Series

15
  1 SEQÜÊNCIAS E SÉRIES 1. CÁLCULO SOMATÓRIO Consideremos a seguinte soma indicada : 0 + 2 + 4 + 6 + 8 + 10 + 12 + 14 + ... + 100. Podemos observar que cada parcela é um número par e portanto pode ser representada pela forma 2n, neste caso, com n variando de 0 a 50. Esta soma pode ser representada abreviadamente por: = 50 0 n n . 2 , que se lê: “somatório de 2n com n variando de 0 a 50”. A letra grega que é o esse maiúsculo grego (sigma) é denominada sinal de somatório e é usada para indicar uma soma de várias parcelas. Seja {a 1 , a 2 , a 3 , ..., a n } um conjunto de n números reais, o símbolo = n 1 i i a  representa a sua soma, isto é, = n 1 i i a = a 1  + a 2 + a 3 + ... + a n . Em = n 1 i i a a le tr a i é denominada índice do somatório (em seu lugar, pode figurar qualquer outra letra) e s valores 1 e n, neste caso, são denominados, respectivamente, limites inferior e superior . E1)Desenvolva os segu intes somatórios: 1) = 5 1 x 2 ) x x (  2) = 2  j  j  j . ) 1 (  3) = 5 0 n n a ! n  E2)Escreva sob a forma de soma tório as seguintes expressõ es: 1) 1 3 + 5 7 + ... 2) 5 24 4 6 3 2 2 1 1  + + + +  3) 11 . 9 10 ... 6 . 4 5 5 . 3 4 4 . 2 3 3 . 1 2 + + + + +  E3)Calcule o valor de: 1) = 5 0 n n ! n . ) 1 (  2) = =        5 0 i 2 2 5 0 i i i  1.1. NÚMERO DE PARCELAS DO SOMATÓRIO Se n a 1  p a  p a n  p i i a  + + + + = =  L , então = n  p i i a  tem ( n – p + 1 ) parcelas. E4) Destaque a parcela central e a décima parcela de = 100 0 n n n 3 . ) 1 ( . 1.2. PROPRIEDADES DO SOMATÓRIO 1.  Somatório de uma constante Sejam a i = k, com i = p,...,n. k ) 1  p n ( k k k a a a a k n 1  p  p n  p i i n  p i + = + + + = + + + = =  + = =  L L   = + = n  p i k ). 1  p n ( k  

Transcript of Series

Page 1: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 1/15

1

SEQÜÊNCIAS E SÉRIES

1. CÁLCULO SOMATÓRIOConsideremos a seguinte soma indicada : 0 + 2 + 4 + 6 + 8 + 10 + 12 + 14 + ... + 100. Podemos

observar que cada parcela é um número par e portanto pode ser representada pela forma 2n, neste caso, com n

variando de 0 a 50. Esta soma pode ser representada abreviadamente por: ∑=

50

0n

n.2 , que se lê: “somatório de 2n

com n variando de 0 a 50”. A letra grega ∑ que é o esse maiúsculo grego (sigma) é denominada sinal de

somatório e é usada para indicar uma soma de várias parcelas.

Seja {a1, a2, a3, ..., an} um conjunto de n números reais, o símbolo ∑=

n

1iia representa a sua soma, isto

é, ∑=

n

1iia = a1 + a2 + a3 + ... + a n.

Em ∑=

n

1iia a letra i é denominada índice do somatório (em seu lugar, pode figurar qualquer outra

letra) e s valores 1 e n, neste caso, são denominados, respectivamente, limites inferior e superior .

E1)Desenvolva os seguintes somatórios:

1) ∑=

−5

1x

2 )xx( 2) ∑∞

=

−2 j

 j  j.)1( 3) ∑=

5

0nna!n  

E2)Escreva sob a forma de somatório as seguintes expressões:1) 1 – 3 + 5 – 7 + ... 2)

5

24

4

6

3

2

2

11 ++++ 3)

11.9

10...

6.4

5

5.3

4

4.2

3

3.1

2+++++  

E3)Calcule o valor de:

1) ∑=

−5

0n

n !n.)1( 2) ∑∑==

−   

  

  5

0i

2

25

0i

ii  

1.1. NÚMERO DE PARCELAS DO SOMATÓRIO

Se na1papan

pi

ia ++++

=

=∑ L , então ∑=

n

pi

ia tem ( n – p + 1 ) parcelas.

E4) Destaque a parcela central e a décima parcela de ∑=

−100

0n

n n3.)1( .

1.2. PROPRIEDADES DO SOMATÓRIO

1. Somatório de uma constanteSejam ai = k, com i = p,...,n.

k)1pn(kkkaaaak n1pp

n

pi

i

n

pi

+−=+++=+++== +==∑∑ LL   ⇒  ∑

=

+−=n

pi

k).1pn(k  

Page 2: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 2/15

2

2. Somatório do produto de uma constante por uma variável  Sejam ka i, com i = p,...,n.

∑∑ =++= =+++=+++=

n

pi in1ppn1pp

n

pi iak)aaa(kkakakaka LL  

⇒ 

∑∑ == =

n

pi i

n

pi iakka  

3. Somatório de uma soma algébrica Sejam ai ± bi, com i = p,...,n.

)bbb()aaa()ba()ba()ba()ba( n1ppn1ppnn1p1ppp

n

piii +++±+++=±++±+±=± ++++

=∑ LLL  

∑∑==

±=n

pi

i

n

pi

i ba   ⇒  ∑∑∑===

±=±n

pi

i

n

pi

i

n

pi

ii ba)ba(  

4. Separação do último termo

n

1n

pi

i

n

pi

i aaa += ∑∑−

==

 

