UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA...

88
1 UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE BIOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM PSICOBIOLOGIA CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA NATAL 2016

Transcript of UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA...

Page 1: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE BIOCIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM PSICOBIOLOGIA

CLARISSA DE ALMEIDA MOURA

APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES

LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

NATAL

2016

Page 2: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

2

CLARISSA DE ALMEIDA MOURA

APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES

LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

DEFESA DA DISSERTAÇÃO

APRESENTADA AO PROGRAMA DE

PÓS-GRADUAÇÃO EM

PSICOBIOLOGIA DA UNIVERSIDADE

FEDERAL DO RIO GRANDE DO

NORTE, COMO REQUISITO PARA A

OBTENÇÃO DO TÍTULO DE MESTRE

EM PSICOBIOLOGIA (ÁREA:

COMPORTAMENTO ANIMAL).

Orientadora: Profa. Dra. Ana

Carolina Luchiari

NATAL

2016

Page 3: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

3

Catalogação da Publicação na Fonte. UFRN / Biblioteca Setorial do Centro de Biociências

Moura, Clarissa de Almeida.

Aprendizagem espaço-temporal e efeitos das condições luminosas no aprendizado do peixe

paulistinha / Clarissa de Almeida Moura. – Natal, RN, 2016.

86 f.: il.

Orientadora: Profa. Dra. Ana Carolina Luchiari.

Dissertação (Mestrado) – Universidade Federal do Rio Grande do Norte. Centro de Biociências.

Programa de Pós-Graduação em Psicobiologia.

1. Aprendizagem espaço-temporal. – Dissertação. 2. Memória. – Dissertação. 3. Ritmo circadiano. –

Dissertação. I. Luchiari, Ana Carolina. II. Universidade Federal do Rio Grande do Norte. III. Título.

RN/UF/BSE-CB CDU 159.953

Page 4: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

4

APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES

LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

CLARISSA DE ALMEIDA MOURA

Natal, 03 de março de 2016.

Banca Avaliadora

______________________________

Profª Dra. Ana Carolina Luchiari

Departamento de Fisiologia- UFRN

Orientadora

____________________________________

Prof. Dr. Mário André Leocadio Miguel

Departamento de Fisiologia- UFRN

Membro Interno

____________________________________

Prof. Dr. Rodrigo Egydio Barreto

Departamente de Fisiologia – UNESP Botucatu

Membro externo

Page 5: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

5

AGRADECIMENTOS

Ao mestre Jesus por guiar meus passos e iluminar minha mente e minhas mãos, me

fazendo pensar e agir de maneira sensata em cada detalhe dessa pesquisa.

À minha orientadora Ana Carolina Luchiari, que acreditou em meu potencial, abriu

as portas para meu caminho na ciência, me preparou não só como pesquisadora, mas

como futura docente, e não mediu esforços para me ajudar sempre que precisei.

Às minhass amigas e companheiras de laboratório, Bábara, Mayara, Priscilla e

Diana por toda força, palavras de carinho e incetivo nas horas certas.

Aos meus ajudantes na pesquisa, Vanessa, Jéssica Pollyana, Mara, Celisa, Fred e

Joanny por cada tempo dedicado e esforço em me ajudar com a coleta de dados. Sem

vocês, esse trabalho jamais estaria completo!

À Bruna Del Vechio, por ajudar nas correções e com os conhecimentos da

Cronobiologia, e ao professor Mário Miguel, pela sua disponibilidade e cordialidade em

me ajudar com as análises.

À Tales, meu companheiro no amor e nos estudos, por sua companhia nos finais de

semana de coleta, dias de estudos, e sua ajuda com os gráficos.

À minha família, que por torcer tanto pelo meu sucesso, não medem esforços para

me ver alcançar os objetivos. Mãe, pela paciência e preocupação. Pai, pelo esforço em

ajudar e incentivo para que eu jamais desistisse. E, antes de tudo, pela educação que

vocês me deram, pois para mim, não há nada de mais precioso na vida!

Page 6: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

6

RESUMO GERAL

Para processar a informação ambiental e perceber o tempo, os indivíduos utilizam-se de

pistas ambientais, como luz e temperatura, que servem como guias para o relógio

interno. O mecanismo temporizador endógeno é chamado relógio circadiano endógeno,

o qual comanda uma grande variedade de ritmos diários bioquímicos, fisiológicos e

comportamentais presentes nos organismos. Com isso, os animais podem antecipar

eventos espaço-temporalmente distribuídos e usar essa informação para organizar as

atividades diárias, o que é uma vantagem adaptativa para os indivíduos, já que muitos

fatores ambientais apresentam variação circadiana. Aprendizagem espaço-temporal (do

inglês: "time-place learning’’-TPL) é a habilidade de associar lugares com importantes

eventos biológicos em diferentes horas do dia. Em nosso estudo utilizamos como

modelo o peixe paulistinha (Danio rerio), conhecido por ser altamente social, para testar

aprendizagem espaço-temporal baseada em reforço social. Além disso, objetivamos

averiguar os efeitos das condições de claro constante e escuro constante na

aprendizagem espaço-temporal, e se nessas condições, a atividade do peixe paulistinha é

alterada. Para isso, testamos três diferentes condições (n=10): grupo claro-escuro (CE),

grupo claro constante (CC) e grupo escuro constante (EE) durante 30 dias da seguinte

maneira: diariamente, um grupo de 5 peixes paulistinha foi introduzido em um

recipiente localizado no compartimento da manhã (um dos lados do aquário), às 8:00h e

retirado às 9:00h, e em outro recipiente do compartimento da tarde (lado oposto do

aquário), às 17:00h e removido às 18:00h, servindo como estímulo para que o peixe

experimental ocupasse o compartimento onde o grupo fosse colocado. O

comportamento foi filmado nos dois horários, 15 minutos antes e durante os 60 minutos

de exposição ao estímulo, no 15º e no 30ª dia, porém neste último, os peixes foram

filmados sem a presença do estímulo a fim de averiguarmos a aprendizagem espaço-

temporal. Por fim, para saber a influência das três condições luminosas na atividade dos

peixes, filmamos os últimos 6 dias de teste, para registrar o padrão de atividade. Nossos

resultados mostraram que em ciclo claro-escuro (CE) o peixe paulistinha apresenta TPL,

bem como é capaz de antecipar a hora e local do estímulo (grupo de coespecíficos),

enfatizando a importância do estímulo social para a aprendizagem. Em condições de

claro constante e escuro constante, o peixe paulistinha não apresentou aprendizagem

espaço-temporal. Ademais, após 30 dias em condições luminosas constantes (claro

constante e escuro constante), o peixe paulistinha mantém ritmo circadiano, porém em

claro constante sua atividade é aumentada e seu ritmo atividade-repouso é alterado,

através de um padrão de atividade distribuída homogeneamente ao longo das 24h, ao

invés de concentrada na subjetiva fase clara, como nos grupos de ciclo claro-escuro e

escuro constante, os quais conservam o padrão de atividade diurno da espécie.

Palavras chave: aprendizagem espaço-temporal, memória, estímulo social, ritmo

circadiano.

Page 7: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

7

SUMÁRIO

1. INTRODUÇÃO GERAL...................................................................................... 8

Sistema temporizador endógeno e sincronizadores.................................................. 8

Ritmos em peixes...................................................................................................... 11

Ritmo no peixe paulistinha........................................................................................ 12

Pistas sociais como sinalizadores.............................................................................. 14

Aprendizagem espaço-temporal................................................................................ 15

2. OBJETIVOS ........................................................................................................ 20

Objetivo Geral........................................................................................................ 20

Objetivos Específicos ............................................................................................... 20

3. ARTIGO 1.......................................................................................................... 21

ABSTRACT .......................................................................................................... 21

INTRODUCTION..................................................................................................... 22

MATERIAL AND METHODS................................................................................ 23

Animals and procedures............................................................................................ 23

Experimental design……………………………………………………………….. 24

Statistical analysis..................................................................................................... 26

RESULTS................................................................................................................. 26

Responsiveness on day 15......................................................................................... 26

Determination of learning on day 30........................................................................ 27

DISCUSSION........................................................................................................... 29

REFERENCES........................................................................................................... 33

4. ARTIGO 2.............................................................................................................. 45

ABSTRACT............................................................................................................... 45

INTRODUCTION...................................................................................................... 46

MATERIAL AND METHODS.................................................................................. 48

Animals and procedures............................................................................................. 48

Experimental design................................................................................................... 48

Activity registry.......................................................................................................... 50

Statistical analysis....................................................................................................... 51

RESULTS................................................................................................................... 52

Constant light (LL)..................................................................................................... 52

Constant dark (DD)..................................................................................................... 53

Activity registry.......................................................................................................... 54

DISCUSSION............................................................................................................. 55

REFERENCES........................................................................................................... 59

5. CONCLUSÃO GERAL.......................................................................................... 75

6. REFERÊNCIAS GERAIS...................................................................................... 76

Page 8: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

8

INTRODUÇÃO GERAL

Sistema temporizador endógeno e sincronizadores

A rotação do planeta influencia marcadamente não só a rotina, como a fisiologia

e processos moleculares complexos dos organismos, nos quais seus ritmos acompanham

os ciclos dia/noite. Foi o pesquisador Franz Halberg que em 1959 definiu o termo ritmo

circadiano (Latin: circa=cerca; dies=dia) para referir-se aos ritmos biológicos diários

que possuem período de cerca de 24 horas. Durante décadas, acreditou-se que a

ritmicidade não era uma característica interna dos seres vivos, mas dependia do ciclo

claro/escuro para existir. Porém, diversos estudos que mantinham os organismos em

condições constantes de iluminação concluíram que a ritmicidade é endógena e

geneticamente determinada (Pfeffer 1915 apud Bunning & Chandrashekaran 1975;

Kleinhoonte 1929 apud Schawassmann 1971; Bünning 1935). A capacidade endógena

de gerar ritmo permite as espécies uma antecipação a recursos necessários para

sobrevivência (Pittendrigh 1960). Com o passar do tempo, relação entre sistema rítmico

e funcionamento de relógio levou a necessidade de estudos mais aprofundados sobre o

que hoje é conhecido como relógio biológico endógeno, no qual permite o

processamento e monitoramento das atividades que variam diariamente (Pittendrigh

1993).

Para processar a informação ambiental e perceber o tempo, os indivíduos

utilizam-se de pistas ambientais externas, como luz e temperatura, que servem como

guia para esse relógio interno (Dunlap 1999). A luz é um dos sincronizadores (ou

zeitgebers) mais importantes para guiar osciladores internos (Hastings 1991). Segundo

Zhdanova e Reebs (2006), as três maiores propriedades de um sistema circadiano

dependente de luz incluem fotorrecepção, oscilação intrínseca, e a habilidade de

perceber informações de fase circadiana do ambiente local (através de osciladores

Page 9: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

9

periféricos, por exemplo). Em condições ambientais constantes, como luz constante ou

escuro constante, o indivíduo pode apresentar um padrão de livre curso nos seus ritmos,

variando em um período um pouco maior ou um pouco menor, em torno das 24 horas

diárias (Marques & Menna-barreto 2003a). O ritmo de livre curso, gerado pelos

osciladores endógenos dos seres vivos, tem sua fase e frequência ajustados pelos

agentes sincronizadores ambientais. A esse processo, dar-se o nome de arrastamento

(Pittendrigh 1981). Esses agentes sincronizadores (zeitgebers) podem, em alguns casos,

alterar o ritmo de um indivíduo transitoriamente, sem provocar mudança constante.

Nessa condição, denominada mascaramento (Aschoff 1960), as vias sensoriais captam a

informação ambiental externa e evocam comportamento rítmico independente do

relógio biológico.

O relógio endógeno (ou marcapasso) engloba um sistema de temporização

autorregulatório e oscilante, com estruturas anatomicamente definidas e osciladores

codificados no DNA (Fildman 1982; Hall &Rosbash 1987; apud Marques & Menna-

barreto, 2003b). Em mamíferos, o marcapasso central está localizado numa estrutura do

hipotálamo (parte do diencéfalo) denominada núcleo supraquiasmático (NSQ). A

informação luminosa do ambiente é captada através da retina, que se conecta com o

NSQ através do trato retino-hipotalâmico. Assim, a atividade rítmica do NSQ pode ser

arrastada pela luz ambiental (Moore, 1996). À frente, o NSQ se conecta com a coluna

intermédio-lateral da medula espinhal e a partir desta, a informação luminosa chega à

glândula pineal através de nervos simpáticos. A informação chegada à glândula pineal

altera a secreção de melatonina, bem como seus efeitos e duração no organismo, que

dependem da duração do período escuro da alternância dia/noite. A melatonina

circulante tem seu perfil plasmático variável de acordo com a duração fase escura, que

podem ser mais longa ou curta dependendo da estação do ano. Sendo assim, a

Page 10: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

10

melatonina pode funcionar como um sinalizador hormonal do ciclo ambiental claro-

escuro para o meio interno do organismo (Marques & Menna-Barreto 2003c). Portanto,

esse hormônio atua como importante sinalizador para a orientação temporal circadiana.

Para perceber a luz, os vertebrados possuem fotorreceptores distribuídos de

maneiras diferentes pelo corpo (Menaker et al. 1997). Enquanto os mamíferos possuem

fotorreceptores localizados exclusivamente na retina (Nelson & Zucker 1981),

vertebrados não mamíferos, como peixes, possuem fotorreceptores na retina, glândula

pineal e partes internas do cérebro (Foster et al. 1994). Li et al. (2012) mostraram que a

remoção de células fotorreceptoras da pineal no peixe paulistinha (Danio rerio) afetam

não apenas a sensitividade da retina, mas também os ritmos de outras atividades, como

comportamento locomotor, sugerindo que essas células tenham função de marcadores

centrais da regulação comportamental e fisiológica do animal. Em moluscos, insetos,

répteis, pássaros e mamíferos existe associação entre os osciladores internos e os

fotorreceptores, enfatizando a predominância da luz no arrastamento de ciclos

circadianos (Zordan et al. 2000), e essa relação pode indicar a co-evolução entre o

sistema de percepção de luz e relógio circadiano endógeno (Amaral et al. 2014; Shen et

al. 2011).

Apesar da luz ser considerada um dos mais importantes agentes sincronizadores,

a temperatura também funciona como sincronizador, modulando os ritmos circadianos

na maioria dos organismos, de cianobactérias a vertebrados (Rensing & Ruoff 2002).

Neste caso, a fotofase coincide com a termofase (fase de luz fase de alta temperatura)

e a escotofase com a cicrofase (fase de escuro fase de baixa temperatura). As

transições de temperatura fria para quente estão relacionadas com o amanhecer, e

transições de temperatura quente para fria com o crepúsculo (Johnson et al. 2004). Em

estudo realizado com o peixe paulistinha (Danio rerio), López-Olmeda et al. (2006)

Page 11: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

11

observaram arrastamento do ritmo circadiano tanto para fotofase (quando a temperatura

era constante), quanto para termociclos (quando a luz era constante), com maior

atividade locomotora durante o dia, independente das fases do ciclo de temperatura.

Estes autores também relataram que o peixe apresentou livre curso, com período (t) de

23,3 horas, quando submetido a ritmo de luz fraca constante e temperatura constante.

Outro forte agente sincronizador é a atividade alimentar (Boulos & Terman

1980). Alimentação restrita à hora do dia influencia o sistema de temporização

circadiano através de um sistema oscilador independente do núcleo supraquiasmático

em mamíferos (Stephan 2002). Sob essas condições, muitas espécies desenvolvem

atividade alimentar antecipatória. A ingestão de alimento provoca respostas fisiológicas

que podem atuar como estímulos de arrastamento, influenciando o ritmo tanto do

relógio circadiano central, como dos periféricos (Mistlberger 2011). Quando o ciclo

claro-escuro e o ritmo de alimentação estão em conflito, apenas alguns órgãos

permanecem sincronizados ao ciclo luminoso circadiano, provavelmente para preservar

outras funções, como a mensuração do dia e noite, a ritmicidade anual e a dependência

do arrastamento fótico do sistema nervoso central (Damiola et al. 2000; Stokkan et al.

2001).

Ritmos em peixes

Como muitos organismos, os peixes possuem ritmo circadiano de atividade,

osciladores periféricos espalhados em uma variedade de tecidos, e osciladores centrais

cuja estrutura geral ainda não está bem esclarecida (Reebs 2002; Zhdanova & Reebs

2006). Assim como nos mamíferos, o ritmo circadiano de atividade em peixes

sincronizam com oscilações diárias de pistas ambientais (Manteifel et al. 1978; Muller

1978). Também similar aos mamíferos (Moore-Ede et al. 1976), pelo menos dois

agentes sincronizadores podem estar envolvidos no controle do ritmo circadiano em

Page 12: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

12

peixes: ciclo claro-escuro e atividade alimentar, indicando um sistema com múltiplos

osciladores na relação temporal dos peixes com o seu ambiente (Boujard & Leatherland

1992). Em algumas espécies de peixes, como Lota lota (Muller 1973; Kavaliers 1980a),

Fundulus heteróclitos (Kavaliers 1980b) e Couesius plumbeus (Kavaliers 1978), o ritmo

circadiano de atividade é mantido em livre curso sob condições luminosas constantes. A

melatonina, principal hormônio relacionado ao ciclo circadiano, e os seus principais

órgãos de produção (glândula pineal e retina), também possuem importante papel no

ritmo circadiano e arrastamento em peixes (Zhdanova & Reebs 2006). No peixe

paulistinha, por exemplo, a glândula pineal se desenvolve poucas horas após a

fertilização e logo se torna responsiva à luz, secretando melatonina em resposta à fase

escura (Danilova et al. 2004; Kazimi & Cahill 1999). Diferentes formas de enzimas

envolvidas na produção de melatonina são expressas na glândula pineal e na retina

desses animais (Benyassi et al. 2000).

