MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o...

28
MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação geral de transporte S V t é densidade é a grandeza em questão (propriedade extensiva / massa) é o coeficiente de difusão de S representa os termos fontes de

Transcript of MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o...

Page 1: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP

TRANSPORTE DE UMA GRANDEZA ESCALARTRANSPORTE DE UMA GRANDEZA ESCALAR

• Considerando uma fase presente, o princípio de conservação

da grandeza é expresso pela equação geral de transporte

SVt

• é densidade

• é a grandeza em questão (propriedade extensiva / massa)

• é o coeficiente de difusão de

• S representa os termos fontes de

Page 2: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP VARIÁVEL PHI (default names)

1 P1 First-phase pressure.

2 P2 Second-phase pressure (inactive).

3 U1 First-phase x-direction velocity.

4 U2 Second-phase x-direction velocity.

5 V1 First-phase y-direction velocity.

6 V2 Second-phase y-direction velocity.

7 W1 First-phase z-direction velocity.

8 W2 Second-phase z-direction velocity.

9 R1 First-phase volume fraction.

10 R2 Second-phase volume fraction.

11 RS Second-phase shadow volume fraction.

12 KE Kinetic energy of turbulence for the first phase.

13 EP Rate of dissipation of turbulence kinetic energy of the first phase.

14 H1 First-phase enthalpy.

15 H2 Second-phase enthalpy.

Page 3: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO....

16 C1 First-phase concentration variable.

17 C2 Second-phase concentration variable.

18 C3 First-phase concentration variable.

19 C4 Second-phase concentration variable

.

.

48 C33 First-phase concentration variable.

49 C34 Second-phase concentration variable.

50 C35 First-phase concentration variable.

Novas variáveis podem ser introduzidas via VR ou diretamenteno Q1. No VR, clicar models > solution control / extra variables settings

Page 4: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP

NAME(148) =MEU ; NAME(149) =SPH1NAME(150) =TMP1 * Solved variables listSOLVE(H1 ,MEU )

Q1Q1

Page 5: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP COEFICIENTE COEFICIENTE

•O coeficiente difusivo , sem a contribuição turbulenta, que aparece na forma geral da equação de transporte é calculado da seguinte forma

•PRNDTL() > 0

PRNDTL( ) < 0

Onde ENUL= L e PRNDTL= L/ ou L/DAB (no de Schmidt)

)(PRNDTLENUL*RHO

1

)(PRNDTL

)(PRNDTL*RHO 1 = C1,C2,.....

= TEM1 ou H1

= C1,C2,....

= TEM1 ou H1 pC)(PRNDTL

ENUL*RHO

1

Page 6: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

)(PRTENUT*RHO

)(PRNDTLENUL*RHO

11

Incluindo a contribuição dos termos turbulentos

Onde ENUT = T

Prandtl turbulento = T/ T e PRT() Schmidt turbulento = T/ m Constantes k e do modelo k-

Page 7: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP TRANSFERÊNCIA DE MASSATRANSFERÊNCIA DE MASSA

•Equação diferencial de transporte do soluto A no solvente B

•Neste caso DAB =coeficiente binário de difusão de A em B (m2/s)

• mA = fração de massa do soluto A (A/)

• Esta equação pode ser utilizada juntamente com a equação do momento e continuidade, resolvidas para o solvente B, desde que a concentração do contaminate A seja baixa e não afete as propriedades do solvente.

my

Dyx

Dx

Vy

Uxt

)(AABAABAA

A

mmmmm

Page 8: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EXEMPLO DE APLICAÇÃO

ObjetivoObjetivo: introduzir um contaminante (soluto A) numa corrente de ar (solvente B) através de um orifício de entrada

Carregue o arquivo contaminante.q1

Page 9: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

•Adicionar a variável Cn à lista das variáveis resolvidas;•Admitir o valor para Cn=0.01 no orifício de entrada;

•Introduzir no q1 o valor do coeficiente de difusão binário DAB;

Page 10: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EQUAÇÃO DA ENERGIAEQUAÇÃO DA ENERGIA

• A equação da energia pode ser expressa em termos da entalpia ou da temperatura:

• A equação para h tem um complicante no seu termo difusivo que depende da temperatura (variável não resolvida).

• A equação para T tem um complicante no termo inercial que vem multiplicado pelo calor específico.