5. Separação do primeiro termo

∑∑+=

+=

=

n

1piiapa

n

piia  

6. Avanço dos limites

 j) jn( j1) jp( j) jp() j j(n) j j(1p) j j(pn1pp

n

pii aaa)aaaaaaa −+−++−+−+−++−++

=+++=+++=+++=∑ LLL ∑

+

+=−=

 jn

 jpi jia  

∑∑+

+=−

=

= jn

 jpi ji

n

pii aa  

E5) Complete a tabela abaixo:

i xi yi xi2 yi

2 xi2yi xiyi 

1 1 2

2 1 3

3 2 2

4 3 4

5 4 1

6 0 5

∑  

E6) Com os valores da tabela acima e o uso das propriedades do somatório, calcule:

Page 3: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 3/15

3

1) ∑=

+−6

1iii )4y3x2( 2) ∑∑

==

−   

  

  5

1i

2i

25

1ii xx 3) )yx()yx( ii

6

2iii +−∑

=

 

4) 10x5

2i

2i +∑

=

5) ∑=

−6

1i

2ii )yx( 6) ∑

=

+5

1i

2i )3y(  

7) ∑=

−−5

2i1ii )xx( 8) ∑

=+

3

0i2iy  

1.3. SOMATÓRIO DUPLO

Seja a matriz A =

mn3m2m1m

n2232221

n1131211

xxxx

xxxx

xxxx

L

MMMM

L

L

. As somas dos elementos de cada uma das linhas de A

são:

∑∑∑===

n

1 jmj

n

1 j j2

n

1 j j1 x,,x,x L .

Por outro lado, a soma de todos os elementos da matriz A é:

∑∑∑∑∑∑= =====

=+++=+++n

1 j

m

1iijmj j2

n

1 j j1

n

1 jmj

n

1 j j2

n

1 j j1 x)xxx(xxx LL .

Observações:

a) ∑∑∑∑= == =

=m

qi

n

p j

ij

n

p j

m

qi

ij xx . b) ∑∑= =

n

p j

m

qi

ijx tem (n – p + 1)(m – q + 1) parcelas.

E7) Desenvolva os seguintes somatórios:

1) ∑∑= =

−3

1x

4

2y

)10xy( 2) ∑∑= =

+5

2x

3

2y

2)yx( 3) ∑∑= =

3

2x

4

1y

yx 4) ∑∑= =

−3

1i

4

2 ji j )xy(  

E8) Calcule o valor de:

1) ∑∑= =

−3

1x

2

1y

)5xy( 2) ∑∑= =

−3

1i

4

2 j

) jx( 3) ∑∑= =

5

2x

3

2y

2z 4) ∑∑= =

+4

2x

3

2y

2)1x(  

E9) Escrever sob a forma de somatório as expressões:

1) 23 + 24 + 25 + 33 + 34 +35 2)5

4

4

4

5

3

4

3

5

2

4

2

5

1

4

1+++++++  

E10) Encontre uma fórmula (em função de n) para cada um dos somatórios abaixo:

1) ∑∑=

+

=

n2

1i

1i

0 j

n 2) ∑∑= =

+n

1i

n

1 j

) ji( 3) ∑∑= =

+n

1i

n

1 j

)in( 4) ∑∑= =

n

1i

i

3 j

i  

1.4. RESPOSTAS

E1) 1) 0 + 2 + 6 + 12 + 20 2) 2 – 3 + 4 – 5 + ... 3) a0 + a1 + 2a2 + 6a3 + 24a4 + 120a5

E2) 1) ∑∞

=

+−0i

i )1i2.()1( 2) ∑= +

4

0i 1i

!i3) ∑

= ++9

1i )2i(i

1i 

E3) 1) – 100 2)170 E4) a50 =150 e a10 = -27

Page 4: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 4/15

4

E6) 1) –5 2) 90 3) –25 4) 40 5) 40 6) 151 7) 3 8) 10E7) 1) –8 – 7 – 6 – 6 – 4 – 2 – 4 – 1 + 2 2) 16 + 25 + 25 + 36 + 36 + 49 + 49 + 64

3) 2 + 4 + 8 + 16 + 3 + 9 + 27 + 81

4) (y2 – x1) + (y3 – x1) + (y4 – x1) + (y2 – x2) + (y3 – x2) + (y4 – x2)+ (y2 – x3) + (y3 – x3) + (y 4 – x3)E8) 1) –12 2) 9x – 27 3) 8z2 4) 100

E9) 1) ∑∑= =

3

2i

5

3 j

 ji 2) ∑∑= =

4

1i

5

4 j  j

E10) 1) )5n2(n 2 + 2) n2 (n + 1) 3)2

)1n3(n2 +4)

6

)5n2)(1n(n −+ 

2. SEQÜÊNCIAS INFINITAS

2.1. DEFINIÇÃO

Uma seqüência infinita é uma lista de números numa certa ordem, a1, a2, a3,...,an,..., onde a1 é o 1o termo, a2 é o 2o termo, ..., an é o n-ésimo termo ou termo geral. Notação: {a1, a2, a3,...,an,...} ou {an}. Devemosobservar, também, que uma seqüência é uma função definida sobre o conjunto dos números naturais:

nan

:f 

→ℜ→ℵ

.