Como citado anteriormente, outro fator de forte influência no ritmo em peixes é

a atividade alimentar (Boujard & Leatherland, 1992). Os peixes podem ser classificados

quanto à atividade alimentar em noturnos, diurnos e crepusculares, de acordo com os

respectivos turnos de forrageio. Quando o alimento é disponibilizado em horário restrito

do dia, peixes, como outros animais, podem antecipar o local e horário do recurso

alimentar (Chen & Tabata 2002; Reebs & Lague 2000). Quando mantidos em condições

ambientais constantes (luminosidade, temperatura), peixes podem sincronizar a

atividade locomotora ao padrão temporal de disponibilidade de comida (Geet et al.

1994; Naruse & Oishi 1994).

Ritmo no peixe paulistinha

Page 13: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

13

Por serem animais diurnos, o peixe paulistinha apresenta alta atividade durante o dia

e atividade reduzida durante a noite (Hurd et al. 1998). No estado de sono, a atividade

natatória é reduzida, bem como funções cognitivas e visuais (Paciorek & Mcrobert

2012). Em condições de escuro constante, o peixe paulistinha exibe atividade

locomotora rítmica e aumenta a atividade durante o dia subjetivo (Hurd et al. 1998).

Porém, nessas condições, a atividade locomotora geral se apresenta reduzida em relação

aos animais expostos ao ciclo claro-escuro (CE), podendo ocorrer perda de ritmo (Tovin

et al. 2012). Em luz constante, a maioria dos indivíduos se torna permanentemente

ativos em relação aos do CE, o que também pode levar à perda de ritmo (Elbaz et al.

2013). O estudo de Moore & Whitmore (2014), mostrou que em condições de escuro

constante (EE), o peixe paulistinha apresenta significante oscilação circadiana. Além

disso, os resultados desse estudo revelaram áreas cerebrais e periféricas (como coração)

do peixe paulistinha contendo fotorreceptores e marcadores circadianos diretamente

responsivos à luz, dentre eles expressão de genes, como cry1a e per2.

O peixe paulistinha possui alguns genes relacionados com a regulação do ritmo

circadiano homólogos a alguns genes de mamíferos (Delaunay et al. 2000; Kobayashi et

al. 2000), como uma variedade de tipos cry, clock, bmal e per (Kobayashi et al. 2000;

Whitmore et al. 1998; Cermakian et al. 2000; Pando et al. 2001). Dentre esses genes,

cry1a, per2 e per3 são conhecidos por serem intensamente responsivos à luz (Ziv &

Gothilf 2006; Tamai et al. 2007; Moore & Whitmore 2014). O sistema de relógio

circadiano desses animais possui osciladores responsivos à luz presentes na glândula

pineal do SNC, na qual possui projeções para demais regiões do cérebro (Yáñez et al.

2009), e osciladores periféricos espalhados por diversos tecidos do corpo (Whitmore et

al. 1998). Esse sistema é visto como altamente descentralizado (Cermakian et al. 2000;

Whitmore et al. 1998), fazendo-se necessárias análises detalhadas das estruturas neurais

Page 14: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

14

deste relógio (Moore & Whitmore 2014). Até mesmo em culturas celulares há presença

de osciladores responsivos à luz (Pando et al. 2001; Whitmore et al. 2000). Há registros

de que o relógio biológico do peixe paulistinha é herdado através de genes maternos e

se encontra ativo nas primeiras etapas da embriogênese (Delaunay et al. 2000).

A glândula pineal do peixe paulistinha controla a síntese de melatonina

independente de outras estruturas relacionadas ao relógio interno (Cahill 1996). Assim

como primatas diurnos, a melatonina diminui a atividade locomotora dos peixes,

induzindo estado semelhante ao sono (Zhdanova et al. 2002). Quanto a fisiologia do

sono, o trabalho de Sigurgeirsson et al. (2013) mostrou que o peixe paulistinha pode

exibir uma homeostase e pressão de sono mais fracas em comparação com mamíferos, e

a privação de sono não é muito eficaz em alterar sua resposta ao estresse. O trabalho de

Yokogawa et al. (2007) revelou o peixe paulistinha dorme durante a noite quando

exposto tanto ao ciclo claro-escuro (CE), quanto em escuro constante (EE). Entretanto,

até uma semana na condição de luz constante (150 lux), a luz parece suprimir o sono do

peixe, fazendo desaparecer o ritmo sono-vigília, retornando progressivamente em torno

de 1 a 2 semanas.

Pistas sociais como sinalizadores

Pistas sociais são conhecidas por influenciar o sistema circadiano em diversas

espécies (Mrosovsky 1988). O termo ‘pista social’ é aplicado em situações em que

qualquer sinal periódico emitido de um animal para outro tem a capacidade de arrastar

ritmos, seja um estímulo visual, acústico, olfatório ou tátil (Rajaratnam & Redman

1999). A pista social pode ter papel importante na orientação temporal dos indivíduos

dentro do grupo (Calhoun 1975; Farr & Andrews 1978). Por exemplo, saguis comuns

(Callithrix jacchus) em ambiente de ciclo claro-escuro tem o perfil de atividades

circadianas modulado por pistas sociais resultantes da interação entre animais dentro de

Page 15: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

15

um grupo (Melo et al. 2013). Em humanos, atividades diárias de rotina, como trabalho e

recreação, também podem arrastar o ritmo circadiano (Ehlers et al. 1988, 1993; Elmore

et al. 1994; Monk et al. 1990).

Em peixes, a vida em grupo oferece diversas vantagens, como menor risco de

predação (Landeau & Terborgh, 1986; Godin et al. 1988), maior troca de informação

social (Mathis et al. 1995) e otimização de forrageio (Ryer & Olla 1992). Muitos peixes

adotam um comportamento de agregação social denominado formação de cardume (ou

schooling em inglês) (Pitcher & Parrish 1993), que demanda alta taxa de troca de

informações entre os membros do grupo. O paulistinha apresenta forte preferência pelo

grupo social (Gerlai et al. 2000; Paciorek & Mcrobert 2012; Luchiari et al. 2015),

formam cardume no ambiente natural desde o estado larval, e demonstram alta

capacidade de distinção entre coespecíficos e heteroespecíficos, o que o torna um

excelente modelo para estudar o comportamento social (Engeszer et al. 2007).

O estudo de Paciorek & Mcrobert (2012) mostrou que variações no fotoperíodo

alteram o comportamento de agregação diária do peixe paulistinha: no ciclo claro-

escuro (12:12 CE; luzes ligando as 8:00 h), os peixes se agregam menos por volta da

meia noite, aumentando este comportamento com o passar do dia, e atingindo pico

máximo de agregação às 20 horas (horário que as luzes desligam). Já em luz constante

ou escuro constante, não mostraram diferenças na agregação ao longo do dia (Paciorek

& Mcrobert 2012). Esse estudo sugere que pistas ambientais luminosas do ciclo claro-

escuro (ascender e apagar das luzes) são importantes na regulação do comportamento

social.

Aprendizagem espaço-temporal

Devido ao movimento de rotação da Terra em torno de seu próprio eixo ser de

24 horas, a grande variedade de seres vivos é capaz de prever flutuações de eventos

Page 16: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

16

ambientais recorrentes (ex.: variação de luz, disponibilidade de alimento, etc.) dentro

desse período (Kuhlman et al. 2015). Antecipar eventos espaço-temporalmente

distribuídos e usar essa informação para organizar as atividades diárias é uma vantagem

adaptativa para os indivíduos, já que muitos fatores ambientais apresentam variação

circadiana (Mulder et al. 2013).

Aaprendizagem espaço temporal (do inglês time-place learning - TPL) é a

habilidade de associar lugares com importantes eventos biológicos em diferentes horas

do dia (Widman et al. 2000; Wilkie 1995). Em nosso estudo, utilizamos o paradigma da

aprendizagem espaço-temporal, no qual a localização de um estímulo foi apresentada

sempre em determinado horário do dia e determinado local do tanque experimental.

Neste paradigma, os animais são treinados por um período de tempo em sessões diárias

que ocorrem sempre em horários fixos, no intuito de aprender a visitar ou evitar locais

específicos apenas nos horários em que foram treinados, e, em seguida os animais são

testados para a aprendizagem do local e horário do estímulo (Mulder et al. 2013).

Existem quatro diferentes estratégias de aprendizagem espaço-temporal:

circadiana, pista contextual, ordinal e tempo intervalar (Carr & Wilkie 1997). Na

estratégia circadiana, o indivíduo aprende que a hora do evento tem periodicidade fixa,

e pode associá-la com as diferentes fases de um oscilador circadiano endógeno. Dessa

forma, ele aprende à prever a hora que esses eventos geralmente ocorrem. Na estratégia

de pista contextual, não há associação temporal, e o animal apenas aprende a visitar ou

evitar o local “a” na presença de uma pista contextual (ex. ascender das luzes). Nesse

caso, é preciso excluir qualquer pista de discriminação (diferenças entre sessões) para

que o animal não utilize essa estratégia.

Na estratégia ordinal, o animal antecipa eventos que ocorrem em certa ordem

dentro de um período de tempo, associando a sequência desses eventos (ex. primeiro

Page 17: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

17

evento ocorreu no local “a”, segundo no local “b”, e assim por diante), ou seja, ele

estabelece uma rota diária de alternância. Essa estratégia possui duas variantes:

temporal e não-temporal. Na temporal, a sequência é reestabelecida diariamente, e na

não-temporal, a sequência é memorizada dia após dia, de forma alternada

sequencialmente. Pular a primeira sessão do dia é uma maneira para identificar o uso da

estratégia ordinal, pois ao invés de visitar o segundo local na segunda sessão, o animal

visitará o primeiro local.

Na estratégia de tempo intervalar, o indivíduo associa um intervalo de tempo

relativo à apresentação de uma ou mais pistas ambientais (ex. o animal aprende que em

certo intervalo de tempo após o ascender das luzes, deve visitar o local “a”, e em

intervalo de tempo anterior ao apagar das luzes, ele deve visitar o local “b”). Essa

estratégia não está relacionada com a atividade de genes relógio, ou seja, é independente

do sistema circadiano (Lewis et al. 2003; Papachristos et al. 2011). Para averiguar o uso

da estratégia de tempo intervalar, pistas externas devem ser eliminadas, por exemplo,

testando os animais em luz ou escuro constante. Se, nessas condições, a aprendizagem

não ocorrer, pode ser indicativo de que o indivíduo utilizou a estratégia de tempo

intervalar, ou alguma outra estratégia que não seja a circadiana. Caso a aprendizagem

persista, independente de pistas externas, é muito provável o uso de uma estratégia

circadiana.

Há evidências que a aprendizagem espaço-temporal diária dependa do sistema

circadiano e da ligação deste com a memória associativa (Mulder et al. 2013). Segundo

Biebach (1989), quando um animal é treinado para visitar diferentes locais em

diferentes horas do dia, mais do que o arrastamento de um oscilador circadiano interno

deve estar envolvido, pois a associação entre hora e local deve também ser aprendida.

Na TPL diária, a associação do tempo com o local e a natureza do evento guia a tomada

Page 18: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

18

de decisão comportamental. O animal é estimulado a lembrar do tempo, pois o tempo é

que discrimina as escolhas corretas e incorretas. A escolha correta depende da

memorização e retenção da memória do período específico que o evento ocorreu,

baseada em encontros prévios. Na estratégia circadiana, a escolha correta sobre a

localização do estímulo implica na consulta automática a um relógio biológico interno

(Mulder et al., 2013).

Os primeiros experimentos de TPL foram feitos em abelhas, e os pesquisadores

observaram que elas conseguem encontrar alimentos específicos em determinadas horas

do dia (Wahl 1932), em vários horários (Koltermann 1974), e se o alimento está

disponível em dois diferentes lugares em dois períodos do dia, aprendendo a associar

esses dois locais aos dois horários referentes à cada um deles (Finke 1958). Outros

estudos pioneiros com TPL envolveram pássaros: o Peneireiro-vulgar (Falco

tinnunculus) apresenta atividade antecipatória ao horário de disponibilidade de alimento

(Rijnsdorp et al. 1981; Wilkie et al. 1996). Em condição de luz constante, estorninhos

(Sturnus vulgaris) mostraram aprendizagem espaço-temporal baseada em alimentação,

mesmo em livre curso (τ<24h), por quase uma semana, demonstrando a presença de um

relógio circadiano endógeno como mecanismo de temporização para aprendizagem

espaço-temporal (Wenger et al. 1991).

Apesar do conhecimento sobre TPL ser bastante limitado (Heydarnejadi &

Purser 2008), experimentos com resultados positivos já foram realizados em roedores

(Means et al. 2000; Thorpe & Wilkie 2002), aves (Wilkie et al. 1996; Boulos &

Logothetis 1990), e insetos (Breed et al. 2002). Por exemplo, foi observado que a

proporção de ratos que discriminam espaço-tempo em labirinto vertical aumenta com a

altura do, labirinto, ou seja, com o custo de resposta (Widman et al. 2000). Em outro

Page 19: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

19

estudo, ratos Long Evans mostram antecipação de diferentes localizações de alimentos

em diferentes horas do dia (Boulos & Logothetis 1990).

Em peixes, a aprendizagem espaço-temporal foi observada em dourado

(Notemigonus crysoleucas) (Reebs 1996), Inanga (Galaxias maculatus) (Reebs 1999),

acará (Pterophyllum scalare) (Barreto et al. 2006), truta ártica (Salvelinus alpinus)

(Brännäs 2014), entre outros. Todos estes estudos utilizaram alimento como estímulo

para aprendizagem espaço-temporal, e embora alguns desses animais apresentem

comportamento social marcante, não há relatos de TPL usando estímulo social. Em

nosso estudo, utilizamos a presença de um grupo de coespecíficos como estímulo para

aprendizagem espaço-temporal no peixe paulistinha (Danio rerio). Dentro de nossa

hipótese, o estímulo social pode ser utilizado como elemento sincronizador, permitindo

tanto ritmo relacionado à oferta do sinal social, quanto aprendizagem espaço-temporal.

O peixe paulistinha é considerado um modelo animal promissor, tanto pela sua

alta praticidade de estocagem e manutenção em ambiente restrito quanto à elevada

semelhança fisiológica e comportamental com mamíferos (Ingham 2009), que permite

estudos translacionais. Além disso, diante da importância do fotoperíodo para aquisição

de informações ambientais e percepção de tempo nos organismos (Dunlap 1999), nosso

estudo se propõe a testar a aprendizagem-espaço temporal no peixe paulistinha em três

condições de limunosidade: claro-escuro (CE), claro constante (CC) e escuro constante

(EE).

Page 20: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

20

APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES

LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

OBJETIVOS

Objetivo Geral

Verificar se há aprendizagem espaço-temporal no peixe paulistinha (Danio rerio)

em diferentes condições luminosas.

Objetivos específicos

Verificar se em ciclo claro-escuro (12:12 CE) o peixe paulistinha apresenta TPL;

Verificar se em condições de claro constante (CC) ou escuro constante (EE), ou

seja, sem sinalizadores luminosos, o peixe paulistinha apresenta aprendizagem espaço-

temporal;

Verificar se além de aprender a associar estímulos espaço-temporalmente, o peixe

paulistinha é capaz de se antecipar à chegada do estímulo;

Caracterizar o ritmo de atividade do peixe paulistinha nas condições de TPL em:

ciclo claro-escuro, claro constante e escuro constante;

Page 21: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

21

Artigo 1: aceito para publicação pela revista Behavioural Processes

Time-place learning in the zebrafish (Danio rerio)

Clarissa de Almeida Moura, Ana Carolina Luchiari*

Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio

Grande do Norte, Natal, RN, Brazil.

*Corresponding Author: Departamento de Fisiologia, Centro de Biociências,

Universidade Federal do Rio Grande do Norte, PO BOX 1511, 59078-970 Natal, Rio

Grande do Norte, Brazil. Phone: +55 84 32153409, Fax: +55 84 32119206, E-mail:

[email protected]

Abstract

Animals exhibit activity cycles that repeat over days. The most noteworthy

cyclical behaviors are related to forraging, which generally occur at the same times and

locations. The synchronization of animal activities via the association of different places

at different times for the occurrence of relevant biological events is known as time-place

learning (TPL). In the present study, we used zebrafish (Danio rerio) to test time-place

learning based on a different stimulus: social reinforcement. Fish were not only able to

associate time and place of the social stimulus, but also displayed anticipatory activity

prior to the arrival of the stimulus. Furthermore, we show that the group of conspecifics

is an relevant stimulus for time-place learning tasks, while other studies have only used

food.