• Ambas equações não podem ser colocadas diretamente na forma geral: ()/t+Div(V-grad) = S

SyT

kyx

Tk

xVh

yUh

xt)h(

SyT

kyx

Tk

xVTC

yUTC

xt

)TC(PP

p

Page 11: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CALOR ESPECÍFICO CCALOR ESPECÍFICO CPP

•Para um processo a pressão constante ou para substâncias incompressíveis, a entalpia e a temperatura estão relacionadas por:

•O PHOENICS, por uma questão de simplicidade de cálculo, utiliza este calor específico “efetivo” ou médio definido como

•Nesta equação o valor Ho é a entalpia do material quando a temperatura for igual a zero na escala que estiver em uso. T

)HH(C o

efp

)TT(CdTCHHdTCdH op

T

TPoP

o

Page 12: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP

CALOR ESPECÍFICO CP (cont.)

TemperaturaT=0

Entalpia H

HT

Cp=dH/dT

Cp-ef=H/T

Ho

Page 13: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP

CALOR ESPECÍFICO CP (cont.)

•Esta formulação permite deduzir a temperatura a partir da entalpia e vice-versa;•Quando a entalpia é a variável resolvida, a temperatura deduzida é convencionalmente escrita como TMP1 ou TMP2;

•Quando a variável resolvida é a temperatura, é adotada a nomenclatura TEM1 e TEM2;

•Não havendo reação química, a entalpia Ho pode ser admitida com valor zero. Neste caso

•Para propriedades constantes Cp-ef = Cp

• Veja entrada em SPECIFIC HEATs na EncyclopaediaTH

Cp

Page 14: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CALOR ESPECÍFICO (cont.)

CP1....is a real value which specifies the phase-1 specific heat- capacity for use in conjunction with solution of TEM1. A positive value implies the use of a constant specific heat, whilst settings to GRND1, 2 etc indicate that a formula coded in GXSPEHE is to be used.

The default value is that of air at standard pressure and temperature.

In the formulae below, Tabs is calculated from the local cell values of TEM1 plus the constant TEMP0

CP1 = GRND1 selects: CP1 = CP1A + CP1B*Tabs

CP1 = GRND2 selects: CP 1= CP1A + CP1B*Tabs + CP1C*Tabs**2 For air (280-1500K): A= 917.; B= 0.258; C=-3.98E-5

For ammonia gas (300-1000K): A= 1520.; B= 1.94; C=-1.79E-4

Encyclopaedia: CP1

Page 15: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EQUAÇÃO DA ENTALPIA (H1)EQUAÇÃO DA ENTALPIA (H1)

• O termo de condução de calor na equação da entalpia (H1 ou H2) é internamente escrito na seguinte forma

•A equação da entalpia (2-D, reg. permanente) fica

•Consultar About PHOENICS 3.5 na POLIS (item 17) Sy

)C/H(k

yx

)C/H(k

xVH

yUH

xpp

TgradkC

HHgradk

p

o

Page 16: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EXEMPLO DE APLICAÇÃO (H1)

Objetivos:Objetivos: investigar como é formado o coeficiente na equação da entalpia e obter o campo de temperaturas

Condução 1-D numaparede plana (20 pontos)

5 W/m2

H=0

Verificar a utilização de PRNDTL >0 e <0 para especificar

Page 17: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO - TMP1

Temperatura no PHOENICS pode ser tratada como uma propriedade derivada de H1 (TMP1) ou como uma variável resolvida diretamente, TEM1.

TMP1, set by the Q1 file, is the indicator of which formula to use so as to compute first- phase temperature from first-phase enthalpy and other variables.

The various significances of TMP1 are as follows, with the number of the left corresponding to the IOPT of the Fortran-source file GXTEMPR:

• TMP1=GRND1 selects temperature equal to: TMP1A.

• TMP1=GRND2 selects temperature equal to:TMP1A + enthalpy/CP1where the enthalpy store is that of index H1.

•TMP1=GRND3 selects temperature equal to: TMP1A + enthalpy/CP1 + TMP1C * concentration, where the concentration is stored as C3.

• TMP1=GRND4 selects temperature equal to: enthalpy/CP1 + TMP1B * AMAX0(0.0,concentration+TMP1C) where the concentration is stored as C1.

Page 18: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

TMP1 = -HO/CP + H/CPT)HH(

C oefp

VR...