 Exemplos de seqüências:

a) an =1n1n

+−

é o termo geral da seqüência 0, ,...5

3,

4

2,

3

b) A seqüência dos números primos: {2,3,5,7,11,13,17,19,23,29,31,...}.c) an = 2n é o termo geral da seqüência 1, 2, 4, 8, 16, 32, 64, ... Podemos observar que esta seqüência, comomuitas outras, pode ser definida através de uma fórmula de recorrência:

>== − 0nse,a2a

1a

1nn0 .

d) A seqüência de Fibonacci é definida por a1 = 1, a2 = 1 e an+1 = an + an-1 , para n 2≥ . Os termos da seqüênciade Fibonacci são 1, 1, 2, 3, 5, 8,...

E1) Encontre a seqüência que é a solução das seguintes relações de recorrência:

a)

>+==

− 1nse,1a2a

1a

1nn

1 . b)

>==

− 0nse,naa

1a

1nn

0 .

2.2. LIMITE DE UMA SEQÜÊNCIA

Dizemos que a seqüência {an} converge para um número real L, ou que tem por limite L, quando.Lalim n

n=

∞→Em outras palavras, an estará próximo de L para n suficientemente grande. Se n

nalim

∞→não existe,

dizemos que a seqüência {an} não converge (diverge).

Existem diversos teoremas que ajudam na determinação da convergência ou divergência deseqüências, sendo que fica como sugestão ao aluno interessado procurar por eles na bibliografia indicada. Poroutro lado, muitos limites de seqüências podem ser estudados como limites ao infinito de funções.

 Exemplos:

a) Os termos da seqüência

+1n

nsão: ,...

5

4,

4

3,

3

2,

2

Page 5: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 5/15

5

Representação gráfica da seqüência :an 

1

0,9Observa-se que: se n cresce sem limites, an cresceaproximando-se de 1, isto é,

=   

  =

+∞→∞→ 1n

nlimlimn

nn

a 1 0,5

Neste caso, dizemos que a seqüência converge para 1. 0,1

0 1 2 3 4 5 6 7 8 9 10 n

b) Os termos da seqüência { }∞

=−

2n

2n são: 0, 1, 2 , 3 , 2, 5 ,...

Representação gráfica da seqüência :an 

3

Observa-se que: se n cresce sem limites, an tambémcresce sem limites, isto é, 2

=−=∞→∞→

2na limlimn

nn

∞  

1

Neste caso, dizemos que a seqüência diverge.n

0 1 2 3 4 5 6 7 8 9 10 11

c)5

3

n15n

53lim

nn5

n5n3lim

2

n23

3

n=

+

+=

+

+∞→∞→

, onde dividimos numerador e denominador por n3.

d)(

1)0cos(1

xcoslim

x

xsenlim

n1

n1sen

limn

1sennlim

0x0xnn=====

→→∞→∞→, onde utilizamos o Teste de L’Hopital.

E2) Determine, se existir, o limite das seqüências abaixo:

a)

+

−2

2

n23

n47. b)

+

+−

1n

)1n3)(1n2(3

c)

+ )1nln(

n 2d)

   

   +

n

n

11  

e)

+

−− 1n2

n1n2

n 22 f)

n)ncos( g)

+

−1n

n)1( n h) ( )n1.01+  

2.3. RESPOSTAS

E1) a) 12a nn −= . b) !na n = .

E2) a) –2. b) 0. c) diverge. d) e. e) 1/2. f) 0. g) 0. h) 1.

Page 6: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 6/15

6

3. PRINCÍPIO DA INDUÇÃO FINITA (PIF)

3.1. O TEOREMA E1) Verifique se a afirmação abaixo é verdadeira ou falsa, justificando tua resposta.

“Para n ∈N, p(n) = n2 + n + 41 sempre dá um número primo.”

É relativamente simples demonstrar que a afirmação acima é falsa. Para tanto, basta apresentar umexemplo de número natural (dito contra-exemplo) onde esta afirmação falha. Por outro lado, mostrar que ela éverdadeira, seria uma tarefa muito trabalhosa, se não impossível, pois teríamos que verifica-la para todos(infinitos) números naturais. Porém, graças ao Princípio da Indução Finita (também conhecido comoIndução Matemática), enunciado a seguir, podemos demonstrar, de uma forma razoavelmente simples, queuma afirmação P(n) é verdadeira para qualquer número natural n.

Uma proposição P(n) é verdadeira para todo natural n 0n≥ se, e somente se:

i) P(n) é verdadeira para n = n 0;ii) Se P(k) é verdadeira para um certo k natural então P(k+1) também é verdadeira.

 Exemplo:

Use o PIF para mostrar que ∑=

+=++++=

n

1i 2

)1n(nn321i L .

