (108,49 + 281,44 + 486,95) − 134,97 = 741,905 m³

A5−1 = 0,14 ∗ 0,85 = 0,119 m²

A5−2 =0,15 ∗ 0,85

2= 0,063 m²

A5−3 = 0,30 ∗ 0,91 = 0,27 m²

A5−4 =(0,14 + 0,29)

2∗ 0,29 = 0,0623 m²

A5 = 0,5181 m²

V5 = 0,5181 ∗ 27,51 = 14,25 m³

V6−1 = 3,72 ∗ 20,95 ∗ 27,51 = 2143,964 m³

V6−2 = 4,1 ∗ 2,7 ∗ 11,24 = 124,43 m³

V6−3 = 3,8 ∗ 2,7 ∗ 11,24 = 115,32 m³

V6 = 2143,964 − 124,43 − 115,32 = 1904,22 m³

Page 34: Memória de Cálculo

V7−1 = 0,17 ∗ 1 ∗ 5,01 = 0,852 m³

V7−2 = 0,14 ∗ 0,85 ∗ 5,01 = 0,596 m³

V7−3 = 0,15 ∗ 0,85 ∗ 5,01 = 0,639 m³

V7 = 0,852 + 0,596 + 0,639 = 2,0867 m³

A8−1 =(3,72 + 6,72)

2∗ 3 = 15,66 m²

A8−2 = 6,72 ∗ 9,23 = 62,03 m²

A8−3 = 2,58 ∗ 8,72 = 22,5 m²

A8 = 15,66 + 62,03 + 22,5 = 100,18 m²

V8 = 100,18 ∗ 27,51 = 2756,04 m³

V9 =(14,11 + 18,26) ∗ 6,99

2∗ 7,7 = 871,12 m³

V10 =(10,97 ∗ 18,26)