Keywords: learning; social stimulus; conspecifics; time-place learning.

Page 22: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

22

1. Introduction

Animals exhibit activity cycles that repeat over days, seasons, and years.

Among the most noticeable cyclical behaviors are forraging and resting, which

generally appear at established times and places (Carr and Wilkie, 1997; Dunlap, 1999).

The processes by which the animals synchronize its activities to occur at different

locations and different times is known as time-place learning (TPL) (Wilkie, 1995;

Widman et al., 2000). For this type of learning to occur, the time domain and spatial

awareness are the most important aspects. Moreover, the ability of TPL can be

considered adaptive, since it provides advantages for exploiting resources that are not

continuously available (Enright, 1970).

Groundbreaking TPL studies were conducted with bees, suggesting their ability

to flexibilize foraging to find food at specific times and locations (Wahl, 1932; Finke,

1958; Koltermann, 1974). After bees, TPL was also observed in other insects (Breed et

al., 2002), birds (Wilkie et al., 1996), and rodents (Means et al., 2000; Thorpe and

Wilkie, 2002). In fish, this cognitive ability has received little attention, and the

available studies focus on the time-place learning of social animals as a response to food

resources that vary over time and in space (Reebs, 1993, 1996; 1999; Gomez-Laplaza

and Morgan, 2005, Barreto et al., 2006; Brannas, 2014). Considering that food

availability changes daily, seasonally and annually, it is believed that TPL is functional

in optimizing the location and exploitation of the resource, as well as in avoiding

predators in an environment of predictable cyclical change, allowing a decrease in

energy costs and consequent increase in survival (Mulder et al., 2013).

Although studies on fish reveal the ability of food-related TPL, learning in

groups of animals may have been masked by the copy phenomenon, whereby leaders of

a group make the decisions while other individuals follow their behavioral patterns

Page 23: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

23

(Reebs, 2000). Indeed, for social animals, grouping has advantages in terms of locating

food resources, foraging time and protection against predators (Pitcher et al., 1982;

Krause and Ruxton, 2002; Brown and Laland, 2003; McRobert, 2004; Luchiari and

Freire, 2009;). In addition, the possibility of grouping is understood as a reward (Al-

Imari and Gerlai, 2008), promoting a sensation of well-being and increasing dopamine

secretion in the brain (Saif et al., 2013). In this respect, conspecific groups may act as a

stimulus for markedly social animals, favoring time-place learning.

Therefore, the highly social zebrafish (Engeszer et al., 2007; Pritchard, et al.,

2001; Spence et al., 2008) can be considered a study model for TPL based on social

reinforcement. Social behaviour in zebrafish is innate and appers immediately after

hatching (Engeszer et al., 2007). If held isolated, zebrafish shows a fast regrouping

when placed together (Kerr, 1963), indicating the social group has a positive effect on

motivation to shoal. Thus, this study aimed at assessing whether the zebrafish (Danio

rerio), when tested individually, is capable of associating place with specific times of

the day in which a group of conspecifics is presented. First, the results of this study

contribute to increasing knowledge regarding the cognitive ability of fish, primarily

TPL, increasing the variety of fish tested for this phenomenon, as well as adding new

tasks to the behavioral investigation of this species. Furthermore, since it is a strong

stimulus for the species, the social stimulus used indicates that other events relevant for

the species can be considered during learning, in addition to those closely associated

with survival (for example, food).

2. Material and methods

2.1. Animals and procedures

Zebrafish Danio rerio (Hamilton, 1822) were obtained from a fish farm (Natal,

Page 24: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

24

Rio Grande do Norte state) and kept in stocking tanks (2 fish/L) with aired and filtered

water. Four 50L tanks make up one stocking unit in the closed water circulation system,

with mechanical, biological and chemical filtration, in addition to UV disinfection.

Water was maintained at 28±1°C, with pH 7.2 and low levels of ammonium and nitrite.

The light cycle (fluorescent light, 150 Lux) was fixed at light-dark (LD), with the start

of the light phase at 7 am. The fish were fed commercial pellets twice a day (38%

protein, 4% lipids, Nutricom Pet) and Artemia salina.

Ten zebrafish (adults of both sexes) from the aforementioned stock were used to

test time-place learning. All the procedures with the animals were authorized by the

Animal Ethics Committee of Universidade Federal do Rio Grande do Norte (CEUA

039/2015).

2.2. Experimental design

The experimental animals were individually transferred to test tanks (100 x 25 x

25cm; length x width x height), divided horizontally into three same-size compartments

(33 cm long): one central and two lateral (Fig. 1). The compartments were separated by

opaque dividers, each with an 8 cm-diameter circular passage that allowed the fish to

swim between the compartments. The passage was located on the right of the right side

divider and on the left of the left side divider, such that the fish could not visualize more

than two compartments at the same time (Fig. 1), thereby preventing the stimulus placed

in one of the side compartments from being seen when the animal was in the opposite

side compartment. A cylindrical open-front receptacle (10 cm in diameter and 10 cm

high) was fixed to the upper part of the wall, and used to offer the stimulus (conspecific

group) at specific times. The side compartments were denominated morning

compartment and afternoon compartment. Each tank was constantly aerated through an

Page 25: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

25

external filter (JEBO 50, 250L/h) located in the central compartment and porous rocks

in the side compartments.

Animals were kept for 5 days in experimental tanks for acclimatization and for a

further 30 days of the experimental phase. A 12 hour light-dark (LD) cycle (7 am-7 pm)

was used. A group of 5 zebrafish (same size and age) were introduced every day into

the receptacle located in the morning compartment at 8 am and removed at 9 am, and

into the receptacle of the afternoon compartment at 5 pm and removed at 6 pm, acting

as a stimulus for the experimental fish to occupy the compartment where the group was

placed. The group was introduced through a receptacle (500ml) connected to a handle

(2m) so that the experimenter could not be seen by the animals, which were separated

by an opaque curtain. The stimulus was introduced 1 hour after the onset of the morning

light and 2 hour before the end of the light phase. Food (artemia) was offered daily

(once a day) at random times, always in the central compartment so they would not be

associated with any other stimulus. The fish was also checked from behind the curtain

many times a day, thus providing cues of the experimenter presence to the fish that

could not be associated to any other cues.

On days 15 and 30 of the experimental period, the behavior of the animals was

recorded on video for 1h and 15 min, starting at 7:45 am and 4:45 pm, in order to

observe animals for 15 minutes before the arrival of the group (stimulus) and during

their entire presence. Behavior on day 15 was recorded in the presence of the group to

estimate the strength of this stimulus. However, on day 30, the animals were filmed

without the presence of the group, in order to assess time-place learning in the zebrafish.

Video records were made with Sony DCR-SX45 Digital Video Camera

Recorders placed in front of the tanks. Analysis of behavioral records was conducted

using the ZebTrack tracking program, developed at MatLab. The following parameters

Page 26: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

26

were assessed: residence time and entry frequency in the morning and afternoon

compartments, average swimming speed, and total distance travelled. The distance of

the centre point of the fish from the previous sample frame to the following sample

frame indicated the distance travelled between frames. The ZebTrack calculates the total

distance travelled by summing the distances from the previous and current frames along

the total period of recording. The average speed takes into account the distance travelled

by the time spent to cover that specific distance, also calculated by the ZebTrack

software.

2.3. Statistical analysis

Behavioral data for time spent in the compartments and frequency of entry into

each compartment were compared in the morning and afternoon, on days 15 and 30,

using the paired Student’s T-test. We also assessed speed and total distance travelled in

the compartments with respect to the presence of the stimulus. These data were

compared for the period prior to group arrival (15 min before) and that related to the

presence of this stimulus, on days 15 and 30. The same parameters were also compared

between the morning and afternoon in both windows of time (15 min before the group

and 60 min with the group). The paired Student’s t-test was used for both comparisons,

in order to determine behavioral changes caused by the presence/absence of the

stimulus, and at different times of the day. We disregarded all data from the central

compartment, since it was a passage area and feeding site at random times. Thus, the

animal could visit this area to pass from the right compartment to the left or to search

for food.

3. Results

3.1. Responsiveness on day 15

Page 27: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

27

During the 15 min before the group of conspecifics arrived, there was no

significant difference in residence time between the compartments in the morning

(Student’s t-test, df=9 t=1.29 p=0.23) or afternoon (Student’s t-test, df=9 t=0.72 p=0.49)

(Fig. 2a). The frequency of entry into the morning compartment was higher in the

morning (Student’s t-test, df=9 t=2.46 p<0.001; Fig. 2c), but did not differ in the

afternoon (Student’s t-test, df=9 t=0.15 p=0.88).

During the presence of the group, residence time in the morning compartment

was higher in the morning (Student’s t-test, df=9 t=5.19 p<0.001), and in the afternoon

compartment in the afternoon (Student’s t-test, df=9t=-3.18 p=0.01) (Fig. 2b). We

obtained a similar result for frequency of entry into the compartments in the morning

(Student’s t-test,df=9 t=5.22 p<0.001), and afternoon (Student’s t-test, df=9 t=-2.93

p=0.02) (Fig. 2d).

The average speed recorded was lower in the 60 min in which the group was

present, when compared to the 15 min before their arrival, in both the morning

(Student’s t-test, df=9t=8.18 p<0.001) and the afternoon (Student’s t-test, df=9 t=2.33

p=0.04; Fig. 3a). The total distance travelled by the individuals was greater during

exposure to the group, only in the afternoon (Student’s t-test, morning df=9 t=-0.72

p=0.49; afternoon df=9 t=-2.36 p=0.04; Fig. 3b). When the parameters were compared

between the morning and afternoon for each time period (15 min before the group and

60 min with the group), there was no significant difference in average speed (Student’s

t-test, df=9 t=0.17 p=0.87; Fig. 3a) or total distance travelled (Student’s t-test, df=9

t=0.59 p=0.57; Fig. 3b) in the 15 min before the group arrived, or during the 60 min of

exposure to them (Student’s t-test, average speed df=9t=-1.65 p=0.14; total distance

travelled df=9 t=0.48 p=0.64; Fig. 3).

3.2. Determination of learning on day 30

Page 28: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

28

In the 15 min before the group was introduced into the tank, the fish remained

mostly in the morning compartment in the morning (Student’s t-test, df=9 t=6.68

p<0.001; Fig. 4a), but in the afternoon there was no difference between the time spent in

each compartment (Student’s t-test, df=9 t=-1.95 p=0.08). The frequency of entry was

also higher in the morning compartment in the morning (Student’s t-test, df=9 t=2.55

p=0.03) and the afternoon compartment in the afternoon (Student’s t-test, df=9 t=-2.18

p=0.05) (Fig. 4c).

During the 60 min that the group was expected to arrive, even in the absence of a

stimulus, the fish remained for a longer time in the morning compartment in the

morning (Student’s t-test, df=9 t=3.41 p=0.01) and the afternoon compartment in the

afternoon (Student’s t-test, df=9 t=-3.28 p=0.01) (Fig. 4b). The frequency of entry into

the compartments was higher in the morning (Student’s t-test, df=9 t=5.83 p<0.001) and

afternoon (Student’s t-test, df=9 t=-3.73 p=0.01) (Fig. 4d).

There was no significant difference in average speed between the 15 min preceding the

group’s arrival and the 60 min that the group was expected to arrive, in both the

morning and afternoon (Student’s t-test, morning df=9 t=-0.31 p=0.77, afternoon df=9

t=-0.59 p=0.57; Fig. 5a). The total distance travelled also did not differ between the 15

min prior to the group’s arrival and the time it was usually in the tank, in the morning

(Student’s t-test, df=9 t=-0.97 p=0.36), or the afternoon (Student’s t-test, df=9 t=0.67

p=0.52) (Fig. 5b). The parameters also did not differ when the morning and afternoon

were compared for each time period (15 min before the arrival of the group and 60 min

without it), both during the 15 previous minutes (Student’s t-test, average speed df=9

t=-1.31 p=0.22; total distance travelled df=9 t=0.09 p=0.93), and in the 60 min without

the presence of the group (Student’s t-test, average speed t=-1.64 p=0.13; total distance

travelled df=9 t=0.53 p=0.61) (Fig. 5).

Page 29: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

29

4. Discussion

Our results show that zebrafish not only stayed longer where conspecifics were

present at predetermined times, but also exhibited anticipatory ability, remaining longer

and visiting more frequently the compartment of the tank where the group of

conspecifics was present, for 15 min before the stimulus itself was offered. These

results are relevant, since they indicate that zebrafish are not only able to associate

environmental cues (time and space) with important events (social stimulus), but also

suggests the ability to anticipate relevant signs.

Few studies have discussed the ability of time-place association in fish, and to

the best of our knowledge, there are only 10 studies in the literature on the issue (Reebs,

1993, 1996, 1999; Gomez-Laplaza and Morgan, 2005; Delicio et al., 2006; Barreto et

al., 2006; Delício and Barreto, 2008; Heydarnejad and Purser, 2008; Ebrahimi et al.,

2013; Brannas, 2014), most of which use groups of fish and all of them use food as the

learning stimulus.

In our study, we used a group of 5 zebrafish as a time-place learning stimulus. In

the 15 minutes before the group arrived, the zebrafish entered the correct compartment

more frequently only in the morning. Although the time spent in the compartments did

not differ between the morning and afternoon (Fig. 2a), the greater frequency observed

in the morning (Fig. 2c) indicates anticipation of the stimulus. Anticipatory activity has

previously been demonstrated in groups of Arctic char (Salvelinus alpinus) when faced

with a food stimulus (Brannas et al., 2005). Anticipating a temporal event may be

advantageous, providing benefits in terms of food, partners, or refuge acquisition (Davis

and Bardach, 1965; Reebs and Gallant, 1997). However, this did not occur in the

afternoon, possibly because a 15-day period may not have been sufficient for

individuals to memorize the exact time of stimulus presentation. Moreover, light may

Page 30: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

30

have been used to predict the group’s arrival, favoring the perception of the time in the

morning that this took place, since the stimulus occurred 1 hour after the onset of the

light phase (7 am). In the afternoon, the stimulus occurred 1 hour before lights off (7

pm), such that the animals must have had more difficulty in associating the group’s

arrival with the subsequent light cue.

On day 15 of behavioral records, the experimental animals remained

significantly longer near the group of conspecifics during the exposure time in the

morning and afternoon (Fig. 2a and b). This reinforced the importance of conspecifics

for zebrafish, confirming the social behavior reported in other studies (Wright et al.,

2003; McRobert, 2004; Ruhl and McRobert, 2005; Engeszer et al., 2007; Paciorek and

MCRobert, 2012). With respect to the average speed, it was higher in the 15 min before

the group’s arrival, both during the morning and the afternoon (Fig. 3a), indicating fish

decreased swimming speed and stayed longer with the group during both presentation

time periods.

Studies on time-place learning usually used long testing times (Reebs, 1996;

Widman et al., 2000; Delicio et al., 2006; Ebrahimi et al., 2013), since they report on

learning that involves not only entrainment of the internal oscillator, but also the daily

routine of time and place association (Biebach, 1989). Thus, after 30 days of the

experiment we observed that in the 15 min before the presence of the stimulus, the

animals entered more frequently (Fig. 4c) and spent more time in the correct

compartments (Fig. 4a), in both the morning and afternoon. These results corroborate

the hypothesis of a circadian strategy in the time-place learning process. According to

Carr and Wilkie (1999), animals that use circadian strategy learn that the time of the

event has fixed periodicity, which is associated with different stages of endogenous

circadian phases. Thus, animals can use this information to predict the exact time that an

Page 31: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

31

event must occur. Indeed, studies with rats show anticipation of time-place learning in a

T-maze with food reward (Deibel and Thorpe, 2013).

How some animals learn to associate time-place stimuli and others do not,

remains largely unknown. Many animals live in environments in which food resources,

sexual partners and predators vary periodically and predictably over time (Rijnsdorp et

al., 1981; Silver and Bittman, 1984; Becker et al., 1993; Wilkie et al., 1996). When

individuals predict events and learn to associate them with the place and time of

occurrence, they may obtain advantages, which are likely linked to the evolution of

cognitive and circadian systems (Enright, 1970; Daan, 1981; Aschoff, 1989; Reebs,

1996; Carr et al., 1999). Evidence that time-place learning is associated with

endogenous circadian rhythm was proposed by Van der Zee et al. (2008). These authors

showed that Cry1 and Cry2 knockout mice were unable to learn time-place association,

while wild mice learned in both circadian cycle and under constant light. The biological

clock includes an auto-regulated and oscillating temporizing system with defined

anatomical structures and DNA coded oscillators (Marques and Menna-Barreto, 2003).

Even though only few studies approach the system structure in zebrafish, it is known

that this species presents a biological clock (Cahill et al., 1998).

One could argue that instead of time-place learning based on the circadian

timing, fish may have shown win-stay, lose-shift strategy. This possibility, however,

may be discarded in the present study because win-stay, lose-shift strategy use to occur

within a shorter than 8h period of time and the absence of the shoal in the morning

compartment in the morning period would lead to an increase in the time spent in the

afternoon compartment, or, at least a higher frequency of entries in the afternoon

compartment, indicating the fish were checking the afternoon compartment. However,

Page 32: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

32

we observed fish stayed longer in the morning compartment during the morninga and in

the afternoon compartment during the afternoon (Fig. 4b and d).