Solução: Vamos mostrar que∑=

+=

n

1i2

)1n(ni .

i) Para n = 1, os dois lados da igualdade assumem o valor 1, logo P(1) é verdadeira;

ii) Vamos supor que P(k) é verdadeira, isto é, que ∑=

+=

k

1i2

)1k(ki é verdadeira. Agora devemos mostrar que

P(k+1) também é verdadeira, isto é, que ∑+

=

+++=1k

1i 2]1)1k)[(1k(i também é verdadeira.

Da propriedade 4, seção 1.2, ∑∑=

+

=

++=k

1i

1k

1i

)1k(ii . (1)

Da hipótese, ∑=

+=

k

1i2

)1k(ki . (2)

Substituindo a expressão (2) em (1), obtemos:

2

]1)1k)[(1k(

2

)2k)(1k(

2

)1k(2)1k(k)1k(

2

)1k(ki

1k

1i

+++=

++=

+++=++

+=∑

+

=

.

Logo, por indução matemática, mostramos que a expressão ∑=+=

n

1i 2)1n(ni é verdadeira para n .1≥  

E2) Use o PIF para mostrar que:

1)r1

araarararaar

n1n2

n

1i

1i

−−

=++++= −

=

−∑ L , para r≠ 1

2) ∑=

++=++++=

n

1i

22

6

)1n2)(1n(nn941i L  

Page 7: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 7/15

7

3) ∑=

+=++++=

n

1i

2233

4

)1n(nn2781i L  

4) ( ) ( )∑=

=−++++=−n

1i

2n1n25311i2 L  

E3) Encontre uma fórmula (em função de n) para cada um dos somatórios abaixo:

1) ∑=

−n

1i

2)1i( 2) ∑=

+n

1i

)2i(n 3) ∑=

+n

1i

)1i(ni 4) ∑=

n

0i

i2 5) ∑+

=

3n

1i

ni  

E4) Use o PIF para demonstrar as fórmulas obtidas nos exercícios E10 (da seção 1.3), E1 (da seção 2.1) e E3acima.

3.2. RESPOSTAS

E1) p(40) = 1681 não é primo, pois é divisível por 41.

E3) 1) 6 )1n3n2(n

2

+− 2) 2 )5n(n

2

+ 3) 3 )2n)(1n(n

2

++ 4) 2n+1 – 1 5) 2 )4n)(3n(n ++  

4. SÉRIES NUMÉRICAS

4.1. DEFINIÇÃO

Se {an} é uma seqüência infinita, então uma expressão ...a...aaa n211n

n ++++=∑∞

=é chamada série

numérica infinita de termo geral an. Se somarmos apenas os N primeiros termos desta série, teremos o que

chamamos de soma parcial   ∑==

N

1nnN aS .

 Exemplos de séries:

a) 2, 4, 6, 8, 10, 12, 14, 16 é uma seqüência finita e 2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 =∑=

8

1n

n2 é uma série

finita de termo geral a n = 2n.

b) 1, 2, 6, 24, 120,... é uma seqüência infinita e 1 + 2 + 6 + 24 + 120 + ... =∑∞

=1n

!n é uma série infinita de termo

geral an = n!.

c) A série harmônica ∑∞

=

=+++++

1nn1

...n1

...31

21

1 cujo termo geral é an =n

1.

4.2. SOMA DE UMA SÉRIE

Dizemos que o número real S é a soma da série ∑∞

=1nna , ou que a série ∑

=1nna converge para S, se e

somente se, SSlim nn

=∞→

(o limite da seqüência das somas parciais S1, S2, S3,...,Sn é S). Neste caso, escrevemos

S = ∑∞

=1nna . Quando n

nSlim

∞→não existe, dizemos que a série ∑

=1nna diverge. A divergência pode ocorrer porque

Sn torna-se infinita ou Sn oscila quando n ∞→ .

Page 8: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 8/15

8

 Exemplos:

a) ...n...321n1n

+++++=∑∞

=

 

Soma parciais: S1 = 1, S2 = 3, S3 = 6, S4 = 10, S5 = 15, ..., Sn=2

)1n(n + 

Representação gráfica da seqüência {Sn}

=+=∞→∞→ 2

)1n(nS limlim

nnn   ∞ Sn 

15Portanto, a seqüência das somas parciais diverge.

10

Dizemos, neste caso, que a série ∑∞

=1n

n diverge. 5

0 1 2 3 4 5 n

b) ...)1(...111)1( n

1n

n +−++−+−=∑ −∞

Soma parciais: S1 = -1, S2 = 0 , S3 = -1, S4 = 0, S5 = -1, Sn=−

parénse,0

imparénse,1  ⇒  Sn oscila 

Representação gráfica da seqüência {Sn}Sn 

.existenãoSnlimn ∞→

 

Portanto, a seqüência das somas parciais diverge.0 n

Dizemos, neste caso, que a série ∑∞

=−

1nn)1( diverge.

c) ...2

1...

8

1

4

1

2

1

2

1n

1nn

+++++=∑∞

=

 

Soma parciais: S1 =21

, S2 =43

, S3 =8

7, S4 =

16

15, ..., Sn= n

n

2

12 − 

Representação gráfica da seqüência {Sn}Sn 

=∞→

nn

Slim 12

11lim

2

12lim

nnn

n

n= 

  

   −=

−∞→∞→

Portanto, a seqüência das somas parciais converge para 1. 0,5

Dizemos, neste caso, que a série ∑∞

=1nn2

1converge para 1.