2∗ 7,7 = 771,2 m³

V11 =(5,91 + 6,81) ∗ 1,4

2∗ 7,7 = 77,64 m³

A12 = (5,91 + 8,02) ∗ 2,75 = 19,15 m²

V12 = 8,72 ∗ 19,15 = 167,02 m³

A13−1 =7,48 ∗ 2,93

2= 10,96 m²

A13−2 =3,96 ∗ 2,93

2= 5,8 m²

A13−3 =9,88 ∗ 2,05

2= 20,25 m²

A13 −4 =1,54 ∗ 2,05

2= 1,58 m²

A13 = 10,96 + 5,8 + 20,25 + 1,58 = 38,59 m²

V13 = 38,59 ∗ 8,72 = 336,53 m³

Vtotal = 1909,29 + 1615,36 + 392,393 + 741,905 + 14,25 + 1904,22 + 2,0867

+ 2756,04 + 871,12 + 771,2 + 77,64 + 167,02 + 336,53= 11559,06 m³

Software Cálculos Comparativo

10862,1 m³ 11559,06 m³ 696,96 m³ 6,03 %

4.1.8. Tomada d’água 3

Page 35: Memória de Cálculo

Perspectiva

Lateral

Topo

V1 =2,39 ∗ 3,19

2∗ 8,77 = 33,43 m³

A2−1 =0,15 ∗ 0,68

2= 0,051 m²

A2−2 = 0,14 ∗ 0,68 = 0,0952 m²

A2−3 = 0,52 ∗ 1 = 0,52 m²

A2−4 =0,33 ∗ 1

2= 0,165 m²

A2−5 = 0,051 + 0,0952 + (0,17 ∗ 1) = 0,3162 m²

A2−6 =(0,42 + 0,27) ∗ 0,30

2= 0,1035 m²

A2 = 1,251 m²

Page 36: Memória de Cálculo

V2 = 1,251 ∗ 8,77 = 10,97 m³

A3 = 6,7 ∗ 11,98 = 80,266 m²

V3 = 80,266 ∗ 8,77 = 703,93 m³

Vtotal = 33,43 + 10,97 + 703,93 = 748,33 m³

Software Cálculos Comparativo 748,33 m³ 747,44 m³ 0,89 m³ 0,12 %

4.1.9. Muro

Perspectiva

Topo

Page 37: Memória de Cálculo

Frente

V1 = 13,05 ∗ 0,9 ∗ 11,52 = 135,31 m³

V2 = 11,52 ∗ (15,2 − 0,9) ∗ 1,05 = 172,97 m³

V3 =(11,52 + 23,55) ∗ 19,25

2∗ 1,05 = 354,42 m³

Vm4 = 23,55 ∗ 5 ∗ 1,05 = 123,64 m³

V5 =(23,55 + 35,02) ∗ 18,26

2∗ 1,05 = 561,48 m³

V6 = 35,02 ∗ 2,83 ∗ 1,15 = 113,97 m³

V7 = 33,25 ∗ 6 ∗ 0,55 = 109,72 m³

V8 = 35,02 ∗ 3,2 ∗ 1,55 = 173,7 m³

V′9 =(0,53 + 1,55) ∗ (2,13 − 0,18)

2∗ 2 ∗ 33,59 = 136,24 m³

V"9 =(0,53 + 1,55) ∗ (2,13 − 0,18)

2∗ 2 ∗ 35,02 = 142,04 m³

V9 =136,24 + 142,04

2= 139,14 m³

V10 =(1 + 0,53) ∗ 5,6

2∗ 30,02 = 128,61 m³

V11 =(30,02 + 23,54) ∗ 10,36

2∗ 1 = 277,44 m³

V12 = 23,54 ∗ 5 ∗ 1 = 117,7 m³

V13 =(23,54 + 17,61) ∗ 9,5

2∗ 1 = 195,46 m³

Vtotal = 128,61 + 277,44 + 117,7 + 195,46 = 719,21 m³

Software Cálculos Comparativo

720,21 m³ 719,21 m³ 1 m³ 0,14 %

4.1.10. Laje do muro - 1 (BC-BL.1)

V = [(1 ∗ 13,83) + (1,58 ∗ 2,88) + (13,06 ∗ 1,88

2) + (

1,43 ∗ 17,16

2)

+ (0,15 ∗ 17,16)] ∗ 9,46 = 430,43 m³

Software Cálculos Comparativo

Page 38: Memória de Cálculo

427,54 m³ 430,43 m³ 2,89 m³ 0,67 %

4.1.11. Laje do muro - 2 (BC-BL.2)

V = [(1 ∗ 16,05) + (1,58 ∗ 3) + (15,28 ∗ 2

2) + (

1,43 ∗ 20,09

2) + (0,15 ∗ 20,09)]

∗ 5,08 = 271,52 m³

Software Cálculos Comparativo 271,7 m³ 271,52 m³ 0,18 m³ 0,06 %

4.1.12. Laje do muro - 3 (BC-BL.3)

V = [(1 ∗ 17,48) + (2,59 ∗ 3,5) + (16,71 ∗ 2,5

2) + (

2,44 ∗ 22,8

2) + (0,15 ∗ 22,8)]

∗ 10,39 = 817,37 m³

Software Cálculos Comparativo 827, 58 m³ 817,37 m³ 10,21 m³ 1,25 %

4.1.13. Laje do muro - 4 (BC-BL.4)

V = [(1 ∗ 23,22) + (3,03 ∗ 4) + (22,45 ∗ 3

2) + (

2,88 ∗ 30,52

2) + (0,15 ∗ 30,52)]

∗ 3,12 = 366,73 m³

Software Cálculos Comparativo 377,27 m³ 366,73 m³ 10,54 m³ 2,87 %

4.1.14. Laje do muro - 5 (BC-BL.5)

V = [(1 ∗ 23,22) + (3,03 ∗ 4) + (22,45 ∗ 3

2) + (

2,88 ∗ 30,52

2) + (0,15 ∗ 30,52)]

∗ 3,12 = 366,73 m³

Software Cálculos Comparativo 377,27 m³ 366,73 m³ 10,54 m³ 2,87 %

4.1.15. Laje do muro - 6 (BC-BL.6)

Page 39: Memória de Cálculo

V = [(1 ∗ 19,58) + (2,62 ∗ 3,55) + (18,81 ∗ 2,55

2) + (

2,47 ∗ 25,37

2)