Therefore, our results regarding the time zebrafish spent on day 30 in each

compartment as a function of the stimulus (Fig. 4b), in which learning was tested

without the presence of a social stimulus, shows the time-place learning ability of this

animal. Thus, we corroborated earlier studies with fish (Reebs, 1993, 1996, 1999;

Gomez-Laplaza and Morgan, 2005; Barreto et al., 2006; Delicio et al., 2006; Delício

and Barreto, 2008; Heydarnejad and Purser, 2008; Ebrahimi et al., 2013; Brannas, 2014)

and found that time-place learning ability may be involved with relevant stimuli for the

species under study, in this case, the social signal. We did not found significant

differences in both average speed and total distance travelled before and during the 60

minutes of test on the 30º day, possibly due the absence of the stimulus fish did not

change swimming behaviour pattern on this probe day.

Finally, it is important to emphasize that in the present study, the sight of a

group of conspecifics was effective as a stimulus for the learning task proposed. A

social stimulus can be effectively used due to the highly social characteristic of

zebrafish (Wright et al., 2003; Engeszer et al., 2004; Luchiari et al., 2015). Other studies

with social signals as a learning stimulus indicate the validity of this signal, such as the

study by Karnik and Gerlai (2012) using a conspecific image for conditioning of place,

Silveira et al. (2015) using conspecifics in associative conditioning tasks, and Luchiari

et al. (2015) using a group of conspecifics in a latent learning task.

Due to the high sociability of zebrafish, future studies on time-place learning in

groups submitted to a stimulus, whether social or food, may contribute to a better

understanding of the animal’s behavior and learning copy strategies. Furthermore, since

our study does not discuss the day-to-day development of the time-place association,

Page 33: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

33

additional studies are needed to follow the behavior patterns throughout the entire

experimental period. Another point for future investigation that could not be covered in

the present study is the offer of food in a different part of the tank, which forced us to

eliminate the central compartment from TPL analyses. Despite not using this

compartment or following the animal for the 30 days of the test, our results are robust in

that they show the time-place association ability of zebrafish, as demonstrated by data

on day 30 of the test (Fig. 4).

In our study, Danio rerio exhibited time-place learning, as well as anticipated

the arrival of the stimulus. Moreover, we showed that the group of conspecifics is an

revevant stimulus for time-place learning tasks, in which there are no records of studies

using this type of stimulus. Here, we used a circadian photoperiod (LD), but time-place

learning studies in the absence of light zeitgebers are needed to investigate TPL without

light signals to indicate time. Studies with molecular analyses must also be conducted to

indicate the association between the biological clock and this type of task, essential for

understanding the endogenous mechanisms involved in TPL.

Acknowledgements

We thank Ms Silveira, V.A.M. and Santos, T.S. for help in collecting data for this

article.

References:

Al-Imari, L., Gerlai, R., 2008. Sight of conspecifics as reward in associative learning in

zebrafish (Danio rerio). Behav. Brain Res. 189, 216-219.

Aschoff, J., 1989. Temporal orientation: Circadian clocks in animals and humans.

Anim. Behav. 37, 881–96.

Page 34: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

34

Barreto, R.E., Rodrigues, P., Luchiari, A.C., Delicio, H.C., 2006. Time-place learning in

individually reared angelfish, but not in pearl cichlid. Behav. Process. 73, 367-372.

Becker, P.H., Frank, D., Sudmann, S.R., 1993. Temporal and spatial pattern of common

tern (Sterna hirundo) foraging in the Wadden Sea. Oecologia. 93, 389–93.

Biebach, H., 1989. Time-and-place learning by Garden warblers, Sylvia Borin. Anim.

Behav. 37, 353–360.

Bilotta, J., Risner, M.L., Davis, E.C., Haggbloom, S.J., 2005. Assessing appetitive

choice discrimination learning in zebrafish. Zebrafish 2, 259–68.

Brannas, E., 2014. Time–place learning and leader–follower relationships in Arctic

charr Salvelinus alpinus. J. Fish Biol. 84, 133–144.

Brannas, E., Berglund, U., Eriksson, L.O., 2005. Time learning and anticipatory activity

in groups of Arctic charr. Ethology 111, 681–692.

Braubach, O.R., Wood, H.D., Gadbois, S., Fine, A., Croll R.P., 2009. Olfactory

conditioning in the zebrafish (Danio rerio). Behav. Brain. Res. 198, 190–198.

Breed, M.D., Stocker, E.M., Baumgartner, L.K.,Vargas, S.A., 2002. Time–place

learning and the ecology of recruitment in a stingless bee, Trigona amalthea

(Hymenoptera, Apidae). Apidologie 33, 251–258.

Brown, C., Laland, K.N., 2003. Social learning in fishes: A review. Fish Fish. 4,

280−288.

Cahill, G. M., Hurd, M. W., Batchelor, M. M., 1998. Circadian rhythmicity in the

locomotor activity of larval zebrafish. Neuroreport. 9, 3445–3449.

Carr, J. A. R., Wilkie, D. M., 1997. Ordinal, phase, and interval timing, in: Bradshaw,

C.M., Szabadi, E. (Eds.), Time and Behavior: Psychological and Neurobiological

Analyses. Elsevier, Amsterdam, pp. 265–327.

Page 35: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

35

Carr, J.A.R., Wilkie, D.M., 1999. Rats are reluctant to use circadian timing in a daily

time-place task. Behav. Process. 44, 287–99.

Daan, S., 1981. Adaptive daily strategies in behavior, in: Aschoff, J. (Ed), Biological

rhythms. Verlag, USA, pp. 275–98.

Davis, R. E., Bardach, J. E., 1965. Time-coordinated prefeeding activity in fish. Anim.

Behav. 13, 154-162.

Deibel, S.H., Thorpe, C.M., 2013. The effects of response cost and species-typical

behaviors on a daily time-place learning task. Learn. Behav. 41, 42-53.

Delicio, H.C., Luchiari, A.C., Barreto, R.E., Marcondes, A.L., 2006. Testing time–place

learning in the cichlid fish Nile tilapia. J. Ethol. 24, 195–200.

Dunlap, J.C., 1999. Molecular bases for circadian clocks. Cell 96, 271–290.

Ebrahimi, E., Heydarnejad, M.S., Sattari, M., Bani, A., Kashefi, P., 2013. A test of

time–place learning in single and grouped great sturgeon Huso huso. Acta Ethol. 16,

77–82.

Eddins, D., Petro, A., Williams, P., Cerutti, D.T., Levin, E.D., 2009. Nicotine effects on

learning in zebrafish: the role of dopaminergic systems. Psychopharmacology 202, 103–

9.

Engeszer, R.E., Alberici, D.A., Barbiano, L., Ryan, M.J., Parichy, D.M., 2007. Timing

and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim. Behav. 74,

1269-1275.

Engeszer, R.E., Patterson, L.B., Rao, A.A., Parichy, D.M., 2007. Zebrafish in the wild:

a review of natural history and new notes from the field. Zebrafish 4, 21–40.

Engeszer, R.E., Ryan, M.J., Parichy, D.M., 2004. Learned social preference in

zebrafish. Curr. Biol. 14, 881–884.

Page 36: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

36

Engeszer, R.E., Ryan. M.J., Parichy, D.M., 2004. Learned social preference in

zebrafish. Curr. Biol. 14, 881−884.

Enright, J. T., 1970. Ecological aspects of endogenous rhythmicity. Rev. Ecol. Syst.1,

221-238.

Finke, I., 1958. Zeitgedächtnis und Sonnenorientierung der Bienen Lehramtsarbeit

Naturw. Ludwig Maximilians University Munich, Munich.

Godin, J.G.J., Classon, L.J., Abrahams, M.V., 1988. Group vigilance and shoal size in a

small characin fish. Behaviour 104, 29–40.

Gómez-Laplaza, L.M., Morgan, E., 2005. Time–place learning in the cichlid angelfish,

Pterophyllum scalare. Behav. Process. 70, 177–181.

Heydarnejad, M.S., Purser, J., 2008. Specific individuals of rainbow trout

(Oncorhynchus mykiss) are able to show time-place learning. Turk. J. Biol. 32, 209-229.

Karnik, I., Gerlai, R., 2012. Can zebrafish learn spatial tasks? An empirical analysis of

place and single CS-US associative learning. Behav. Brain. Res. 233, 415–421.

Kerr, J. P., 1963. Grouping behaviour of the zebrafish as influenced by social isolation.

Am. Zool. 2, 532-533.

Koltermann, R., 1974. Periodicity in the activity and learning performance of the honey

bee in experimental analysis of insect behavior, in: Browne, B.L. (Ed), Experimental

Analysis of Insect Behaviour. Springer-Verlag, Berlin, pp. 218–227.

Krause, J., Ruxton, G.D., 2002. Living in Groups. Oxford University Press, Oxford.

Luchiari, A.C, Freire, F.A.M., 2009. Effects of environmental colour on growth of Nile

tilapia, Oreochromis niloticus (Linnaeus, 1758), maintained individually or in groups. J.

Appl. Ichthyol. 2, 162-167.

Page 37: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

37

Luchiari, A.C., Salajan, D.C., Gerlai, R., 2015. Acute and chronic alcohol

administration: Effects on performance of zebrafish in a latent learning task. Behav.

Brain Res. 282, 76-83.

Marques, N., Menna-Barreto, L., 2003. In: Marques, N. and Menna-Barreto, L. (Ed).

Cronobiologia: Princípios e Aplicações. São Paulo, pp. 224.

McRobert, S.P., 2004. Shoaling behavior in fish, in: Bekoff, M. (Ed). The Encyclopedia

of Animal Behavior. Phoenix, Greenwood, pp. 1012−1016.

Means, L.W., Ginn, S.R., Arolfo, M.P., Pence, J.D., 2000. Breakfast in the nook and

dinner in the dining room: time-of-day discrimination in rats. Behav.Process. 49, 21–33.

Mulder, C. K., Gerkema, M. P., Van der Zee, E. A., 2013. Circadian clocks and

memory: time-place learning. Front. Mol. Neurosci. 6, 8.

Paciorek, T., Mcrobert, S., 2012. Daily variation in the shoaling behavior of zebrafish

Danio rerio. Curr. Zool. 58, 129−137.

Pitcher, T.J., Magurran, A.E., Winfield, I., 1982. Fish in a larger shoals find food faster.

Behav. Ecol. Sociobiol. 10, 149-151.

Pritchard, V.L., Lawrence, J., Butlin, R.K., Krause, J., 2001. Shoal choice in zebrafish,

Danio rerio: The influence of shoal size and activity. Anim. Behav. 62, 1085–1088.

Reebs, S.G., 1993. A test of time–place learning in a cichlid fish. Behav. Process. 30,

273–282.

Reebs, S.G., 1996. Time-place learning in golden shiners (Pisces: Cyprinidae). Behav.

Process. 36, 253-262.

Reebs, S.G., 1999. Time-place learning based on food but not on predation risk in a

fish, the Inanga "Galaxias maculatus’’. Ethology 105, 361-371.

Reebs, S.G., 2000. Can a minority of informed leaders determine the foraging

movements of a fish shoal? Anim. Behav. 59, 403–409.

Page 38: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

38

Reebs, S.G., Gallant, B. 1997. Food anticipatory activity as a cue for local enhancement

in golden shiners (Pisces, Cyprinidae, Notemigonus crysoleucas). Ethology 103, 1060–

1069.

Rijnsdorp, A., Daan, S., Dijkstra, C., 1981. Hunting in the kestrel, Falco tinnunculus,

and the adaptive significance of daily habits. Oecologia 50, 391–406.

Ruhl, N., McRobert, S.P., 2005. The effect of sex and shoal size on shoaling behaviour

in Danio rerio. J. Fish Biol. 67, 1318-1326.

Saif, M., Chatterjee, D., Buske, C., Gerlai, R., 2013. Sight of conspecific images

induces changes in neurochemistry in zebrafish. Behav. Brain Res. 243, 294–9.

Silveira, M. M., Oliveira, J. J., Luchiari, A. C., 2015. Dusky damselfish Stegastes fuscus

relational learning: evidences from associative and spatial tasks. J. Fish Biol. 86, 1109-

1120.

Silver, R., Bittman, E.L., 1984. Reproductive mechanisms: Interaction of circadian and

interval timing. Ann. NY Acad. Sci. 423, 488–514.

Spence, R., Gerlach, G., Lawrence, C., Smith, C., 2008. The behaviour and ecology of

the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 83, 13–34.

Thorpe, C.M., Wilkie, D.M., 2002. Unequal interval time–place learning. Behav.

Process. 58, 157–166.

Van der Zee, E.A., Havekes, R., Barf, R.P., Hut, R.A., Nijholt, I.M., Jacobs, E.H.,

Gerkema, M.P., 2008. Circadian time-place learning in mice depends on Cry genes.

Curr. Biol. 18, 844–848

Wahl, O., 1932. Neue Untersuchungen über das Zeitgedächtnis der Bienen. J. Comp.

Physiol. 16, 529–589.

Widman, D.R., Gordon, D., Timberlake, W., 2000. Response cost and time–place

discrimination by rats in maze tasks. Anim. Learn. Behav. 28, 298–309.

Page 39: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

39

Wilkie, D.M., 1995. Time-place learning. New Dir. Psychol. Sci. 4, 85-89.

Wilkie, D.M., Carr, J.A.R., Siegenthaler, A., 1996. Field observations of time–place

behaviour in scavenging birds. Behav. Process. 38, 77–88.

Wright, D., Rimmer, L.B., Pritchard, V.L., Krause, J., Butlin, R.K., 2003. Inter and

intra-population variation in shoaling and boldness in the zebrafish (Danio rerio).

Naturwissenschaften 90, 374–377.

Page 40: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

40

Figure 1

Fig. 1. Schematic diagram of the tank used to test time-place learning. On the right, the

morning compartment, on the left, the afternoon compartment (sides were randomized

between subjects). The central compartment allows passage through the two 8 cm-

diameter round windows, one located on the right, the other on the left, preventing the

animal from seeing all the compartments at the same time. The values refer to the areas

of the tank in cm.

Page 41: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

41

Figure 2

Fig. 2. Residence time (a and b) and frequency of entry (c and d) in the morning and

afternoon compartments on day 15 of the experiment with zebrafish (n=10) in a TPL

test. Observations were made between 7:45 and 9:00 am, and 4:45 and 6:00 pm. The

first 15 minutes of observation indicate their ability of anticipating the arrival of the

social stimulus (a and c). During the following 60 minutes, the social stimulus (group

with 5 conspecifics) was maintained in the experimental tank (b and d). * indicates

statistical significance (Student’s t-test, p<0.05) between the compartments

corresponding to each experimental period.

0

700

1400

2100

2800

3500

Morning Afternoon

Res

iden

ce t

ime

(s)

Morning

compartiment

Afternoon

compartiment

a) Anticipation

Morning Afternoon

b) Presence of the group

* *

0

20

40

60

80

100

Morning Afternoon

Fre

qu

ency

of

entr

y

Time of the day

c) Anticipation

*

Morning Afternoon

Time of the day

d) Presence of the group

*

*

Page 42: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

42

Figure 3

Fig. 3. Mean velocity (a) and total distance travelled (b) by the zebrafish (n=10) on day

15 of the experimental test for TPL. The animals were observed for 15 minutes before

presentation of the social stimulus (from 7:45 to 8:00 am, and from 4:45 and 6:00 pm)

and for the 60 minutes that the stimulus was present (from 8:00 to 9:00 am, and from

5:00 to 6:00 pm). * indicates statistical significance (Student’s t-test, p<0.05) between

the period before presentation of the stimulus and during the presence of the social

stimulus.

0

5

10

15

20

Anticipation Presence of the stimulus

Aver

age

spee

d (

cm/s

)

a)

0

800

1600

2400

3200

4000

Anticipation Presence of the stimulus

To

tal

dis

tan

ce t

ravel

led

(cm

)

Morning Afternoonb)

*

Page 43: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

43

Figure 4

Fig. 4: Residence time (a and b) and frequency of entry (c and d) in the morning and

afternoon compartments on day 30 of the experiment with zebrafish (n=10) in the TPL

test. Observations were made from 7:45 to 9:00 am, and from 4:45 to 6:00 pm. The first

15 minutes of observation indicate the ability to anticipate the arrival of the social

stimulus (a and c). During the next 60 minutes, the social stimulus was not introduced

into the experimental tank (b and d). * indicates statistical significance (Student’s t-test,

p<0.05) between the compartments corresponds to each experimental period.

0

500

1000

1500

2000

2500

3000

Morning Afternoon

Res

iden

ce t

ime

(s)

Morning

compartiment

Afternoon

compartiment

a) Anticipation

*

Morning Afternoon

b) Test

0

20

40

60

80

100

120

140

Morning Afternoon

freq

uen

cy o

f en

try

Time of the day

c) Anticipation

Morning Afternoon

Time of the day

d) Test

Page 44: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

44

Figure 5

Fig. 5. Mean velocity (a) and total distance travelled (b) by the zebrafish (n=10) on day

30 of the TPL experimental test. The animals were observed for 15 minutes before

presentation of the social stimulus (from 7:45 to 8:00 am, and from 4:45 to 6:00 pm)

and during the period in which the stimulus was present, but without the presence of

social stimulus (from 8:00 to 9:00 am, and from 5:00 to 6:00 pm). * indicates statistical

significance (Student’s t-test, p<0.05) between the periods prior to presentation of the

stimulation and the presence of the stimulus.