0 1 2 3 4 5 6 n

4.3. SÉRIES GEOMÉTRICAS

Uma série geométrica é uma série da forma  a + ar + ar2 +ar3 + ...+arn-1 + ... = ∑∞

=

1n

1nar com a ≠ 0.

Da seção 3.1, exercício E2 - 1, a n -ésima soma parcial da série geométrica é

Page 9: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 9/15

9

Sn= a  + ar + ar2 + a r3 + ... + arn-1 =r1

)r1(a n

−−

, r ≠ 1.

Se | r | < 1 , 0rlimn

n =∞→ , e assim r1

a

r1

)r1(alim

n

n −=−−

∞→ .

Se | r | > 1, n

nrlim

∞→não existe, e assim

r1

)r1(alim

n

n −−

∞→não existe.

Se r = 1, então Sn = na  e portanto, nn

Slim∞→

não existe.

Se r = -1, então Sn oscila e portanto, nn

Slim∞→

não existe.

A série geométrica converg e se | r | < 1 e sua soma é S =r1

a−

.

A série geométrica diverge se | r | ≥ 1.

E1) Determine se a série é convergente ou divergente, se convergente encontre a soma.

1) ...8

1

4

1

2

11 ++++ 2) ...

8

27

4

9

2

31 ++++ 3) ∑ −

=

+

1n

1n)1(  

E2) Determine a série infinita que tem a seguinte seqüência de somas parciais:

1){Sn} =

+ 1nn4

2){Sn} =

+1n3n2

3){Sn} =

+1n

n 2

4){Sn} = n2  

E3) Expresse a dizima periódica 0,222... como uma fração comum.

4.4. PROPRIEDADES DAS SÉRIES

a) Se ∑

=1n na converge e c é um número real, então ∑

=1n nca também converge e ∑

=1n nca = c ∑

=1n na .

 Exemplo:  ∑∞

=1n n2

5é convergente. Justifique. 

b) Se ∑∞

=1nna e ∑

=1nnb convergem , então ∑ ±

=1nnn )ba( também converge e ∑ ±

=1nnn )ba( = ∑

=1nna ±   ∑

=1nnb .

 Exemplo:  )3

1

2

1(

1nnn∑ −

=é convergente. Justifique. 

c) Se ∑∞

=1nna converge e ∑

=1nnb diverge, então ∑ ±

=1nnn )ba( diverge.

 Exemplo:  )23

1(

1n

nn

∑ +∞

=é divergente. Justifique. 

Observação: Se ∑∞

=1nna diverge e ∑

=1nnb diverge, então ∑ ±

=1nnn )ba( pode convergir ou divergir.

d) Se ∑∞

=1nna converge, então 0alim n

n=

∞→.

 Justificativa: Se ∑∞

=1nna converge, n

nSlim

∞→= S e 1n

nSlim −

∞→= S. Como Sn= a1 + a2 + ... + an-1 + an, an = Sn – Sn-

Logo, nn

alim∞→

= nn

Slim∞→

- 1nn

Slim −∞→

= S – S = 0

E4) Verifique se a série converge, em caso afirmativo, determine a sua soma:

Page 10: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 10/15

10

1) ∑∞

=1n n2

12)∑

=1n

1 3) ∑+

=1n )1n(n

1(série telescópica)

Para muitas séries é difícil ou praticamente impossível encontrar uma fórmula simples para Sn. Emtais casos, são usados alguns testes que não nos fornecem a soma S da série; dizem-nos apenas se a somaexiste. Isto é suficiente na maioria das aplicações porque, sabendo que a soma existe, podemos aproximar o seuvalor com um grau arbitrário de precisão, bastando somar um número suficiente de termos da série.

4.5. TESTE DA DIVERGÊNCIA

Se 0alim nn

≠∞→

, então a série infinita ∑∞

=1nna diverge.

Observação: O 0alim nn

=∞→

não garante a convergência da série.

E5) Prove que as séries seguintes são divergentes:1) ∑

+∞

=1n2

2

n

1n2) ∑ −

=

+

1n

1n)1.(2 3) ...1n2

n...

7

3

5

2

3

1+

+++++  

4.6. TESTE DA INTEGRAL

Sejam ∑∞

=1nna uma série de termos positivos e f uma função continua, tal que f(n) = an , para todo n.

Então ∑∞

=1nna converge ⇔   ∫ 

1dx)x(f  converge.

E6) Determine se a série dada é convergente ou divergente.

1) ∑∞=1n n

1 2) ∑∞=1n

2n1 3) ∑∞

=1n n1 4) ∑∞

=

1n

ne 5) ∑∞=1n nlnn

1 6) ∑∞=

1n

nne  

4.7. SÉRIE-P

Uma série do tipo ∑∞

=1np

n

1 é denominada série- p. Esta série converge se p > 1 e diverge sep ≤ 1.

 Justificativa: Para p = 1, a série-p torna-se∑∞

=1n n

1, chamada série harmônica. Diverge (exercício E6 - 1).

Se p ≠ 1, )1b(limp1

11p

xlimdxxlimxdx p1

b

b

1

1p

b1

b

1

p

bp−

−=

+−== −

∞→+−

∞→∞ −

∞→∫ ∫  .