+ (0,15 ∗ 25,37

2)] ∗ 18,21 = 1567,77 m³

Software Cálculos Comparativo 1615,04 m³ 1567,77 m³ 47,27 m³ 3,02 %

4.1.16. Laje do muro - 7 (BC-BL.7)

V = [(1 ∗ 16,05) + (1,58 ∗ 3) + (15,28 ∗ 2

2) + (

1,43 ∗ 20,09

2) + (0,15 ∗ 20,09)]

∗ 5,08 = 271,52 m³

Software Cálculos Comparativo 271,7 m³ 271,52 m³ 0,18 m³ 0,06 %

4.1.17. Laje do muro - 8 (BC-BL.8)

V = [(1 ∗ 11,6) + (1,48 ∗ 2,33) + (10,83 ∗ 1,33

2) + (

1,33 ∗ 14,7

2)

+ (0,15 ∗ 14,7)] ∗ 19,19 = 656,93 m³

Software Cálculos Comparativo

681,19 m³ 656,93 m³ 24,26 m³ 3,7 %

4.1.18. Laje do muro - 9 (muro “J”)

Page 40: Memória de Cálculo

Perspectiva

Frente

Lateral

Topo

V1 = [(π ∗ 0,52 ∗ 3,5) + (π ∗ 7,82

4−

π ∗ 7,492

4)] ∗ 3,5 = 15,77 m³

V2 = [(20,16 ∗ 1) + (4,05 ∗ 3,98) + (19,39 ∗ 2,98

2) + (

3,9 ∗ 26,02

2)

+ (0,15 ∗ 26,02)] ∗ 7,71 = 923,74 m³

V3 = [(5,61 ∗ 3,05) − (π ∗ 3,052

4) + (π ∗ 0,52 + 9,8)] ∗ 26,01 = 275,18 m³

Vtotal = 15,77 + 923,74 + 275,18 = 3223,62 m³

Page 41: Memória de Cálculo

Software Cálculos Comparativo 1158,93 m³ 1214,69 55,76 m³ 4,59 %

4.1.19. Laje do muro - 10

Perspectiva

Topo

Lateral 1

Lateral 2

V1 =7,87 ∗ 11,03

2∗ 12 = 520,83 m³

V2 =7,87 ∗ 11,03

2∗ 6,43 = 279,08 m³

V3 =7,87 ∗ 11,03

4∗ 7,87 = 170,8 m³

Vtotal = 520,83 + 279,08 + 170,8 = 970,69 m³

Software Cálculos Comparativo 925,71 m³ 970,9 m³ 44,98 m³ 4,65 %

4.1.20. Laje do muro - 11

Page 42: Memória de Cálculo

Perspectiva

Lateral

Frente

V1 = 20,55 ∗ 35 ∗ 6 = 4315,5 m³

V2 = (5,95 ∗ 35

2) ∗ (

8,22 + 6

2) = 740,33 m³

Vtotal = 5055,83 m³

Software Cálculos Comparativo 5314,75 m³ 5055,83 m³ 258,92 m³ 5,12 %

4.2. VOLUME TOTAL DE CONCRETO

O software Autodesk Revit Structure® apresentou um volume total de

concreto na ordem de 53337,2 m³, enquanto que a verificação, de forma

aproximada, apresentou o volume de 53915,86 m³, o cálculo apresentou uma

diferença de 1,08 % quando comparado ao valor fornecido pelo software, conforme pode ser observado na Tabela abaixo.