0

5

10

15

20

Anticipation Test

Aver

age

spee

d (

cm/s

)

a)

0

1000

2000

3000

4000

Anticipation Test

To

tal

dis

tan

ce t

ravel

led

(cm

)

Morning

Afternoon

d)

Page 45: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

45

Artigo 2: a ser submetido para publicação na revista Behavioural Processes

Time-place learning and activity profile under constant light and constant dark in

zebrafish (Danio rerio)

Clarissa de Almeida Moura, Jéssica Polyana da Silva Lima, Vanessa Augusta

Magalhães Silveira, Mário André Leocadio Miguel, Ana Carolina Luchiari*

Departamento de Fisiologia, Centro de Biociências, Universidade Federal do Rio

Grande do Norte, Natal, RN, Brazil.

*Corresponding Author: Departamento de Fisiologia, Centro de Biociências,

Universidade Federal do Rio Grande do Norte, PO BOX 1511, 59078-970 Natal, Rio

Grande do Norte, Brazil. Phone: +55 84 32153409, Fax: +55 84 32119206, E-mail:

[email protected]

Abstract

The ability to learn about the signs of variability in space and time is known as time-

place learning (TPL). To adjust the circadian rhythm, animals use stimuli that varies

regularly, such as light, temperature, food or even social stimuli. Because light is the

most important environmental cue, we asked how a diurnal animal would perform TPL

if this cue was removed. Zebrafish has been extensively studied in the chronobiology

area due to it diurnal chronotype, thus, we studied the effects of constant light and

constant dark on the time-place learning and acitivity profile in zebrafish. Our data

show that under constant light and dark condition, zebrafish was not able of TPL.

Moreover, even after 30 days under the constant conditions, it does not show free run,

but constant light leaded to higher activity and less rhythmicity.

Keywords: time-place learning, zebrafish, constant light, constant dark, circadian

rhythm.

Page 46: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

46

1. Introduction

The availability of food, sexual partners, predators and other biologically

relevant stimuli varies both in time and in space (Carr and Wilkie, 1997). To process

temporal and spatial information, the animals use external cues such as light and

temperature to adjust the internal clock to the rhythm of daily variation (Dunlap, 1999).

Thus, a stimulus which varies regularly can be exploited effectively, providing adaptive

advantages (Reebs, 2002). The ability to learn about the variability of signs in the space

and time is known as space-time learning (TPL). According Gallistel (1990), the

occurrence of a biologically significant event promotes the formation of a memory code

that includes the type of event, the time and place of the occurrence. This ability is

related to the conection between the internal circadian system and associative memory

(Mulder et al., 2013).

Due to the 24h duration of the sidereal day, the vast majority of living beings are

subject to predict light and thermal fluctuations within this period (Kuhlman et al.,

2015) and use this information to estimate time. To adjust the circadian rhythm, the

animals use environmental cues (zeitgebers), which can be light, temperature (Aschoff,

1954) and even social stimuli (Erkert et al., 1986). However, light is the most

remarkable zeitgeber, because the majority of the animals present photoreceptive cells,

and thus can perceive light fluctuations throughout the day (Bell-Pedersen et al., 2005).

However, under constant light conditions (24h light or 24h dark), the organisms still

maintain rhythmicity, guided by endogenous regulators of the biological cycle (Johnson

et al., 2004; Weger et al, 2013). Therefore, even in free running, a set of self-regulated

molecular mechanisms generates the circadian rhythm throught gene expression

(Amaral et al., 2014), and allows organisms to predict and anticipate events that occur

within a period of 24 hours (Koukkari and Sothern, 2006).

Page 47: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

47

Among the studies on learning related to the circadian rhythm, bees were the

pioneers to show TPL (Wahl, 1932; Finke, 1958), suggesting they possess a circadian

oscillator that allows for monitoring time (Pittendrigh et al, 1958 ). After these studies,

several others have found signs of both temporal and spatial learning linked to the

endogenous clocks. Starlings (Sturnus vulgaris) use internal oscillators to get

orientation regarding the position of an artificial sun (Kramer, 1950), Long-Evans rats

show the ability to locate food in different sites depending on the time of day (Boulos

and Logothetis, 1990) and various fish species (Inanga Galaxias maculatus, angelfish

Pterophyllum scalare, rainbow trout Oncorhynchus mykiss) present TPL based on food

(Reebs, 1999; Gomez-Laplaza and Morgan, 2005; Heydarnejad, 2008).

In addition to abiotic zeitgebers that favor ritimicity and learning, recurrent

visual, olfactory, auditory or tactile signals from one individual to another can entrain

an animal rhythm, and thus be considered a social synchronizer (Rajaratnam and

Redman, 1999). Several social species have their rhythms influenced by social cues,

such as rodents (Crowley and Bovet, 1980; Mrosovsky, 1988) and primates (Erkert and

Schardt, 1991). A study on common marmosets (Callithrix jacchus) living under light-

dark cycle showed that the circadian activity profile of these animals is modulated by

social interaction (Melo et al., 2013). Although the social stimuli can act as a zeitgeber,

there is no evidence of its role in the temporal and spatial learning. Knowing that

zebrafish (Danio rerio) is a highly social species that prefers swimming in groups

(Pritchard et al., 2001; Larson et al, 2006; Gerlai, 2014) and that presents TPL response

based on social reward (Moura and Luchiari, 2015), the aim of this study was to test the

time-place learning ability of zebrafish in the absence of light signals (constant light and

constant dark).

Page 48: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

48

Zebrafish is considered a promising animal model, both for its high practicality

of storage and maintenance as the high physiological and behavioral similarity to

mammals (Ingham, 2009), allowing translational studies. In addition to these

advantages, the zebrafish has been extensively studied in the chronobiology (Vatine et

al., 2011) because of it diurnal activity pattern (Paciorek and McRobert, 2012), which

favors its translational research, opposite to rodents that are nocturnal. In this sense, we

use the zebrafish to study the effects of constant light or constant dark for the time-place

learning, offering social stimulus as reward.We hypothetized that if social stimulus

could be used as a synchronizer element, allowing rhythm, fish will increase and

decrease activity according to the stimulus presentation and TPL will also occur.

2. Material and methods

2.1. Animals and procedures

Zebrafish Danio rerio (Hamilton, 1822) were obtained from a local fish farm

(Natal, Rio Grande do Norte state) and kept in stocking tanks (2 fish/L) with aired and

filtered water. Four 50L tanks make up one stocking unit in the closed water circulation

system, with mechanical, biological and chemical filtration, in addition to UV

disinfection. Water was maintained at 28±1°C, with pH 7.2 and low levels of

ammonium and nitrite. The light cycle (fluorescent light, 150 Lux) was fixed at light-

dark (12:12 LD), with the start of the light phase at 7 am. The fish were fed commercial

pellets twice a day (38% protein, 4% lipids, Nutricom Pet) and Artemia salina.

Eighteen adult zebrafish of both sexes from the afore mentioned stock were used

to test time-place learning. All the procedures with the animals were authorized by the

Animal Ethics Committee of Universidade Federal do Rio Grande do Norte (CEUA

039/2015).

2.2. Experimental design

Page 49: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

49

The experimental animals were individually transferred to testing tanks (100 x

25 x 25cm; length x width x height), divided horizontally into three same-size

compartments (33 cm long): one central and two lateral (same procedure of Moura and

Luchiari 2016). The compartments were separated by opaque dividers, each with an 8

cm-diameter circular passage that allowed the fish to swim between the compartments.

The passage was located on the right of the right side divider and on the left of the left

side divider, such that the fish could not visualize more than two compartments at the

same time, thereby preventing the stimulus placed in one of the side compartments from

being seen when the animal was in the opposite side compartment. A cylindrical open-

front receptacle (10 cm in diameter and 10 cm high) was fixed to the upper part of the

lateral walls, and used to offer the stimulus (conspecific group) at specific times. The

side compartments were denominated morning compartment and afternoon

compartment. Each tank was constantly aerated through an external filter (JEBO 50,

250L/h) located in the central compartment and air stones in each side compartment.

Animals were kept for 30 days under the above experimental conditions. A

group of 5 zebrafish (same size and age) were introduced every day into the receptacle

located in the morning compartment at 8 am and removed at 9 am, and into the

receptacle of the afternoon compartment at 5 pm and removed at 6 pm, acting as a

stimulus for the experimental fish to occupy the compartment where the group was

placed. The group was introduced through a receptacle (500ml) connected to a handle

(2m) so that the experimenter could not be seen by the animals, which were separated

by an opaque curtain. Food (artemia) was offered daily (once a day) at random times,

always in the central compartment so food would not be associated with any stimulus or

time.

Page 50: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

50

To verify if the time-place learning occurs in constant light conditions, two

groups were tested: constant light group (LL; n=8) and constant dark group (DD; n=10).

In constant light group, the animals were exposed to constant light (150 lux) during the

30-day experiment and behavioral was record. The constant dark group followed the

same protocol, but with animals exposed to the total absence of light during the 30 days.

On days 15 and 30 of the experimental period, the behavior of the animals was

recorded on video for 1h and 15 min, starting at 7:45 am and 4:45 pm, in order to

observe animals for 15 minutes before the arrival of the group (stimulus) and during

their entire presence. Behavior on day 15 was recorded in the presence of the group to

estimate the strength of this stimulus. However, on day 30, the animals were recorded

without the presence of the group, in order to assess time-place learning in the

experimental zebrafish.

For the video records, we used a handcam (Sony DCR-SX45 Digital Video

Camera Recorders) placed 1.5m away and in front of the tanks. The behavioral analyses

were conducted using the ZebTrack software, developed in MatLab. The following

parameters were assessed: residence time and frequency of entry in the morning and

afternoon compartments.

2.3 Activity registry

From the 8 fish under the LL condition and 10 fish under the DD condition, 4

fish of each group were also recorded during the 6 last days of the TPL experiment.

Another 4 zebrafish from the stock condition were used to compose the LD condition,

in order to have a control group. These 12 zebrafish were used to evaluate the effects of

constant light conditions on the activity pattern. Fish held under light-dark (12:12 LD;

n=4) were also submitted to the TPL test, in order to have the same conditions of the

other groups. The activity of each fish was recorded using Sony Kit infrared security

Page 51: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

51

cameras CCD, coupled to the DVR unit, for 144h (the last 6 consecutive days of the 30

TPL days). The behavior records were analyzed using the ZebTrack software. We

considered the average speed (cm/s) of each fish every 15 min of the 144h. The data

were plotted on diagrams of actogram, cosinor and waveform.

Actogram is a graphical representation of activity (average speed, y axes) along

24 h length of each plot line (x axes), and successive cycles are ploted below each other.

The cosinor (Halberg et al. 1967) is a model to analyse the biological rhythm consisting

of cosine curves with known periods (in our study, 24 h) to estimate the pattern of the

smooth rhythm. Each point of a cosinusoidal curve of a cosinor is a function of the

average value of the variable of interest. These variables are: MESOR (M, Midline

Estimating Statistic of Rhythm: the rhythm-adjusted mean that differs from the

arithmetic mean when the data are not equidistant and/or do not cover an integer

number of cycles), the amplitude of the oscillation (A), and the acrophase (φ, time at

which the peak of a rhythm occurs) (Refinetti et al., 2007). The waveform is the

prototypical cycle of a rhythm, defined by the amplitude (acrophase pairs of all

harmonic terms included in the model to account for the non-sinusoidality of the signal).

Then, the waveform can be considered an extended cosinor analysis in inferential

statistical chronobiology (Refinetti et al., 2007).

2.4. Statistical analysis

Behavioral data for residence time in the compartments and frequency of entry

in each compartment were compared in the morning and afternoon, on days 15 and 30,

using the student’s T-test. We excluded the data from the central compartment, because

it was a passage area and feeding site at random times, thus, the animal could visit this

area to pass from the morning compartment to the afternoon or to search for food.The

average speed data for activity registry for the lasts 6 days of TPL experiment were

Page 52: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

52

compared between the groups LD, LL and DD using the one-way ANOVA. To verify

the acrophase of each experimental group the Rayleigh test was used (circular statistical

analisys).

3. Results

3.1. Constant light (LL)

On the day 15, during the 15 min before the group of conspecifics arrived, there

was no significant difference in residence time between the morning and afternoon

compartments in the morning (Student’s t-test, t=1.20 p=0.27) or afternoon (Student’s t-

test, t=-0.28 p=0.79), respectively (Fig. 1a). The frequency of entry into the

compartments did not differ in the morning (Student’s t-test, t=1.21 p=0.26; fig. 1c),

neither in the afternoon (Student’s t-test, t=-0.61 p=0.56; fig. 1c).

During presentation of the group, residence time in the morning compartment

was higher in the morning (Student’s t-test, t=8.82 p<0.001), and in the afternoon it was

higher in the afternoon compartment (Student’s t-test t=-4.99 p=0.002) (Fig. 1b). It was

found higher frequency of entry in the morning compartment during the morning

(Student’s t-test, t=4.32 p=0.003), but it did not differ in the afternoon (Student’s t=-

0.36 p=0.73) (Fig. 1d).

On the day 30, in the 15 min before the group was introduced into the tank, there

was no difference between the time spent in each compartment in both the morning

(Student’s t-test, t=-1.22 p=0.26) and the afternoon (Student’s t-test, t=-0.01 p=0.99; fig.

2a). The frequency of entries was higher in the morning compartment in the morning

(Student’s t-test, t=3.75 p=0.007), but it did not differ in the afternoon (Student’s t-test,

t=-1.22 p=0.26; fig. 2c).

Page 53: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

53

During the 60 min that the group should be presented (absence of the stimulus),

the fish remained for a longer time in the afternoon compartment both in the morning

(Student’s t-test, t=-3.41 p=0.01) and afternoon (Student’s t-test, t=-2.37 p=0.05; fig.

2b) times. The frequency of entry did not differ in the morning (Student’s t-test, t=0.97

p=0.36) or the afternoon (Student’s t-test, t=-1.87 p=0.10; fig. 2d).

3.2. Constant dark (DD)

On the day 15, during the 15 min before the group of conspecifics arrived, there

was no significant difference in residence time between the morning and afternoon

compartments in the morning (Student’s t-test, t=0.40 p=0.70) or afternoon (Student’s t-

test, t=-0.05 p=0.96; fig. 3a. The frequency of entry into the right compartments did not

differ in the morning (Student’s t-test, t=-1.51 p=0.15), neither in the afternoon

(Student’s t-test, t=0.52p=0.61; fig. 3c).

During presentation of the group, residence time in the compartments did not

differ in the morning (Student’s t-test, t=-1.84 p=0.08), but it was higher in the

afternoon compartment in the afternoon (Student’s t-test t=2.85 p=0.01; fig. 3b). With

respect to the frequency of entry into the compartments, it was higher in the morning

compartment in the morning (Student’s t-test, t=2,54 p=0,02), but in the afternoon it did

not differ (Student’s t-test, t=-0,80 p=0,43; fig. 3d).

On the day 30, in the 15 min before the group presence into the tank, there was

no difference between the time spent in each compartment both in the morning

(Student’s t-test, t=-1.03 p=0.31) and in the afternoon (Student’s t-test, t=-1.40 p=0.18;

Fig. 4a). The frequency did not differ in the compartments in the morning (Student’s t-

test, t=-0.21 p=0.83), or afternoon (Student’s t-test, t=0.02 p=0.98) (Fig. 4c).

During the 60 min that the group was expected (absence of the stimulus), the fish

remained for a longer time in the morning compartment both in the morning (Student’s

Page 54: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

54

t-test, t=-2.33 p=0.03) and afternoon (Student’s t-test, t=-2.07 p=0.05; fig. 4b) times.

However, there were no differences in the frequency of entries in the compartiments in

the morning (Student’s t-test, t=-0.31 p=0.76) or the afternoon (Student’s t-test, t=0.10

p=0.93; fig. 4d).

3.3. Activity registry

During the last 6 days of the experimental period for TPL, the animals under

constant light (LL), constant dark (DD) and light-dark cycle (LD) showed circadian

rhythm of 1440 min and their activity profile is represented by thea ctogram in fig. 5.

The activity (average speed) mean values statiscallydiffered between the three tested

conditions (One way ANOVA F=4.35 p=0.04; fig. 6a, b and c; table 1): animals under

LL showed higher activity than the animals under DD, but none of them differed from

LD. The animals under LD (Rayleigh r=0.997 p=0.007) and DD (Rayleigh r=0.938

p=0.017) groups showed significant acrophase, the same did not happen for LL group

(Rayleigh r=0.477 p=0.427; Fig. 6d, e and f), however the acrophase did not differ

between the groups (One way ANOVA F=0.979 p=0.412) (Table 2).The center of

gravity was also significant different between the groups (One way ANOVA F=4.83

p=0.04; table 1). There was no significant difference between the groups regarding the

total area under the curve (One way ANOVA F=3.92 p=0.06).