Para p > 1,p1

1)1

b

1(lim

p1

1)1b(lim

p1

11pb

p1

b −=−

−=−

− −∞→

∞→. Logo a série p converge.

Para 0 < p < 1, ∞=−−

∞→)1b(lim

p11 p1

b. Logo a série p diverge.

Para p < 0, ∞=== −

∞→∞→∞→

p

npnnnnlim

n

1limalim . Logo, a série p diverge.

Page 11: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 11/15

11

Para p = 0, a série-p torna-se ∑∞

=1n

1 que é uma série divergente.

Portanto, a série-p é convergente somente quando p > 1.

4.8. TESTE DA COMPARAÇÃO POR LIMITE

Sejam ∑∞

=1nna e ∑

=1nnb  séries de termos positivos. Se ,c

b

alim

n

n

n=

∞→onde c é um número positivo,

então ambas as séries convergem ou ambas as séries divergem.

E7) Determine se a série dada é convergente ou divergente.

1) ∑∞

= +1nn31

12) ∑

= +1n2 2n

13) ∑

= −1n

1n2

24) ∑

= ++1n24 2nn

5) ∑∞

= +1n2 1n

n 6) ∑∞

=

+1n

3n1n  

4.9. SÉRIES ALTERNADAS - TESTE DE LEIBNIZ

Uma série alternada é uma série da forma   ∑ −∑ −∞

=

=

+

1nn

n

1nn

1n a)1(oua)1( com an > 0.

Em uma série alternada, se a n  ≥ an+1 e 0alim nn

=∞→

, então a série converge.

E8) Determine se as séries alternadas convergem ou divergem.1) ∑ −

=

+

1n

1n)1( 2) ∑−∞

=1n

n

n

)1(3)

3n4

n2)1(

1n

1n

−∑ −∞

=

−  

4))1n(n

2n)1(

1n

n

++

∑ −∞

=5)

3n4

n2)1(

21n

1n

−∑ −∞

=

−  

O conceito a seguir permite que utilizemos testes para séries de termos positivos para determinar aconvergência de outros tipos de séries.

4.10. CONVERGÊNCIA ABSOLUTA E CONVERGÊNCIA CONDICIONAL

a) Se ∑∞

=1nn |a| =|a1| + |a2| + |a3| +...+|an| +... converge, dizemos que a série ∑

=1nna é absolutamente

convergente .

b) Se ∑∞

=1nna converge e |a|

1nn∑

=

diverge, dizemos que ∑∞

=1nna  converge condicionalmente .

E9) Determine se a série dada é absolutamente convergente.

1) ∑−∞

=

+

1n2

1n

n

)1(2) ∑

−∞

=

+

1n

1n

n

)1(3) ∑

−∞

= −

+

1n1n

1n

2

)1(4) ∑

=1n

n3  

5) ∑∞

=

+−

1n

1n

n

)1(6) ∑

=

+−

1n2

n

n

)1n()1( 

Page 12: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 12/15

12

Observações: a)Se ∑

=1nna é uma série de termos positivos, então |a n | = an, portanto a convergência absoluta coincide

com a convergência.b) Se uma série infinita ∑

=1nna é absolutamente convergente, então ∑

=1nna é convergente.

4.11. TESTE DA RAZÃO

Seja ∑∞

=1nna uma série infinita com a n ≠ 0, para todo n.

a) Sen

1n

n a

alim

+

∞→< 1, então ∑

=1nna converge absolutamente.

b) Sen

1n

n a

alim +

∞→

> 1 oun

1n

n a

alim +

∞→

= ∞ , então ∑∞

=1n

na diverge.

c) Sen

1n

n a

alim

+

∞→= 1, então nenhuma conclusão quanto à convergência pode ser tirada do teste.

E10) Determine se a série dada é absolutamente convergente, condicionalmente convergente ou divergente:

1) ∑∞

=1n !n

12) ∑

=1n2n

13) ∑

=

+−1n

21n

n

!n)1( 4) ∑

=1nn2

!n 

5) ∑∞

=

+−

1n

1n

n

)1(6) ∑ −

=1n

nn

!n

3)1( 7) ∑

=1n2

n

n

38) ∑

=

+

−−

1n

1n

1n2n

)1(  

Observação: O teste da razão é mais adequado quando an contém potências e produtos e não funciona nasérie-p.

4.12. RESPOSTAS

E1) 1) Conv. S = 2 2) Div. 3) Div.

E2) 1) L++++5

1

3

1

3

22 2) L++++

65

1

35

1

14

1

2

13) L++++

20

19

12

11

6

5

2

14) 2 + 2 + 4 + 8 + 16 + ..

E3)9

2E4) 1) Conv. S = 1 2) Div. 3) Conv. S = 1

E6) 1) Div. 2) Conv. 3)Div. 4) Conv. 5) Div. 6) Conv.E7) 1) Conv. 2) Conv. 3)Div. 4) Conv. 5) Conv. 6) Conv.E8) 1) Div. 2) Conv. 3)Div. 4) Conv. 5) Conv.E9) 1) Conv. Abs. 2) Conv. Cond. 3) Conv. Abs. 4) Div. 5) Conv. Cond. 6) Conv. Cond.E10) 1) Conv. 2) Conv. 3) Div. 4) Div. 5) Conv. Cond. 6) Conv. Abs. 7) Div. 8) Div.