Page 43: Memória de Cálculo

Peça Software Cálculos Comparativo

Diferença Porcentagem

Laje do vertedouro 1157,92 1158,1 0,18 0,01%

Vertedouro 9105,76 9025,5 80,26 0,88%

Entrada das comportas 469,73 473,3 3,56 0,75%

Muro 720,21 719,21 1 0,14%

Laje do muro 01 925,71 970,9 44,98 4,65%

Laje do muro 02 2133,9 2120,19 13,71 0,65%

Laje do muro 03 974,67 976,5 1,83 0,19%

Laje do muro 04 5627,71 5594,7 33 0,60%

Laje do muro 05 1240,17 1296,96 56,79 4,38

Laje do muro 06 5314,75 5055,83 258,92 5,12%

Laje do muro 07 1240,17 1296,96 56,79 4,38

Laje do muro 08 3103,67 3223,62 119,95 3,72%

Laje do muro 09 2682,42 2602,53 198,1 3,07%

Laje do muro 10 974,67 976,5 1,83 0,19%

Laje do muro 11 1404,55 1411,28 6,73 0,48%

Ensecadeira do vertedouro 624,7 644,22 19,52 3,03%

Escada 32,41 32,81 0,4 1,22%

Tomada d'água 1 3993,65 4030,25 36,6 0,90%

Tomada d'água 2 10862,1 11559,06 696,96 6,03%

Tomada d'água 3 748,33 747,44 0,89 0,12%

53337,2 53915,86 1632 907,75%

578,66 m³

1,08 %

5. DIMENSIONAMENTO DAS ARMADURAS

5.1. Cálculos para dimensionamento de armadura

5.1.1. MC-BL.1

Pesos Psolo = 220,85 kN/m

Pconcreto = 306,73 + 64,35 + 442,25 = 813,33 kN/m

Mpesos = 220,85 ∗ (1,29 −1,43

3) + 306,73 ∗ [1,29 − (

1,43

3+ 0,15)] − 64,35

∗ (1,29 −0,15

2) − 442,25 ∗ (1,29 −

1

2) = −44,47 kN

Empuxos

Page 44: Memória de Cálculo

Esolo =17,162 ∗ 18 ∗ 0,466

2= 1235 kN/m

Msolo = 1235 ∗17,16

3= −7064,2 kN

Esobrecarga = 0,466 ∗ 20 ∗ 17,69 = 164,87 kN/m

Msobrecarga = 164,87 ∗17,69

2= −1458,28 kN

∑ P ∑ M

1034,18 kN/m −1458,28 kN

Figura 11 – Croqui de armadura (MC-BL.1).

5.1.2. MC-BL.2

Pesos Psolo = 258,55 kN/m

Pconcreto = 359,11 + 75,33 + 513 = 947,45 kN/m

Mpesos = 258,55 ∗ (1,29 −1,43

3) + 359,11 ∗ [1,29 − (

1,43

3+ 0,15)] − 75,33

∗ (1,29 −0,15

2) − 513 ∗ (1,29 −

1

2) = −48,31 kN

Empuxos

Esolo =20,09² ∗ 18 ∗ 0,466

2= 1692,73 kN/m

Msolo = 1235 ∗20,09

3= −11355,66 kN

Esobrecarga = 0,466 ∗ 20 ∗ 20,62 = 192,18 kN/m

Page 45: Memória de Cálculo

Msobrecarga = 164,87 ∗17,69

2= −1981,36 kN

∑ P ∑ M

1206 kN/m −13365,33 kN

Figura 12 – Croqui de armadura (MC-BL.2).

5.1.3. MC-BL.3

Pesos Psolo = 500,68 kN/m

Pconcreto = 695,4 + 85,5 + 583,25 = 1364,15 kN/m

Mpesos = 500,68 ∗ (1,795 −2,44

3) + 695,4 ∗ [1,795 − (

2,44

3+ 0,15)] − 85,5

∗ (1,29 −0,15

2) − 583,25 ∗ (1,795 −

1

2) = 167,48 kN

Empuxos

Esolo =22,8² ∗ 18 ∗ 0,466

2= 2180,21 kN/m

Msolo = 2180,21 ∗22,8

3= −16569,59 kN

Esobrecarga = 0,466 ∗ 20 ∗ 23,33 = 217,44 kN/m

Msobrecarga = 217,44 ∗23,33

2= −2536,44 kN

∑ P ∑ M

1864,84 kN/m −18938,55 kN

Page 46: Memória de Cálculo

Figura 13 – Croqui de armadura (MC-BL.3).

5.1.4. MC-BL.4

Pesos Psolo = 791,07 kN/m

Pconcreto = 1098,72 + 114,45 + 776,25 = 1989,42 kN/m

Mpesos = 791,07 ∗ (2,015 −2,88

3) + 1098,72 ∗ [2,015 − (

2,88

3+ 0,15)] − 114,45

∗ (2,015 −0,15

2) − 776,25 ∗ (2,015 −

1

2) = 430,88 kN

Empuxos

Esolo =30,52² ∗ 18 ∗ 0,466

2= 3906,59 kN/m

Msolo = 3906,59 ∗30,52

3= −39743,01 kN

Esobrecarga = 0,466 ∗ 20 ∗ 31,05 = 289,39 kN/m

Msobrecarga = 217,44 ∗31,05

2= −4492,72 Kn

∑ P ∑ M

2780,5 kN/m −43804,85 kN

Page 47: Memória de Cálculo

Figura 14 – Croqui de armadura (MC-BL.4).

