Momento Angular

7

Click here to load reader

Transcript of Momento Angular

Page 1: Momento Angular

UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTEDepartamento de Física Teórica e Experimental

FIS0315 – Física Experimental Física I

Acadêmico: Daniel José Leite FariasRelatório N° 07Data: 18/11/09

Momento angular e conservação do momento angular

1. Objetivos

Definir momento angular e conservação do momento angular.

2. Fundamentação teórica

Seja uma força F aplicada a uma partícula que pode se mover em relação a um ponto fixo. Seja r o vetor posição da partícula e sendo a força F uma extensão daquele vetor com ângulo θ entre si. O torque sobre a partícula pela força F é dado por:

(1)

Sendo assim, o torque é perpendicular ao plano que contém r e F. A intensidade do torque é dada por:

(2)

O Momento Angular l pode ser definido pelo momento linear p = mv, ou seja,

l (3)

Como o momento angular é perpendicular aos vetores r e p, diz-se que l é positivo se a rotação do vetor r for anti-horária. Será negativo se a rotação do vetor r

for horária. O módulo de l é dado por:

l (4)

1

Page 2: Momento Angular

A Segunda Lei de Newton na forma angular pode ser escrita na forma:

(5)

Neste caso, observa-se a relação entre Força e Momento Linear, no caso de uma partícula. Com a relação entre torque e momento angular, define-se:

(6)

É importante ressaltar que o torque e o momento angular l estejam

definidos na mesma origem. Abaixo será feito uma breve demonstração do resultado da equação (6):

De l e derivando em relação ao tempo t obtem-se:

, mas (aceleração) e

(velocidade). Daí, obtem-se:

. Como , sobra

e , temos

. Como , tem-se a equação (6):

2

Page 3: Momento Angular

Estudando o Momento Angular de um Sistema de Partículas, tal como num corpo rígido, o Momento Angular Total L é o somatório dos momentos angulares individuais de cada partícula, expressa abaixo:

Onde é o momento angular da n-ésima partícula. Como os momentos

angulares de cada partícula pode variar, seja por interação entre elas ou por ações externas sobre o sistema, pode-se calcular a derivada no tempo. Tem-se:

Mas

Os torques internos, causados por forças internas, cancelam-se devido à ação e reação newtoniana. Então os torques externos são os únicos a atuarem, o que define:

(7)

Lembrando que esta equação também só é válida para vetores torque e momento angular com a mesma origem.

Um corpo rígido que gira em torno de um eixo fixo, tem-se:

(8)

3

Page 4: Momento Angular

Onde L é o momento angular total do sistema, I é o momento de inércia

e é a velocidade angular. O momento de inércia I depende da massa e da distância

do eixo sobre qual gira.A Conservação do Momento Angular é descrita quando não nenhuma

resultante de torque externo, ou seja:

(9)

Isto significa que o momento angular total é constante ou que:

3. Material

Foi usado uma cadeira giratória, dois objetos com massas iguais e uma roda completa de bicicleta com empunhadura no eixo.

4. Procedimento experimental

A experiência iniciou-se quando o professor solicitou a um aluno que segurasse um aparato que era composto por uma roda de bicicleta com empunhadura no eixo. Foi solicitado ao aluno que a segurasse com os braços estendidos à frente e roda na vertical, realizando movimentos para direita e esquerda, variando a posição de vertical para horizontal. O aluno realizou os movimentos sem maiores dificuldades.

Depois foi imprimido uma velocidade à roda com a mesma no sentido vertical. Quando o aluno tentou realizar movimentos laterais, foi surpreendido pela resistência àqueles movimentos. Alguma coisa causava uma dificuldade à realização do movimento.

Após isso, foi solicitado a outro aluno que sentasse na cadeira giratória e segurasse as massas próximas ao corpo, precisamente encostado ao peito. A cadeira foi girada, permanecendo numa velocidade razoável. Então, foi solicitado a este aluno que abrisse os braços, estendendo-os. Notou-se que a velocidade da cadeira diminui visivelmente. Ao se retrair os braços, a cadeira aumentava a velocidade.

4

Page 5: Momento Angular

A última experiência consistia em sentar-se na cadeira giratória, segurando a roda de bicicleta na horizontal. A roda foi girada numa velocidade qualquer numa direção. O aluno + cadeira começaram a girar no sentido oposto. Solicitou-se ao aluno a movimentar a roda da posição horizontal para vertical e depois para horizontal, novamente no lado oposto ao primeiro. A cadeira foi parando e depois começou a se movimentar para o outro lado quando a roda que girava mudou de lado.

5. Obtenção e análise dos resultados

As experiências realizadas nada mais são que a comprovação da conservação do momento angular e do momento angular. As experiências com a roda de bicicleta indicam que, ao girar a roda numa posição adequada(eixo da roda na vertical),

surge a velocidade angular e um momento angular , com I senso o momento

de inércia. A cadeira giratória, que não recebe forças externas, inicia o giro para

conservar a quantidade do momento angular, com uma velocidade e um momento

angular de – .

A experiência da cadeira e as massas mostram que a distribuição destas massas, ora próxima ao eixo central de giro, ora mais distantes, causa uma variação na velocidade angular, justamente para conservar o momento angular, tal como:

6. Conclusões

Conclui-se, então, que durante uma rotação de um corpo sobre seu eixo ocorre surge o momento angular. Também que este momento depende da distribuição da massa em relação ao eixo quando gira. Por fim, que o momento angular se conserva alterando a velocidade angular a fim de manter constante o somatório dos torques externos.

Bibliografia

HALLIDAY, David; RESNICK, Robert; WALKER, Jearl; Fundamentos da Física 1 – Mecânica. 4. Ed. Rio de Janeiro: Livros Técnicos e Científicos Editora, 1996. 330 p.

NETO, L. F. Roda de bicicleta e cadeira giratória. Disponível em: http://www.feiradeciencias.com.br/sala05/05_78.asp. > Acessado em 18 Nov. 2009.

5

Page 6: Momento Angular

6