5. SÉRIES DE POTÊNCIAS

5.1. DEFINIÇÃO

Série de potências de x centrada em c é uma série infinita da forma ∑∞

=

−0n

nn )cx(b = b0 + b1(x-c) +

b2(x-c)2 + b3(x-c)3 + ... + bn(x-c)n + ...

Page 13: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 13/15

13

Quando em uma série de potências a variável for substituída por um número, a série resultante énumérica e pode c onvergir ou não.

5.2. INTERVALO DE CONVERGÊNCIA

Para cada série de potências ∑∞

=

−0n

nn )cx(b , exatamente uma das seguintes afirmações é verdadeira:

a)  A série converge somente quando x = c.b)  A série converge absolutamente para todo x real.c)  Existe um número real positivo R, tal que a série é absolutamente convergente se |x – c| < R e é

divergente se |x – c| > R. Neste caso, R é chamado raio de convergência da série e (c – R, c+ R) édito o intervalo de convergência da série.

Procedimento para encontrar o intervalo de convergência de uma série de potências.1.  Aplicar o teste da razão.2.  Resolver a inequação resultante.3.  Analisar os extremos individualmente.

E1) Determine os intervalos de convergência das séries:

1) ∑∞

=1n

n

n

x2) ∑

+∞

=0nn3

2n(x-2)n 3) ∑

=0n

n

!n

x4) ∑

−∞

=1n

nn

!n

)x10(10 

5) ∑∞

=0n

nnx 6) ∑ +∞

=0n

n)1x(!n 7) ∑∞

=0n

nx 8) ∑∞

=1n

n

n

5.3. FUNÇÕES DEFINIDAS POR SÉRIES DE POTÊNCIAS

Uma série de potências de x pode ser encarada como uma função de variável x, f(x) =

= −0n

n

n )cx(b,

onde o domínio de f é o conjunto dos valores de x que tornam a série convergente.Cálculos numéricos utilizando série de potências são a base para a construção de calculadoras.

Cálculos algébricos, diferenciação e integração podem ser realizados com o uso de séries. O mesmo acontececom as funções trigonométricas, trigonométricas inversas, logarítmicas e hiperbólicas.

E2) Ache uma função f representada pela série de potências 1 + x + x2 + x3 + ... + xn + ...E3) Considere o exercício E2 e calcule o valor aproximado de f(1/10)

a) usando os dois primeiros termos da série. b) usando os três primeiros termos da série.c) usando os quatro primeiros termos da série. d) usando os cinco primeiros termos da série.

E4) Calcule o valor de f(1/10) usando a lei.E5) Comparando os valores encontrados em E3 e E4, o que se pode concluir ?E6) Considere o exercício E2 e calcule o valor aproximado de f(2)

a) usando os dois primeiros termos da série. b) usando os três primeiros termos da série.c) usando os quatro primeiros termos da série.

E7) Calcule o valor de f(2) usando a lei.E8) Comparando os valores encontrados em E6 e E7, o que se pode concluir ?E9) Considere o exercício E2 e obtenha uma representação em série de potências para

1)g1(x) =x1

1+

2) g2(x) =x1

1−

− 3) g3(x) =2x1

1

− 

5.4. DERIVAÇÃO E INTEGRAÇÃO DE SÉRIES DE POTÊNCIAS

Page 14: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 14/15

14

Se f(x) = ∑∞

=

−0n

nn )cx(b está definida no intervalo (c – R, c + R) para algum R > 0, então:

a) f é derivável e f’(x) = ∑∞

=

−−1n

1nn )cx(nb = ∑∞

=+ −+

0n

n1n )cx(b)1n( , para todo x ∈(c – R, c + R).

b) f é integrável e ∫ x

0dt)t(f  = ∑

=

+

+−

0n

1nn

1n

)cx(b, para todo x ∈ (c – R, c + R).

E10) Seja f(x) =x1

1−

= ∑∞

=0n

nx , determine:

1) f ’(x) e a série que representa f ’(x).2) ∫  dx)x(f e a série que representa ∫  dx)x(f .

3) ∫ 2 / 1

0 dx)x(f  e a série que representa ∫ 2 / 1

0 dx)x(f  .

5.5. SÉRIES DE TAYLOR

Se f é uma função que admite uma representação em séries de potências f(x) = ∑∞

=

−0n

nn )cx(b , quem

serão os coeficientes bn? f(x) = b0 + b1(x-c) + b 2(x-c)2 + b3(x-c)3 + b4(x-c)4 + ... + bn(x-c)n + ... ⇒ f(c) = b0 

f ’(x) = b1 + 2b2(x-c) + 3b3(x-c)2 + 4b4(x-c)3 + ... + nbn(x-c)n-1 + ... ⇒ f ’(c) = b1 = 1!b1 e b1 =!1

)c('f  

f ’’(x) = 2b2 + 3.2b 3(x-c) + 4.3b4(x-c)2 + ... + n(n-1)bn(x-c)n-2 + ... ⇒ f ’’(c) = 2b2 = 2!b2 e b2 =!2

)c(''f  

f ’’’(x) = 3.2b3 + 4.3.2b4(x-c) + ... + n(n-1)(n-2)bn(x-c)

n-3

+ ... ⇒ f ’’’(c) = 3.2b3= 3!b3 e b 3 = !3

)c('''f 

 

f (IV)(x) = 4.3.2b4 + ... + n(n-1)(n-2)(n-3)bn(x-c)n-4 + ... ⇒ f (IV)(c) = 4.3.2b4 = 4!b4 e b4 =!4

)c(f  )IV(

 

Logo b0 = f(c) e bn =!n

)c(f  )n(

para n ≥ 1 e portanto f(x) = f(c ) + ∑ −∞

=1n

n)n(

)cx(!n

)c(f que é denominada Série

de Taylor para f de centro em c, para todo x pertencente ao intervalo de convergência.