5.1.5. MC-BL.5

Pesos Psolo = 791,07 kN/m

Pconcreto = 1098,72 + 114,45 + 776,25 = 1989,42 kN/m

Mpesos = 791,07 ∗ (2,015 −2,88

3) + 1098,72 ∗ [2,015 − (

2,88

3+ 0,15)] − 114,45

∗ (2,015 −0,15

2) − 776,25 ∗ (2,015 −

1

2) = 430,88 kN

Empuxos

Esolo =30,52² ∗ 18 ∗ 0,466

2= 3906,59 kN/m

Msolo = 3906,59 ∗30,52

3= −39743,01 kN

Esobrecarga = 0,466 ∗ 20 ∗ 31,05 = 289,39 kN/m

Msobrecarga = 217,44 ∗31,05

2= −4492,72 kN

∑ P ∑ M

2780,5 kN/m −43804,85 kN

Page 48: Memória de Cálculo

Figura 15 – Croqui de armadura (MC-BL.5).

5.1.6. MC-BL.6

Pesos Psolo = 563,94 kN/m

Pconcreto = 783,3 + 47,57 + 647,5 = 1478,37 kN/m

Mpesos = 563,94 ∗ (1,81 −2,47

3) + 783,3 ∗ [1,81 − (

2,47

3+ 0,15)] − 47,57

∗ (1,81 −0,15

2) − 647,5 ∗ (1,81 −

1

2) = 281,02 kN

Empuxos

Esolo =25,37² ∗ 18 ∗ 0,466

2= 2699,41 kN/m

Msolo = 2699,41 ∗25,37

3= −22828,04 kN

Esobrecarga = 0,466 ∗ 20 ∗ 25,9 = 241,39 kN/m

Msobrecarga = 217,44 ∗31,05

2= −3125,97 kN

∑ P ∑ M

2042,31 kN/m −25672,99 kN

Page 49: Memória de Cálculo

Figura 16 – Croqui de armadura (MC-BL.6).

5.1.7. MC-BL.7

Pesos Psolo = 258,55 kN/m

Pconcreto = 359,11 + 75,33 + 513 = 947,45 kN/m

Mpesos = 258,55 ∗ (1,29 −1,43

3) + 359,11 ∗ [1,29 − (

1,43

3+ 0,15)] − 75,33

∗ (1,29 −0,15

2) − 513 ∗ (1,29 −

1

2) = −48,31 kN

Empuxos

Esolo =20,09² ∗ 18 ∗ 0,466

2= 1692,73 kN/m

Msolo = 1235 ∗20,09

3= −11355,66 kN

Esobrecarga = 0,466 ∗ 20 ∗ 20,62 = 192,18 kN/m

Msobrecarga = 164,87 ∗17,69

2= −1981,36 kN

∑ P ∑ M

1206 kN/m −13365,33 kN

Page 50: Memória de Cálculo

Figura 17 – Croqui de armadura (MC-BL.7).

5.1.8. MC-BL.8

Pesos Psolo = 175,96 kN/m

Pconcreto = 244,39 + 55,13 + 380,75 = 680,27 kN/m

Mpesos = 175,96 ∗ (1,24 −1,33

3) + 244,39 ∗ [1,24 − (

1,33

3+ 0,15)] − 55,13

∗ (1,24 −0,15

2) − 380,75 ∗ (1,24 −

1

2) = −47,76 kN

Empuxos

Esolo =14,7² ∗ 18 ∗ 0,466

2= 906,28 kN/m

Msolo = 906,28 ∗14,7

3= −4440,78 kN

Esobrecarga = 0,466 ∗ 20 ∗ 15,23 = 141,94 kN/m

Msobrecarga = 141,94 ∗15,23

2= −1080,9 kN

∑ P ∑ M

856,22 kN/m −1569,44 kN

Page 51: Memória de Cálculo

Figura 18 – Croqui de armadura (MC-BL.8).