Regarding the subjective light phase (7am to7pm), both the mean interval (I-m

(w)) (One way ANOVA F=3.96 p=0.06) and the area under the curve (I-a (w)) (One

way ANOVA F=3.94 p=0.06) did not differ between the groups (Table 1). The

percentage of activity, as measured by percentage of the total area (I-a (w)%), showed

significant difference between the conditions (One way ANOVA F=10,60 p=0.004;

table 1).

Page 55: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

55

On the last day of the experiment (probe day), in which the stimulus was not

presented to the experimental animals, the activity of the groups was significantly

different (One way ANOVA F=29.98 p<0.001). The animals under LL and LD showed

higher activity than the animals under DD (Fig. 7).

4. Discussion

According to our results, after 30 days under constant light or dark conditions,

zebrafish lost the ability to show TPL based on social stimulus (Figs. 2 and 4), however

it maintains 24h rhythm in both conditions (Table 1). Although zebrafish trained for 30

days to find a conspecific shoal at different time and place have remained longer in

only one of the places during the afternoon and the afternoon, fish from the dark

condition searched for the group on the opposite side of the fish from the light

condition. Furthermore, fish in constant dark decreased overall activity, while the fish in

constant light did not change activity level but it was homogeneously distributed

throughout the 24h-day period.

On the 15th

day of behavior registry, neither groups (LL or DD) showed

differences in time spent or frequency of entry in the compartments 15 min before the

stimulus presentation (Figs. 1a, c and 3a, c). These results suggest that fish could not

anticipate the social stimulus arrival. Under 12:12 LD cycle, zebrafish shows a weak

behavior of anticipation on the 15th

training day (Moura and Luchiari, 2016), and thus

one would expect that after only 15 days of constant light conditions fish would present

much difficulty to forecast the stimulus event. During the 60 min of the conspecific

shoal presence, zebrafish under LL remained significantly longer near the group both in

the morning and afternoon (Fig. 1b), but animals under DD only shoal with the

conspecific group in the afternoon (Fig. 3b). Due to the social nature of zebrafish

Page 56: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

56

(Pritchard et al., 2001; Larson et al, 2006; Gerlai, 2014; Luchiari et al., 2015), the

presence of a shoal is a strong stimulus to drive a single fish towards it. Thus, we

expected the fish to join the group upon its presence, what did not happen in the DD

condition probably because the animals had no visual cues, but chemical and

mechanical cues to locate the group into the tank. Zebrafish is highly responsive to light

(Tamai et al., 2007; Moore and Whitmore, 2014) and its visual system is a very accurate

sense, presumably the most efficient in terms of stimuli detection (Fleisch and

Neuhauss, 2006). While chemical cues quickly disperse into the water and mechanical

cues may not have passed through the compartments, we believe the experimental

zebrafish struggle finding the stimulus in the dark.

Many other studies have already demonstrated TPL in fish (Reebs, 1993, 1996,

1999; Gomez-Laplaza and Morgan, 2005; Delicio et al., 2006; Barreto et al., 2006;

Delício and Barreto, 2008; Heidarnejad and Puser, 2008; Ebrahimi et al., 2013;

Brannas, 2014), all of them using food as the reward. The TPL protocol used here in

was a learning test based on social reward. In a previous study, we (Moura and Luchiari,

2016) have shown that live conspecifics were effective to induce robust TPL behavior

in zebrafish. However, recurrent lack of luminosity signals to indicate day and night

may have TPL implications: zebrafish under LL and DD did not seek for the correct

place in the morning and in the afternoon in order to get the social reward.

On the probe day (day 30; Figs. 2 and 4), both time spent and frequency of

entry in the correct compartments in the 15 min before the stimulus did not differ in the

LL and DD groups, showing the animals could not anticipate the event even after 30

days of training. During the 60 min that the group was expected to be present, zebrafish

under LL remained in the afternoon compartment at both testing times (Fig. 2b), while

fish under DD settle in the morning compartment at both testing times (Fig. 4b).

Page 57: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

57

It is possible that in the absence of the LD cycle, which function as cue to

predict time, the ability of orientation had been impaired, since light is one of most

relevant zeitgebers for the guidance of individuals (Hastings 1991). However, it worth

to notice that fish seem to show some temporal association because it spent most time in

a specific compartment at both tested times, but did not discern the correct side in the

correct time, in other words, there was no time-place association. Tasks involving

appetitive/aversive events, in which the individual needs temporal perception, implicate

on interval timing and circadian rhythm as well as associative learning of predictive

cues (Ralph et al. 2013). According to Cain et al. (2004), time memory can be explained

by the circadian oscillator action, which is modulated by significant experiences. Thus,

in the absence of light zeitgebers (strong cue), the organisms are dependent on weaker

cues (such as temperature and social cue), and the endogenous clock. While our

zebrafish seem not to display free-running conditions (t=1440; Table 1 and 2), interval

timing to predict time and place was not observed. Indeed, learning to associate time

with spatial location is not an easy task (Biebach, 1989), and depending on the specie it

may require a significantly strong zeitgeber to show TPL, for instance the LD cycle.

Despite constant light conditions (LL and DD), the activity registry on the last

6 days of the 30-days test showed that zebrafish maintained circadian rhythm (t=1440).

It may have occurred due to the presence of daily and fixed times of stimulus

presentation, reinforcing the strength of the social cue to circadian rhythm species

(Mrosovsky, 1988). The LL group showed higher activity (average speed) than the DD

group, but similar to LD held fish (Fig. 6 and 7, Table 1). We believe this pattern was

related to the diurnal chronotype of the zebrafish (Hurd et al., 1998) that may have

induced the LL group to maintain light responsiveness. It is in accordance with Elbaz et

al. (2013) studyin which zebrafish kept under LL cycle became more active and lost

Page 58: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

58

rhythm, although our fish under LL showed higher speed, activity was more distributed

over the day time (not concentrated in the interval of the subjective day) and they have

maintained the circadian rhythm probably due to the social cue presented.

According to Yokogawa et al. (2007), under prolonged constant conditions,

adult zebrafish sleep overnight in both LD and DD cycle, but sleep-wake rhythm is

deleted under LL and only returns after about seven days in this condition. Under

constant dark, zebrafish display rhythmic activity and increase it during the subjective

day (Cahill et al., 1998; Hurd et al., 1998). Following the same path, we showed that

only animals under LD and DD had significant acrophase with higher activity occurring

between 12am and 4pm (Figure 6).

Although zebrafish has been recently used as an effective model in cognitive

studies, no data associating LD cycles influence on learning has been provided to date.

In this paper we applied a previously validated protocol to test TPL under constant light

conditions, reaching negative results both for constant light or constant dark, thus

refuting our hypothesis. To demonstrate TPL, an animal must learn to associate

different times of the day at different locations of an event (Reebs, 1996). We also

observed that constant dark leads to decreased but more concentrated activity of the

animals than constant light condition.

Behavioral studies represent an important method to identify neurofunctional

changes. The finding that constant light conditions impair TPL implies that light is more

than only an environmental cue to adjust life rhythm. Moreover, the zebrafish represents

a useful vertebrate model to fulfill many scientific gaps regarding the learning

processes, leading an opportunity to research about the molecular mechanisms involved

in the maintenance of the circadian rhythm. However, our study presents some faults,

such as the need for more observation days beyond 15th

and 30th

days, a longer period of

Page 59: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

59

24h activity registry in order to find out changes in behavior due to the imposition of an

altered light regime, and other LD cycles to test TPL (e. g. 16:08 and 18:06). Even

though other studies in this area are still needed to the better understanding of light

cycle hole on learning, we presented here robust results in respect to the negative effects

constant light conditions to TPL. Furthermore, this paper recommends zebrafish as an

appropriate model for chronobiology, as well as suggests further investments on the

relation between light cycles, some clock genes expression and learning.

Acknowledgements

We thank Ms Tavares, C.P.M., Ms Coutinho, J.R.S. and Mr Canejo, F.W.G. for help in

collecting data for this article.

References

Amaral, F.G., Castrucci, A.M., Cipolla-Neto, J., Poletini, M.O., Mendez, N., Richter,

H.G, Sellix, M.T., 2014. Environmental Control of Biological Rhythms: effects on

development, fertility and metabolism. Journal of Neuroendocrinology. 26, 603-612.

Aschoff, J., 1954. Zeitgeber der tierischen Tages periodik. Naturwissenschaften. 41, 49-

56.

Barreto, R.E., Rodrigues, P., Luchiari, A.C., Delicio, H.C. 2006. Time-place learning in

individually reared angelfish, but not in pearl cichlid. Behav. Process. 73, 367-372.

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Tomas,

T.L., Zoran, M.J., 2005. Circadian rhythms from multiple oscillators: lessons from

diverse organisms. Nat. Rev. Genet. 6, 544−556.

Page 60: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

60

Biebach, H., 1989.Time-and-place learning by Garden warblers, Sylvia-Borin. Anim.

Behav. 37, 353–360.

Biebach, H., Falk, H., Krebs, J.R., 1991. The effect of constant light and phase shifts on

a learned time-place association in garden warblers (Sylvia borin): hourglass or

circadian clock? J Biol Rhythms. 6, 353-65.

Brannas, E., 2014. Time–place learning and leader–follower relationships in Arctic

charr Salvelinus alpinus. J. Fish Biol. 84, 133–144.

Boulos, Z., Logothetis, D.E., 1990. Rats anticipate and discriminate between two daily

feeding times. Physiol. Behav. 48, 523–529.

Cahill, G. M., Hurd, M. W., Batchelor, M. M., 1998. Circadian rhythmicity in the

locomotor activity of larval zebrafish. Neuroreport. 9, 3445–3449.

Cain, S.W., Chou, T., Ralph, M.R., 2004. Circadian modulation of performance on an

aversion-based place learning task in hamsters. Behav. Brain Res. 150, 201–205.

Carr, J. A. R., Wilkie, D. M., 1997. Ordinal, phase, and interval timing. In: Bradshaw,

C.M., Szabadi, E. (Eds.), Time and behavior: Psychological and neurobiological

analyses. Elsevier, Amsterdam, pp. 265–327.

Crowley, M.; Bovet, J., 1980. Social synchronization of circadian rhythms in deer mice

(Peromyscus maniculatus). Behav. Ecol. Sociobiol. 7, 99–105.

Delicio, H.C., Luchiari, A.C., Barreto, R.E., Marcondes, A.L., 2006. Testing time–place

learning in the cichlid fish Nile tilapia. J. Ethol. 24, 195–200.

Delicio, H.C., Barreto, R.E., 2008. Time-place learning in food-restricted NileTilapia.

Behav. Process. 77,126-30.

Dunlap, J.C., 1999. Molecular bases for circadian clocks. Cell. 96, 271–290.

Page 61: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

61

Ebrahimi, E., Heydarnejad, M.S., Sattari, M., Bani, A., Kashefi, P., 2013. A test of

time–place learning in single and grouped great sturgeon Huso huso. Actaethol. 16, 77–

82.

Elbaz, I., Nicholas, S.F., Yoav, G., Lior, A., 2013. Circadian clocks, rhythmic synaptic

plasticity and the sleep-wake cycle in zebrafish. Front. Neural Circuits.7, 9.

Erkert, H.G., Nagel, B., Stephani, I., 1986. Light and social effects on the free-running

circadian activity rhythm in common marmosets (Callithrix jacchus; Primates): social

masking, pseudo-splitting, and relative coordination. Behav. Ecol. Sociobiol. 18, 443-

452.

Erkert, H.G., Schardt, U., 1991. Social entrainment of circadian activity rhythms in

common marmosets, Callithrix jacchus (Primates). Ethology. 87. 189–202.

Finke, I., 1958. Zeitgedächtnis und Sonnenorientierung der Bienen Lehramtsarbeit

Naturw. Fak. Univ. Munchen.

Fleisch, V. C., Neuhauss, S.C.F., 2006. Visual Behavior in Zebrafish. Zebrafish. 3, 191-

201.

Gallistel, C.R., 1990. The organization of learning. Brad ford Books/MIT Press,

Cambridge, MA.

Gerlai, R., 2014. Social behavior of zebrafish: From synthetic images to biological

mechanisms of shoaling. J. Neurosci. Meth. 234, 59–65.

Gómez-Laplaza, L.M., Morgan, E., 2005.Time–place learning in the cichlid angelfish,

Pterophyllum scalare. Behav. Process. 70, 177–181.

Halberg, F., Tong, Y.L., Johnson, E.A., 1967. Circadian system phase, an aspect of

temporal morphology: procedures and illustrative examples. In: von, Mayersbach H.

(Ed). The Cellular Aspects of Biorhythms. Berlin, pp. 20-48.

Page 62: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

62

Hastings, M.H., 1991. Neuroendocrine rhythms. Pharmacol. Ther. 50, 35-71.

Heydarnejad, M.S., Purser, J., 2008. Specific Individuals of Rainbow Trout

(Oncorhynchus mykiss) are able to show Time-Place Learning. Turk J Biol. 32, 209-

229.

Hurd, M. W., Debruyne, J., Straume, M., and Cahill, G. M., 1998. Circadian rhythms of

locomotor activity in zebrafish. Physiol. Behav. 65, 465–472.

Ingham, P.W., 2009. The power of the zebrafish for disease analysis. Hum. Mol. Genet.

18, 107–112.

Johnson, C.H., Elliott, J., Foster, R., Honma, K. &Kronauer, R., 2004. Fundamental

properties of circadian rhythms. In: Chronobiology. Biological Timekeeping (Org. por J.

C. Dunlap, J. J. Loros, P. J. DeCoursey), Sunderland, MA: Sinauer Associates, pp. 67–

105.

Koukkari, W.L., Sothern, R.B., 2006. Introducing Biological Rhythms. Springer, New

York.

Kramer, G., 1950. Weitereanalyse der faktoren, welche die zugaktivität des gekäfigten

vogelsorientieren. Naturwissenschaften. 37, 377–378.

Kuhlman, S.J., Mackey, S.R., Duffy, J.F., 2015. Workshop I: Introduction to

Chronobiology. Cold Spring HarbSymp Quant Biol. 72, 1-6.

Larson, E.T., O’Malley, D.M.O., Melloni, R.H., 2006. Aggression and vasotocin are

associated with dominant-subordinate relationships in zebrafish. Behav Brain Res. 167,

94–102.

Page 63: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

63

Melo, P., Gonçalves, B., Menezes, A., Azevedo, C., 2013. Socially adjusted synchrony

in the activity profiles of common marmosets in light-dark conditions. Chronobiology

International. 30, 818–827.

Moore, H.A. & Whitmore, D., 2014. Circadian Rhythmicity and Light Sensitivity of the

Zebrafish Brain. Plos One. 9, 86176.

Moura, C.A., Luchiari, A.C., 2016. Time-place learning in the Zebrafish (Danio rerio).

Behav. Process. In press.

Mrosovsky, N., 1988. Phase response curves for social entrainment. J. Comp. Physiol.

162, 35–46.

Mrosovsky, N., 1988. Phase response curves for social entrainment. J. Comp. Physiol.

162, 35–46.

Mulder, C. K., Gerkema, M. P., Van der Zee, E. A., 2013. Circadian clocks and

memory: time-place learning. Front Mol. Neurosci. 6, 8.

Paciorek, T., Mcrobert, S., 2012.Daily variation in the shoaling behavior of zebrafish

Danio rerio. Current Zoology. 58, 129−137.

Pittendrigh, C., Bruce,V., Kaus, P., 1958. On the significance of transientes in daily

rhythms. Proc. Natl. Acad. Sci. U.S.A. 44, 965–973.

Pritchard, V.L., Lawrence, J., Butlin, R.K., Krause, J., 2001. Shoal choice in zebrafish,

Danio rerio: The influence of shoal size and activity. Anim. Behav. 62, 1085–1088.

Rajaratnam, S.M.W., Redman, J.R., 1999. Social contact synchronizes free-running

activity rhythms of diurnal palm squirrels. Physiology and Behavior. 66, 21–26.

Ralph, M. R., Sam, K., Rawashdeh, O. A., Cain, S.W., Ko, C.H., 2013. Memory for

Time of Day (Time Memory) Is Encoded by a Circadian Oscillator and Is Distinct From

Other Context Memories. Chronobiol. Int. 30, 540–547.

Page 64: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

64

Reebs, S.G., 2002. Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish

Biol. Fish. 12, 349–371.

Reebs, S.G, 1999. Time-Place Learning Based on Food but not on Predation Risk in a

Fish, the Inanga "Galaxias maculatus’’. Ethology. 105, 361-371.

Reebs, S.G., 1996. Time-place learning in golden shiners (Pisces: Cyprinidae). Behav.

Process. 36, 253-262.

Reebs, S.G., 1993. A test of time-place learning in a cichlid fish. Behav. Process. 30,

273–282.

Refinetti, R., Lissen, G.C., Halberg, F., 2007. Procedures for numerical analysis of

circadian rhythms. Biol. Rhythm. Res. 38, 275-325.

Tamai, T.K., Young, L.C., Whitmore, D., 2007. Light signaling to the zebrafish

circadian clock by Cryptochrome1a. Proc. Natl. Acad. Sci. 104, 14712-14717.