Se c = 0, a série de Taylor assume a forma

f(x) = f(0) + f ’(0) x + 2x2!

(0)''f + 3x

3!

(0)'''f + ... + n

)n(

x!n

)0(f + ...

que é denominada Série de MacLaurin para f.

E11) Encontre a série de Taylor de centro em c = 1 para:

1) f(x) = ln x 2) f(x) = ex 3) f(x) =x1

 

E12) No exercício anterior, para que valores de x a série encontrada representa a função f ?E13) Encontre a série de Taylor de centro em c = 0 para:

1) f(x) = ln(1+ x) 2) f(x) = e x 3) f(x) =2xe 4) f(x) = e -2x 

5) f(x) = sen x 6) f(x) = sen 2x 7) f(x) = cos x 8) f(x) =1x

1−

 

Page 15: Series

5/10/2018 Series - slidepdf.com

http://slidepdf.com/reader/full/series-55a0d0f287980 15/15

15

Se truncamos a Série de Taylor para um dado N natural, ou seja, consideramos o somatório PN(x) =

∑=

−+N

1n

n)n(

)cx(!n

)c(f )c(f  , obtemos o chamado Polinômio de Taylor de grau N de f no ponto c. É provado

que PN(x) é uma aproximação para f(x), cujo erro diminui quanto menor for a distância entre x e c e e quantomaior for o valor N.

E14) Se f(x) = ln(x), determine o Polinômio de Taylor para N = 3 e c = 1. Utilize este polinômio paraaproximar o valor de f(1.1), apresentando o erro cometido.E15) Aproxime cos(61o) através do polinômio de Taylor de cos(x) com N = 2 e c = π /3.

5.6. RESPOSTAS

E1) 1) [-1,1) 2) (-1,5) 3) ℜ 4) ℜ 5) (-1,1) 6) {-1} 7) (-1,1) 8) [ -1,1)

E2) f(x) =x1

1−

, (-1,1) E3) a) 1,1 b) 1,11 c) 1,111 d) 1,1111

E4) 1,111... E6) a) 3 b) 7 c) 15 E7) –1

E9) 1) n

0n

n x)1(∑∞

=

− , | x | < 1 2) n

0n

x∑∞

=

− , | x | < 1 3) n2

0n

x∑∞

=

, | x | < 1

E10) 1) f ’(x) =2)x1(

1

−, 1n

1n

xn −∞

=∑ 2) –ln (1 – x ), ∑

=1n

n

n

x3) - ln

2

1, L++++

64

1

24

1

8

1

2

E11) 1) ∑∞

=

− −−

1n

n1n

n

)1x()1(2) ∑

=

0n

n

!n

)1x.(e3) n

0n

n )1x()1( −−∑∞

=E12) 1) (0,2] 2) ℜ 3) (0,2)

E13) 1) ∑∞

=

+−

1n

n1n

n

x)1(2) ∑

=0n

n

!n

x3) ∑

=0n

n2

!n

x4) ∑

=

0n

nn

!n

x.)2( 

5) ∑∞

=

−+

−−1n

1n21n

)!1n2( x)1( 6) ∑∞

=

−+

−−1n

1n21n

)!1n2( )x2()1( 7) ∑∞

=−

0n

n2n

)!n2( x.)1( 8) n0n

x∑∞

=−  

E14)3

)1x(

2

)1x()1x()xln(

32 −+

−−−≈ ; ln(1.1) ≈ 0.0953; Erro ≈ 0.0000102. E15) cos(61o) ≈ 0.48481.

6. BIBLIOGRAFIA 

ANTON, Howard. Cálculo: um novo horizonte. 6.ed. Porto Alegre: Bookman, 2000.

EDWARDS, C, PENNEY, David. Cálculo com geometria analítica. 4.ed. Rio de Janeiro: Prentice-Hall do Brasil, 1997.

LEITHOLD, Louis. O cálculo com geometria analítica. 2.ed. São Paulo: Harper & Row do Brasil,1982.

MOREIRA, Francisco Leal, Cálculo II – Sistemas de Informação , Material Didático, FAMAT/PUCRS,2004.

SHENK, Al. Cálculo e geometria analítica . 2.ed. Rio de Janeiro: Campus, 1985.

SILVA, Jaime Carvalho e. Princípios de análise matemática aplicada. Alfragide: McGraw-Hill dePortugal, 1994.

SIMMONS, George F. Cálculo com geometria analítica. São Paulo: McGraw-Hill, 1987.

SWOKOWSKI, Earl William. Cálculo com geometria analítica . 2.ed. São Paulo: Makron Books,1994.