-100

Page 19: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

********************************************************* Group 9. Properties PRESS0 = 1.000000E+05 ;TEMP0 = 2.730000E+02 SETPRPS(1, 0) TMP1 = GRND2 TMP1A =-1.000000E+02 ;TMP1B = 0.000000E+00 TMP1C = 0.000000E+00 ENUT = 0.000000E+00 DVO1DT = 3.410000E-03 PRNDTL(H1 ) = 7.150000E-01 *******************************************************

No Q1...

Page 20: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EQUAÇÃO DA TEMPERATURA (TEM1)EQUAÇÃO DA TEMPERATURA (TEM1)

•Quando a variável TEM1/2 é a variável resolvida, a equação da energia será expressa em função da temperatura;

• Neste caso, termo da condução surge naturalmente, entretanto os termos convectivos e o termo transiente precisam ser modificados;

•O calor específico Cp é introduzido na equação para TEM1

•Da mesma forma, quando a temperatura de entrada é especificada no comando COVAL para a variável TEM1/2, ela será internamente multiplicada pelo calor específico;

•Consultar TEM1 na Encyclopaedia.

SyT

kyx

Tk

xVTC

yUTC

xt

)TC(PP

p

Page 21: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP EXEMPLOS DE APLICAÇÃO (TEM1)

Objetivos:Objetivos: investigar como é formado o coeficiente na equação da energia e verificar a presença dos termos fonte(built-in sources) nesta equação.

Refazer o exemplo de condução 1-D na parede plana utilizando a equação para TEM1:

i) Introduzir a condutividade térmica usando PRNDTL < 0;ii) Repetir para PRNDTL > 0;iii)Notar que, no caso de PRNDTL>0, o campo de temperaturas se altera quando o valor de CP muda!!!

Page 22: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP OUTRO EXEMPLO...

Escoamentos plenamente desenvolvidosEscoamentos plenamente desenvolvidos

Couette Flows

Wo

PoiseuilIe Flows

dP/dz = constante

z

y

z

y

Page 23: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

•Neste tipo de escoamento os gradientes na direção Z são nulos, com exceção do gradiente de pressão no escoamento de Poiseuille, de forma que apenas um “slab” no plano xy precisa ser resolvido;

•Nos escoamentos devidos a um gradiente de pressão, é necessário especificar este gradiente ou a vazão de massa através dos comandos:

•Estes comandos podem ser inseridos diretamnete no Q1 ou na linha de comandos PIL Command do VR;

•Na Encyclopaedia: Fully-developed flow

FDSOLV(FLOW,”vazão”)FDSOLV(DPDZ,”gradiente”)

Page 24: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP ESCOAMENTO DESENVOLVIDO (cont.)

•Para um caso 1-D, no Q1...

Group 8. Terms & Devices * Y in TERMS argument list denotes: * 1-built-in source 2-convection 3-diffusion 4-transient * 5-first phase variable 6-interphase transport TERMS (W1 ,N,N,Y,N,Y,N) TERMS (TEM1,Y,N,Y,N,Y,N)

Group 13. Boundary & Special Sources PATCH (FDFW1DP ,VOLUME,1,1,1,20,1,1,1,1) COVAL (FDFW1DP ,W1 , FIXFLU , 1.000000E+03)

DPDZ

Page 25: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO....

Models > Equation formulation > Fully-developed > settingsNiter = 30

Escoamento entre placas planas:Escoamento entre placas planas:Caso 1: fluido = (i)água e (ii)glicerinaN-wall: Wo=10m/s e T=30 oCS-wall: T=10 oC

Page 26: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

Perfis de temperaturaPerfis de temperaturaÁguaÁgua GlicerinaGlicerina

Observar, no caso da glicerina, a forte influência do termo dadissipação viscosa (built-in source) no perfil de temperatura.

Page 27: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP CONTINUAÇÃO...

Caso 2: Fazer Wo=0 especificar vazão mássica = 50 kg/s

W1W1 TEM1TEM1

No caso da glicerina:

Diferentemente do caso anterior, o perfil de W1 não é linear e adissipação viscosa varia, mudando a forma do perfil de TEM1.

Page 28: MULTLAB FEM-UNICAMP UNICAMP TRANSPORTE DE UMA GRANDEZA ESCALAR Considerando uma fase presente, o princípio de conservação da grandeza é expresso pela equação.

MULTLABFEM-UNICAMP

UNICAMP

NÃO ADIANTARECLAMAR...A VERDADE É QUE COMETEMOS UM CRIME!

É VERDADE... ...MASATRASAR AENTREGA DA LISTA DE EXERCÍCIOS?