Tovin, A., Alon, S., Ben-Moshe, Z., Mracek, P., Vatine, G., Foulkes, N. S., et al., 2012.

Systematic identification of rhythmic genes reveals camk1gb as a new element in the

circadian clockwork. PLoS Genet. 8, 1003116.

Vatine, G.,Vallone, D., Gothilf, Y., Foulkes, N.S., 2012. It's time to swim! Zebrafish

and the circadian clock. 585, 1485-1494.

Wahl, O., 1932. Neue Untersuchungenüber das Zeitgedächtnis der Bienen. J. Comp.

Physiol. 16, 529–589.

Weger, M., Weger, B.D., Diotel, N., Rastegar, S., Hirota, T., Kay, S.A., Strähle, U., and

Dickmeis, T., 2013. Real-time in vivo monitoring of circadian E-box enhancer activity:

A robust and sensitive zebrafish reporter line for developmental, chemical and neural

biology of the circadian clock. Dev. Biol. 259-273.

Page 65: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

65

Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., et al.,

2007. Characterization of sleep in zebrafish and insomnia in hypocretin receptor

mutants. Plos. Biol. 5, 277.

Page 66: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

66

Figure 1

Fig. 1. Zebrafish residence time (a and b) and frequency of entry (c and d) in the

morning and afternoon compartments on day 15 of the TPL test (n=8) under constant

light. Observations were made between 7:45 and 9:00 am, and 4:45 and 6:00 pm. The

first 15 min of observation indicate their ability to anticipate the arrival of the social

stimulus (a and c). During the following 60 min, the social stimulus (group with 5

conspecifics) was maintained inside the experimental tank (b and d). * indicates

statistical significance (Student’s t-test, p<0.05) between the compartments

corresponding to each experimental period.

0

500

1000

1500

2000

2500

3000

Morning Afternoon

Res

iden

ce t

ime

(s)

a) 15' before shoal arrival Morning compartiment

Afternoon compartiment

Morning Afternoon

b) 60' with shoal

0

10

20

30

40

50

60

70

80

90

100

Morning Afternoon

Fre

qu

ency

of

entr

y

Time of the day

c) 15' before shoal arrival

Morning Afternoon

Time of the day

d) 60' with shoal

Page 67: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

67

Figure 2

Fig. 2. Zebrafish residence time (a and b) and frequency of entry (c and d) in the

morning and afternoon compartments on day 30 of the TPL experiment (n=10) under

constant light. Observations were made from 7:45 to 9:00 am, and from 4:45 to 6:00

pm. The first 15 minutes of observation indicates the ability to anticipate the arrival of

the social stimulus (a and c), while the next 60 min indicates the ability to learn time

and place of the stimulus presentation (b and d). * indicates statistical significance

(Student’s t-test, p<0.05) between the compartments in each experimental period.

0

500

1000

1500

2000

2500

3000

Morning Afternoon

Res

iden

ce t

ime

(s)

a) 15' before shoal arrival Morning compartiment

Afternoon compartiment

Morning Afternoon

b) 60' without shoal - TPL

0

10

20

30

40

50

60

70

80

90

100

Morning Afternoon

Fre

qu

ency

of

entr

y

Time of the day

c) 15' before shoal arrival

Morning Afternoon

Time of the day

d) 60' without shoal - TPL

Page 68: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

68

Figure 3

Fig. 3. Zebrafish residence time (a and b) and frequency of entry (c and d) in the

morning and afternoon compartments on day 15 of the experiment (n=8) in constant

dark. Observations were made between 7:45 and 9:00 am, and 4:45 and 6:00 pm. a and

c represent the 15 min before shoal arrival, c and d represent the 60 min in which the

social stimulus was present. * indicates statistical significance (Student’s t-test, p<0.05)

between the compartments corresponding to each experimental period.

0

500

1000

1500

2000

2500

3000

Morning Afternoon

Res

iden

ce t

ime

(s)

a) 15' before shoal arrival Morning compartiment

Afternoon compartiment

Morning Afternoon

b) 60' with shoal

0

10

20

30

40

50

60

70

80

90

100

Morning Afternoon

Fre

qu

ency

of

entr

y

Time of the day

c) 15' before shoal arrival

Morning Afternoon

Time of the day

d) 60' with shoal

Page 69: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

69

Figure 4

Fig. 4.Zebrafish residence time (a and b) and frequency of entry (c and d) in the

morning and afternoon compartments on day 30 of the experiment (n=10) in constant

dark. Observations were made from 7:45 to 9:00 am, and from 4:45 to 6:00 pm. The

first 15 min of observation indicates the ability to anticipate the arrival of the social

stimulus (a and c) and the following 60 min indicates time and place association with

the reward (b and d). * indicates statistical significance (Student’s t-test, p<0.05)

between the compartments corresponds to each experimental period.

0

500

1000

1500

2000

2500

3000

Morning Afternoon

Res

iden

ce t

ime

(s)

a) 15' before shoal arrival Morning compartiment

Afternoon compartiment

Morning Afternoon

b) 60' without shoal - TPL

0

10

20

30

40

50

60

Morning Afternoon

Fre

qu

ency

of

entr

y

Time of the day

c) 15' before shoal arrival

Morning Afternoon

Time of the day

d) 60' without shoal - TPL

Page 70: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

70

Figure 5

Fig. 5: Representative actogram (average speed) ofzebrafish submitted to LD: light dark

cycle, LL: constant light, DD: constant dark during the lasts 6 days of the 30-day TPL

experiment.

Page 71: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

71

Figura 6

Fig. 7: Waveform of the activity (a, b, c) for each group, and representative cosinor

showing the acrophase (d, e, f) of the animals under LD (light-dark cycle), LL (constant

light) and DD (constant dark) conditions on the last 6 days of the TPL test. LD group

showed significant differencein acrophase between 12am and 2pm (Rayleigh, p<0.05).

DD group showed significant difference in acrophase between 2am and 4 am (Rayleigh,

p<0.05). LL group had no significant difference in acrophase(Rayleigh, p>0.05).

Page 72: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

72

Figura 7

Fig. 8: Activity (average speed) of the animals under LD (light-dark cycle), LL

(constant light) and DD (constant darkness) on the probe day (30th

day) of the test for

TPL test. LL and LD groups showed significant higher activity than DD group (One

way ANOVA, p<0.05).

Page 73: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

73

Table 1. Activity variables measured in zebrafish submitted to light-dark cycle (LD),

constant light (LL) and constant dark (DD).

Different letters indicate statistical differences between the groups in the same variable

evaluated (One way ANOVA, p<0.05).

Mean

activity

Center

of

gravity

Total

area

under

the

curve

Mean

interval

Area

under

the

curve

Percentage

of total

area

LD 3.94±0,11ᵃᵇ 740.90ᵃᵇ

364.63 5.00 245.35 64.29ᵃ

LL 4.17±0,39ᵃ

724.45ᵇ

401.07 4.35 213.45 52.66ᶜ

DD 3.20±0,12ᵇ

761.82ᵃ 307.41 3.76 184.62 59.45ᵇ

Page 74: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

74

Anexo 1

Table 2. Cosinor summary of the zebrafish submitted to light-dark cycle (LD),

constant light (LL) and constant dark (DD).

Animals Mesor Amplitude Acrophase %Ve(total)

LD 1 4.11: 4.05~4.17 1.83: 1.72~1.93 797.23:

783.94~810.53

97.20

2 4.04: 3.98~4.10 1.52: 1.41~1.63 807.38:

791.02~823.74

96.88

3 4.027:

3.96~4.090

1.46: 1.35~1.57 823.06:

805.42~840.70

96.65

4 3.60: 3.51~3.70 1.36: 1.19~1.54 783.08:

754.07~812.09

90.81

LL 1 3.75: 3.68~3.82 0.65: 0.53~0.77 908.43:

865.19~951.67

95.25

2 3.96: 3.90~4.020 0.309: 0.20~0.41 784.82:

706.22~863.43

96.83

3 5.32: 5.25~5.40 0.60: 0.47~0.73 970.31:

921.28~1019.34

97.37

4 3.67: 3.58~3.75 0.30: 0.15~0.464 241.75:

118.32~365.18

91.98

DD 1 3.52: 3.35~3.68 1.19: 0.90~1.48 920.57:

864.73~976.4

76.94

2 3.01: 2.88~3.15 0.89: 0.64~1.14 884.12:

818.77~949.47

76.24

3 3.27: 3.12~3.42 1.23: 0.96~1.50 832.051:

781.49~882.61

76.83

4 2.99: 2.88~3.12 0.35: 0.14~0.57 1051.76:

902.03~1201.5

80.28

Period analyzed: 1440 minutes.

Page 75: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

75

CONCLUSÃO GERAL

Nossos estudos nos levam a concluir que o peixe paulistinha é capaz de apresentar

aprendizagem espaço-temporal (TPL) em ciclo claro-escuro (12:12 CE), bem como

antecipar à chegada do estímulo. O grupo de coespecíficos, usado como estímulo para a

aprendizagem, se mostrou um excelente modelo de oferta para testar TPL, corroborando

os estudos sobre o marcado comportamento social de Danio rerio. Os animais expostos

à condições de claro constante e escuro constante não demonstraram TPL, com ambos

os grupos associando apenas um dos lados nos dois horários de teste. No que diz

respeito ao registro de atividade, podemos observar que após 30 dias nas diferentes

condições luminosas testadas, o peixe paulistinha se manteve mais ativo e com

atividade homogeneamente distribuída ao longo do dia. O grupo escuro constante,

apesar de ter apresentado menor atividade, manteve o padrão característico do cronotipo

diurno da espécie, ou seja, maior atividade concentrada na subjetiva fase clara. O peixe

paulistinha manteve ritmo circadiano (t=24h) em todas as condições testadas,

provavelmente não entrando em livre curso devido à presença, em horários diários

fixos, do grupo de coespecíficos que foi utilizado como estímulo. Dessa forma, os

resultados nos levam concluir que as condições prolongadas de luz constante

influenciam marcadamente o padrão de atividade do peixe paulistinha, bem como seu

comportamento padrão de maior atividade diurna, tornando-o mais arrítmico em relação

aos animais expostos ao ciclo claro-escuro e escuro constante. Ademais, é de se destacar

a relevância da pista luminosa, oferecida pelo ciclo-claro escuro, na orientação e

aprendizagem espaço-temporal do peixe paulistinha, o qual apesar de possuir relógio

biológico, necessita desse zeitgeber para apresentar esse tipo de aprendizagem

considerada complexa e adaptativa.

Page 76: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

76

REFERÊNCIAS GERAIS

Amaral, F.G., Castrucci, A.M., Cipolla-Neto, J., Poletini, M.O., Mendez, N.,

Richter, H.G. &Sellix, M.T. 2014. Environmental Control of Biological Rhythms:

Effects on Development, Fertility and Metabolism. Journal of Neuroendocrinology, 26,

603–612.

Aschoff, J. 1960. Exogenous and endogenous components in circadian rhythms. Cold

Spring Harbor Symp. Quant. Biol.,25, 11-28.

Aschoff, J. 1989. Temporal orientation: Circadian clocks in animals and humans.

Animal Behaviour, 37, 881–96.

Barreto, R.E., Rodrigues, P., Luchiari, A.C. & Delicio, H.C. 2006. Time-place

learning in individually reared angelfish, but not in pearl cichlid. Behavioural

Processes, 73, 367-372.

Benyassi, A., Schwartz, C., Coon, S.L., Klein, D.C. & Falcon, J. 2000. Melatonin

synthesis: Arylalkylamine N-acetyltransferases in trout retina and pineal organ are

different. Neuroreport, 11, 255–258.

Biebach, H. 1989.Time-and-place learning by Garden warblers, Sylvia-Borin. Animal

Behaviour. 37, 353–360.

Boujard, T. &Leatherland, J.F. 1992. Circadian rhythms and feeding time in fishes.

Environmental Biology of Fishes, 40, 535-544.

Boulos, Z. &Terman, M. 1980. Food availability and daily biological rhythms.

Neuroscience and Biobehavioural Reviews, 4, 119–31.

Boulos, Z. &Logothetis, D.E. 1990. Rats anticipate and discriminate between two daily

feeding times. Physiology and Behavior, 48, 523–529.

Page 77: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

77

Brannas, E. 2014. Time–place learning and leader-follower relationships in Arctic

charr Salvelinus alpinus. Journal of Fish Biology, 84, 133–144.

Breed, M.D., Stocker, E.M., Baumgartner, L.K. & Vargas, S.A. 2002. Time–place

learning and the ecology of recruitment in a stingless bee. Trigona amalthea

(Hymenoptera, Apidae). Apidologie, 33, 251–258.

Brown, C., Laland, K.N. 2003. Social learning in fishes. A review. Fish and Fisheries,

4, 280−288.

Bünning, E. 1935. ZurKenntnis der Endonomen tages rhythmik beiInsektenand

beiPflanzen. Ber. Deutsch. Bot. Gesellsch., 53, 594-623.

Cahill, G.M. 1996. Circadian regulation of melatonin production in cultured zebrafish

pineal and retina. Brain Research, 708, 177–181.

Calhoun, B. 1975. Social modification of activity rhythm in rodents. Chronobiology, 1,

11.

Carr, J. A. R. & Wilkie, D. M. 1997. Ordinal, phase, and interval timing. In: Time and

behavior: Psychological and neurobiological analyses (Org. por C.M. Bradshaw; E.

Szabadi), pp. 265–327. Amsterdam: Elsevier.

Cermakian, N., Whitmore, D., Foulkes, N.S. &Sassone-Corsi, P. 2000.

Asynchronous oscillations of two zebrafish clock partners reveal differential clock

control and function. Proceedings of the National Academy of Sciences, 97, 4339–4344.

Chandrashekaran, M.K. 1998. Biological rhythms research: a personal account.

Journal of Biosciences, 23, 545-555.

Page 78: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

78

Chen, W.M. &Tabata, M. 2002. Individual rainbow trout Oncorhynchus mykiss

Walbaum can learn and anticipate multiple daily feeding times. Journal of Fish Biology,

61, 1410–1422.

Damiola, F., Le Minh, N., Preitner, N., Kornmann, B., Fleury-Olela, F. &Schibler,

U. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from

the central pacemaker in the suprachiasmatic nucleus. Genes and Development, 14,

2950–61.

Danilova, N., Krupnik, V. E., Sugden, D. &Zhdanova, I. V. 2004. Melatonin

stimulates cell proliferation in zebrafish embryo and accelerates its development. The

FASEB Journal, 18, 751-753.

Delaunay, F., Thisse, C., Marchand, O., Laudet, V. &Thisse, B. 2000. An inherited

functional circadian clock in zebrafish embryos. Science, 289, 297-300.

Dibner, C., Schibler, U. & Albrecht, U. 2010.The mammalian circadian timing

system: organization and coordination of central and peripheral clocks. Annual Review

of Physiology, 72, 517–549.

Dunlap, J.C. 1999. Molecular bases for circadian clocks. Cell, 96, 271-90.

Ehlers, C.L., Frank, E. &Kupfer, D.J. 1988. Social zeitgebers and biological

rhythms: a unified approach to understanding the etiology of depression. Archives

General Psychiatry, 45, 948–952.

Elbaz, I., Nicholas, S.F., Yoav, G. &Lior, A. 2013. Circadian clocks, rhythmic

synaptic plasticity and the sleep-wake cycle in zebrafish. Frontiers in Neural Circuits,

7, 9.

Page 79: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

79

Elmore, S.K., Betrus, P.A. & Burr, R. 1994. Light, social zeitgebers, and the sleep-

wake cycle in the entrainment of human circadian rhythms. Research in Nursing and

Health, 17, 471–478.

Engeszer, R.E., Alberici, D.A., Barbiano, L., Ryan, M.J. &Parichy, D.M. 2007.

Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Animal

Behaviour, 74, 1269-1275.

Farr, L. & Andrews, R.V. 1978. Rank-associated desynchronization of metabolic and

activity rhythms of Peromyscus manculatus in response to social pressure. Comparative

Biochemistry and Physiology, 61, 539-542.

Finke, I. 1958. Zeitgedächtnis und Sonnenorientierung der BienenLehramtsarbeit

Naturw. Fak. Univ. Munchen.

Foster, R.G., Grace, M.S., Provencio, I., De Grip, W.J. & Garcia-Fernandez, J.M.

1994. Identification of vertebrate deep brain photoreceptors. Neuroscience and

Biobehavioral Reviews, 18, 541-546.

Geet, P., Stephenson, D. & Wright, D. E. 1994. Temporal discrimination learning of

operant feeding in goldfish (Carassius auratus). Journal of the Experimental Analysis

of Behavior, 62, 1-13.

Gerlai, R., Lahav, M., Guo, S., Rosenthal, A. 2000. Drinks like a fish: zebra fish

(Danio rerio) as a behavior model to study alcohol effects. Pharmacol. Biochem.

Behav., 67:773–778.

Godin, J.G.J., Classon, L.J., Abrahams, M.V. 1988. Group vigilance and shoal size

in a small characin fish. Behaviour, 104, 29–40.

Page 80: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

80

Halberg, F. 1959. Physiologic 24-hour periodicity, general and procedural

considerations with reference to the adrenal cycle. Zeitschr. Vitamin.-Hormon.-u

Ferment-forsch., 10, 225-296.

Hall, J. & Rosbash, M. 1987. Genetic Analysis of Biological Rhythms. J. Biol.

Rhythms, 2, 153-178.

Hastings, M.H. 1991. Neuroendocrine rhythms. Pharmacology and Therapeutics, 50,

35-71.

Heydarnejad, M.S. & Purser, J. 2008. Specific Individuals of Rainbow Trout

(Oncorhynchus mykiss) are able to show time-place pearning. Turkey Journal of

Biology, 32, 209-229.

Hurd, M.W., Debruyne, J., Straume, M. & Cahill, G.M. 1998. Circadian rhythms of

locomotor activity in zebrafish. Physiology and Behavior, 65, 465−472.

Ingham, P.W. 2009. The power of the zebrafish for disease analysis. Human Molecular

Genetics, 18, 107–112.

Johnson, C.H., Elliott, J., Foster, R., Honma, K. &Kronauer, R. 2004. Fundamental

properties of circadian rhythms. In: Chronobiology. Biological Timekeeping (Org. por J.

C. Dunlap, J. J. Loros, P. J. DeCoursey), pp. 67–105. Sunderland, MA: Sinauer

Associates.

Kavaliers, M. 1978. Seasonal changes in the circadian period of the lake chub,

Couesius plumbeus. Canadian Journal of Zoology, 56, 2591-2596.

Kavaliers, M. 1980. Circadian locomotor activity rhythms of the burbot, Lota lota:

seasonal differences in period length. Journal of Comparative Physiology, 136, 215-

218.

Page 81: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

81

Kavaliers, M. 1980b. Social groupings and circadian activity of the killifish. Fundufus

heteroclitus. Biological Bulletin, 158, 69-76.

Kazimi, N. & Cahill, G. M. 1999. Development of a circadian melatonin rhythm in

embryonic zebrafish. Developmental Brain Research, 117, 47-52.

Kobayashi, Y., Ishikawa, T., Hirayama, J., Daiyasu, H., Kanai, S., Toh, H.,

Fukuda, I., Tsujimura, T., Terada, N., Kamei, Y., Yuba, S., Iwai, S. &Todo, T.

2000. Molecular analysis of zebrafish photolyase/cryptochrome family: Two types of

cryptochromes present in zebrafish. Genes Cells, 5, 725–738.

Koltermann, R. 1974. Periodicity in the activity and learning performance of the honey

bee in experimental analysis of insect behavior. In: Experimental Analysis of Insect

Behaviour (Org. por B. L.Browne), pp. 218–227. Berlin: Springer-Verlag.

Kuhlman, S.J., Mackey, S.R. & Duffy, J.F. 2015. Workshop I: Introduction to

Chronobiology. Cold Spring Harbor Symposia on Quantitative Biology, 72, 1-6.

Landeau, L. &Terborgh, J. 1986. Oddity and the ‘confusion effect’ in predation.

Animal Behaviour, 34, 1372–1380.

Lewis, P.A., Miall, R.C., Daan, S., &Kacelnik, A. 2003. Interval timing in mice does

not rely upon the circadian pacemaker. Neuroscience Letters, 348, 131–134.

Li, X., Montgomery, J., Cheng, W., Noh, J.H. & Hyde, D.R. 2012. Pineal

Photoreceptor Cells Are Required for Maintaining the Circadian Rhythms of Behavioral

Visual Sensitivity in Zebrafish. PlosOne, 7, 0040508.

López-Olmeda, J. F., Madrid, J. A. & Sánchez-Vázquez, F. J. 2006. Melatonin

effects on food intake and activity rhythms in two fish species with different activity

patterns: diurnal (goldfish) and nocturnal (tench). Comparative Biochemistry and

Physiology, 144, 180-187.

Page 82: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

82

Luchiari, A.C., Salajan, D.C., Gerlai, R. 2015.Acute and chronic alcohol

administration: Effects on performance of zebrafish in a latent learning task. Behavioral

Brain Research, 282, 76-83.

Manteifel, B.P., Girsa, I.I. & Pavlov, D.S. 1978. On rhythms of fish behaviour. In:

Rhythmic Activity of Fishes (Org. por J. E. Thorpe), pp. 215-224. London:

Academicpress.

Marques, N. & Menna-Barreto, L. 2003a. Glândula Pineal e Melatonina. In:

Cronobiologia: Princípios e Aplicações (Org. por N. Marques e L. Menna-Barreto), pp.

59. São Paulo: Editora da Universidade de São Paulo.

Marques, N. & Menna-Barreto, L. 2003b. Glândula Pineal e Melatonina. In:

Cronobiologia: Princípios e Aplicações (Org. por N. Marques e L. Menna-Barreto), pp.

224. São Paulo: Editora da Universidade de São Paulo.

Marques, N. & Menna-Barreto, L. 2003c. Glândula Pineal e Melatonina. In:

Cronobiologia: Princípios e Aplicações (Org. por N. Marques e L. Menna-Barreto), pp.

191-222. São Paulo: Editora da Universidade de São Paulo.

Mathis, A., Chivers, D. P. & Smith, R. J. F. 1995. Cultural transmission of predator

recognition in fish: intraspecific and interspecific learning. Animal Behaviour, 51, 185–

201.

Means, L.W., Ginn, S.R., Arolfo, M.P. & Pence, J.D. 2000. Breakfast in the nook and

dinner in the dining room: time-of-day discrimination in rats. Behavioural Processes,

49, 21–33.

Melo, P., Gonçalves, B., Menezes, A. & Azevedo, C. 2013. Socially adjusted

synchrony in the activity profiles of common marmosets in light-dark conditions.

Chronobiology International. 30, 818–827.

Page 83: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

83

Menaker, M., Moreira, L.F. &Tosini, G. 1997. Evolution of circadian organization in

vertebrates. Brazilian Journal of Medical and Biological Research, 30, 305-313.

Mistlberger, R.E. 2011. Neurobiology of food anticipatory circadian rhythms.

Physiology and Behavior. 104, 535–545.

Monk, T.H., Flaherty, J.F., Frank, E., Hoskinson, K. &Kupfer, D.J.

1990. The Social Rhythm Metric: an instrument to quantify the daily rhythms of life.

Journal of Nervous and Mental Disease, 178, 120–126.

Moore-Ede, M.C., Schmelzer, W.S., Kass, D.A. & Herd, J.A. 1976. Internal

organization of the circadian timing system in multicellular animals. Federation

Proceedings, 35, 2333-2338.

Moore, R.Y. 1996. Neural Control of the Pineal Gland. Behavioural Brain Research,

73, 125-130.

Moore, H.A. & Whitmore, D. 2014. Circadian Rhythmicity and Light Sensitivity of

the Zebrafish Brain. Plos One, 9, 86176.

Mrosovsky, N. 1988. Phase response curves for social entrainment. Journal of

Comparative Physiology, 162, 35–46.

Mulder, C. K., Gerkema, M. P. & Van der Zee, E. A. 2013. Circadian clocks and

memory: time-place learning. Frontiers in Molecular Neuroscience, 11, 6-8.

Muller, K. 1973. Seasonal phase shift and the duration of activity time in the burbot,

Lota lota (Pisces, Gadidae). Journal of Comparative Physiology, 84, 357-359.

Muller, K. 1978. Locomotor activity of fish and environmental oscillations. In:

Rhythmic Activity of Fishes (Org. por J. E. Thorpe), pp. 1-20. London: Academic Press.

Page 84: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

84

Naruse, M. &Oishi, T. 1994. Effects of light and food as zeitgebers on locomotor

activity. Zoological Science, 11, 113-119.

Nelson, R.J. &Zucker, I. 1981. Absence of extraocular photoreception in diurnal and

nocturnal rodents exposed to direct sunlight. Comparative Biochemistry and

Physiology, 69, 145-148.

Paciorek, T. &Mcrobert, S. 2012. Daily variation in the shoaling behavior of zebrafish

Danio rerio. Current Zoology, 58, 129−137.

Pando, M.P., Pinchak, A.B., Cermakian, N., &Sassone-Corsi, P. 2001. A cell-based

system that recapitulates the dynamic light dependent regulation of the vertebrate clock.

Proceedings of the National Academy of Sciences, 98, 10178-10183.

Papachristos, E.B., Jacobs, E.H. &Elgersma,Y. 2011. Interval timing is intact in

arrhythmic Cry1/Cry2 deficient mice. Journal of Biological Rhythms, 26, 305–313.

Pitcher, T.J. & Parrish, J.K. 1993. Functions of shoaling behaviour in teleosts. In:

Behaviour of teleost fishes (Org. por T. J. Pitcher), pp. 363-439. London: Chapman &

Hall.

Pittendrigh, C. S. 1960. Circadian rhythms and the circadian organization of living

systems. Cold Spring Harbor Symp. Quant. Bio., 25, 159-184.

Pittendrigh, C. S. 1981. “Entrainment”. In: ASCHOFF, J. (org.). Biological Rhythms:

Hand book of Behavioral Neurobiology. New York, Plenum Press. 4, 95-124.

Rajaratnam, S.M.W. & Redman, J.R. 1999. Social contact synchronizes free running

activity rhythms of diurnal palm squirrels. Physiology and Behavior, 66, 21–26.

Reebs, S.G. 1996. Time-place learning in golden shiners (Pisces: Cyprinidae).

Behavioural Processes, 36, 253-262.

Page 85: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

85

Reebs, S.G. 1999. Time-place learning based on food but not on predation risk in a fish,

the Inanga "Galaxias maculatus’’. Ethology, 105, 361-371.

Reebs, S.G. & Lague, M. 2000. Daily food anticipatory activity in golden shiners: A

test of endogenous timing mechanisms. Physiology and Behavior, 70, 35–43.

Reebs, S.G. 2002. Plasticity of diel and circadian activity rhythms in fishes. Reviews in

Fish Biology and Fisheries, 12, 349–371.

Rensing, L. & Ruoff, P. 2002. Temperature effect on entrainment, phase shifting, and

amplitude of circadian clocks and its molecular bases. Chronobiology International, 19,

807–864.

Rijnsdorp, A., Daan, S. & Dijkstra, C. 1981. Hunting in the kestrel, Falco

tinnunculus, and the adaptive significance of daily habits. Oecologia, 50, 391–406.

Ryer, C. H. & Olla, B. L. 1992. Social mechanisms facilitating exploitation of spatially

variable ephemeral food patches in a pelagic marine fish. Animal Behaviour, 44, 69–74.

Schwassmann, H. O. 1971. Biological Rhythms. In: Hoar, W. S. & D. J. Randall, D. J.

(orgs.). Fish Physiology. Environmental Relations and Behavior, 6, 371-428.

Shen, W.L., Kwon, Y., Adegbola, A.A., Luo, J., Chess, A. & Montell, C. 2011.

Function of rhodopsin in temperature discrimination in Drosophila. Science, 331, 1333–

1336.

Sigurgeirsson, B., Porsteinsson, H., Sigmundsdóttir., S., Lieder, R.,. Sveinsdóttir,

H.S., Sigurjónsson, O.E., Halldórsson, B. Karlsson, K. 2013. Sleep-wake dynamics

under extended light and extended dark conditions in adult zebrafish. Behavioural Brain

Research, 256, 377–390.

Page 86: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

86

Stephan, F. K. 2002. The “other” circadian system: food as a zeitgeber. Journal of

Biological Rhythms, 17, 284–292.

Stokkan, K.A., Yamazaki, S., Tei, H., Sakaki, Y. &Menaker, M. 2001. Entrainment

of the circadian clock in the liver by feeding. Science, 291, 490–3.

Tamai, T.K., Young, L.C., Whitmore, D. 2007. Light signaling to the zebrafish

circadian clock by Cryptochrome 1a. Proceedings oh the National Academy Sciences,

104, 14712– 14717.

Thorpe, C.M. & Wilkie, D.M. 2002. Unequal interval time–place learning.

Behavioural Processes, 58, 157–166.

Tovin, A., Alon, S., Ben-Moshe, Z., Mracek, P., Vatine, G., Foulkes, N. S., Hirsch,

J.J., Rechavi, G., Toyama, R., Coon, S.L., Klein, D.C., Eisenberg, E. &Gothilf, Y.

2012. Systematic identification of rhythmic genes reveals camk1gb as a new element in

the circadian clockwork. Plos Genetics. 8, 1003116.

Vatine, G., Vallone, D., Gothilf, Y., Foulkes, N.S. 2011. It’s time to swim! Zebrafish

and the circadian clock. FEBS Letters, 585, 1485–1494.

Wahl, O. 1932. Neue Untersuchungenüber das Zeitgedächtnis der Bienen. Journal of

Comparative Physiology, 16, 529–589.

Wenger, D., Biebach, H. & Krebs, J.R. 1991. Free-running circadian Rhythm of a

learned feeding pattern in starlings. Naturwissenschaften, 78, 87–89.

Whitmore, D., Foulke, N.S., Straehle, U. &Sassone-Corsi, P. 1998. Zebrafish Clock

rhythmic expression reveals independent peripheral circadian oscillators. Nature

Neuroscience, 1, 701–707.

Page 87: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

87

Whitmore, D., Foulkes, N.S. &Sassone-Corsi, P. 2000. Light acts directly on organs

and cells in culture to set the vertebrate circadian clock. Nature, 404, 87–91.

Widman, D.R., Gordon, D. & Timberlake, W. 2000. Response cost and time–place

discrimination by rats in maze tasks. Animal Learning and Behavavior, 28, 298–309.

Wilkie, D.M. 1995. Time-place learning. New Directions in Psychology Science, 4, 85-

89.

Wilkie, D.M., Carr, J.A.R. & Siegenthaler, A. 1996. Field observations of time–place

behaviour in scavenging birds. Behavioural Processes, 38, 77–88.

Yáñez, J., Busch, J., Anado ´n, R., Meissl., H. 2009. Pineal projections in the

zebrafish (Danio rerio): overlap with retinal and cerebellar projections. Neuroscience,

164, 1712–1720.

Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang,

J., Rosa, F., Mourrain, P. & Mignot, E..2007. Characterization of sleep in zebrafish

and insomnia in hypocretin receptor mutants. Plos Biology, 5, 277.

Zhdanova, I.V., Geiger, D.A., Schwagerl, A.L., Leclair, O.U., Killiany, R., Taylor,

J.A., Rosene, D.L., Moss, M.B., & Madras, B.K. 2002. Melatonin promotes sleep in

three species of diurnal nonhuman primates. Physiology and Behavior, 75, 523–529.

Zhdanova, I. &Reebs, S.G. 2006. Circadian rhythms in fish. Fish Physiology, 24,

197−238.

Ziv, L., Gothilf, Y. 2006. Circadian time-keeping during early stages of development.

Proceedings of the National Academy of Sciences, 103, 4146–4151.

Zordan, M., Costa, R., Fukuhara, C. &Tosini, G. 2000. The molecular biology of the

mammalian circadian clock. Chronobiology International, 4, 433.

Page 88: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE · NATAL 2016 . 2 CLARISSA DE ALMEIDA MOURA APRENDIZAGEM ESPAÇO-TEMPORAL E EFEITOS DAS CONDIÇÕES LUMINOSAS NO APRENDIZADO DO PEIXE PAULISTINHA

UFRN – Campus Universitário – Centro de Biociências Celular Institucional (Claro): 9229-6491 Av. Salgado Filho, S/N – CEP: 59072-970 – Natal/RN e-mail: [email protected]

Universidade Federal do Rio Grande do Norte

COMISSÃO DE ÉTICA NO USO DE ANIMAIS - CEUA

PROTOCOLO N.º 039/2015

Professor/Pesquisador: ANA CAROLINA LUCHIARI

Natal (RN), 17 de setembro 2015.

Certificamos que o projeto intitulado “Aprendizagem espaço temporal do peixe

paulistinha (Danio rerio) sob diferentes fotoperíodos”, protocolo 039/2015, sob a

responsabilidade de ANA CAROLINA LUCHIARI, que envolve a produção, manutenção e/ou

utilização de animais pertencentes ao filo Chordata, subfilo Vertebrata (exceto o homem), para

fins de pesquisa científica encontra-se de acordo com os preceitos da Lei n.º 11.794, de 8 de

outubro de 2008, do Decreto n.º 6.899, de 15 de julho de 2009, e com as normas editadas pelo

Conselho Nacional de Controle da Experimentação Animal (CONCEA), e foi aprovado pela

COMISSÃO DE ÉTICA NO USO DE ANIMAIS da Universidade Federal do Rio Grande do

Norte – CEUA/UFRN.

Vigência do Projeto ABRIL 2016

Número de Animais 30

Espécie/Linhagem Peixes (Danio rerio)

Peso/Idade 0,5g / 6 meses

Sexo Machos e Fêmeas

Origem Adquiridos em Fazendo de Cultivo em Natal-RN

Informamos ainda que, segundo o Cap. 2, Art. 13 do Regimento, é função do

professor/pesquisador responsável pelo projeto a elaboração de relatório de

acompanhamento que deverá ser entregue tão logo a pesquisa for concluída.

Josy Carolina Covan Pontes Coordenadora da CEUA