Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012...

17
Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift-enabled vehicles in planetary atmospheres. João Luis Pinto da Fonseca Presidente de júri: Prof. Carlos Renato de Almeida Matos Ferreira Orientador: Prof. Rui Manuel Agostinho Dilão Co-orientador: Prof. Ana Maria Ribeiro Ferreira Nunes Vogal: Prof. Luís Manuel Braga da Costa Campos 1/17

Transcript of Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012...

Page 1: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Mestrado Integrado em Engenharia Fisica

INSTITUTO SUPERIOR TÉCNICO

Tese de Mestrado, Dezembro 2012

Control and command of non-powered lift-enabled vehicles in planetary atmospheres.

João Luis Pinto da Fonseca

Presidente de júri: Prof. Carlos Renato de Almeida Matos Ferreira

Orientador: Prof. Rui Manuel Agostinho Dilão

Co-orientador: Prof. Ana Maria Ribeiro Ferreira Nunes

Vogal: Prof. Luís Manuel Braga da Costa Campos

Vogal: Prof. José Manuel Gutierrez Sá da Costa 1/17

Page 2: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Spacecrafts: Two different ways of reentering Earth’s atmosphere

Range Tens of Kms Hundreds of Kms

Flight Time Minutes Tens of Minutes

Accelerations Up to 8-10 g´s Up to 2-4 g´s

Flight Angle Steep Wide

Landing scheme Parachutes, Rockets Gliding (no fuel!)

Travelling from altitudes of

120 km (Earth’s

atmosphere limit)

“Ballistic”Soyuz (Russia)

Dragon (Space X-US)Apollo (US)

Shenzhou (China)

2/17

“Lift-Enabled”

Space Shuttle (US)

X-37 (US)

X-37B (US)

11th Dec 2012

Page 3: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Command & Control: The difference between being dynamic or not!

3/17

“Curiosity”: Mars 2012(7 minutes)

1 2

3

Soft Landing

“Spirit” & Opportunity : Mars 2004 (7 minutes)

HardLanding

1 2

3

Page 4: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Dinamically controlling the TAEM phase of the Space Shuttle’s atmospheric reentry (h0~40 km)

Derived Model

• Flat 1 non moving earth• Constant mass with no Thrust• Glider is a mass point with Lift and Drag

Main Assumptions

• Structural limits of the Space Shuttle• Wind Tunnel data for the Space Shuttle

(up to 5 Mach, adequate to TAEM)• Earth’s atmospheric profile (US 1976)

Using a specific reality

1 40 km altitute vs 6.4 x 103 km for Earth radius

• Spheric coordinates for the velocity (not on the position!)

New coordinate system

Equations of Motion

Control Variables

Attack Angle Bank Angle

4/17

Page 5: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Using a specific reality: Earth’s Atmosphere (US 1976)

Pressure“Almost”

exponential“Almost”

exponential

Density

Sound SpeedNot Constant Not constant(impacts on Ma)

Temperature

5/17

Page 6: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Using a specific reality: Structural Limits

Load

Limiting Factor: Shuttle Wings (biggest surface)Result: Imposes a maximum attack angle

AccelerationLimiting Factor: Cargo and human occupants (not the fuselage)Result: Imposes a “smoothness condition” on the speed of the Space Shuttle

6/17

Heat Flux

Limiting Factor: Shuttle Nose (smallest curvature)Result: Imposes a minimum attack angle

Page 7: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Space Shuttle´s Heat Insulation Numbered Tile System

7/17

Page 8: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Key angles for the control

Using a specific reality: Wind tunnel data for the Space Shuttle

“No Lift” attack angle: When lift is null (independent of Mac number)

“Max Glide” attack angle: When L/D is max (maximizes range travelled)

“Stall” attack angle: When lift peaks (and the induced drag also!)

Aerodynamic Coefficients

A “window of opportunity”. Can not go down too steep

nor too shallow

8/17

Page 9: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Equations of Motion: Basic Dynamics

Phase Space

• 1 fixed point (or limit cycle) for each combination of relevant parameters

• Stable fixed points (negative eigenvalues for all situations)

• Different convergence regimes for different situations (to “roll or not to roll” around the fixed point) Conceptual graph for CL=CD=1 and g=9.8 m/s2

Fixed Point (or limit cycle) Dynamics

• Earth profiles: g, ρ, Vsound (Ma)• Areodynamic: CL and CD (α, Ma)• Vehicle parameters: m, S• Controls: α and μ

• “Rolled convergence” or “Straigh-line” converge to the fixed point (or limit cycle)

Space Shuttle case

9/17

Page 10: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Algorithm: Minimize distance subject to aerodynamic & structural contraints

Attack Angle Bank Angle

• Heading Control (base control) • Heading Control (base control)

• Heat and load controls only intervene should heading try to breach limits

• Heat Flux Control (if needed: imposes minimum angle)

• Load Factor Control (if needed: imposes maximum angle)

• Anti-stall and energy only intervene should heading try to breach limits

• Anti-Stall Control (if needed: forces a curved approach)

• Energy Control (if needed: forces a dynamic S-turn to prevent climbs)

10/17

Page 11: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: From 30,000 m to 3,000 m (TAEM phase)

Analysis Made

• Range and error reaching specific targets at 3,000 meters

• Typical trajectories generated by the algorithm

• Sensitivity analysis to initial conditions and control time interval

• Structural limits check on excessive speed entries

1

2

3

4

Initial Conditions

Physical Constraints

Algorithm’s Parameters

11/17

Page 12: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: TAEM Range and Error reaching the target point (HAC)

Distance Error

• Typical error of the order of magnitude of 100 meters or below

• Confirmation that any point inside MR is achievable (small error)

• Angular symmetry of the error distribution follows the angular symmetry of the range

1

Maximum Range

• Hundreds of kilometers of range in any direction (highest range for straight flight)

• Symmetric ranges for symmetric alignments with initial velocity

• Different ranges for different alignments with initial velocity

12/17

Page 13: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: Typical Trajectories2

Long Range Trajectory

• When the flight is made mostly in straight line (typical Shuttle strategy)

Excessive Energy

Trajectory

• Without the energy control (dashed) we have caotic trajectories and the HAC is NOT reached

• Changed: 3,300 m/s entry speed

Possible through dynamic S-turns

Short Range

Trajectory

• When the HAC is “too close” to the xy origin the algorithm initiates a whirlpool approach while the altitude “slowly” decreases

• Changed: HAC position

13/17

Page 14: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: Long Range Zoom-in3

Speed and forces

History

Almost always at equilibrium (v=v*)

Maximum glide until reachable in

straight-line

Commands History

Sonic boom

Final approach Diminishing turn

Initial condition quickly changed

14/17

Page 15: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: Sensitivity Analysis4

Initial Orientation

• Crucial to start with the “right” trajectory descent angle (γ)

Initial Energy

• Crucial to have enough speed to reach the target

Control Time

• Self-recovering

• Low errors up to 30 seconds of control time interval

15/17

Page 16: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Simulations: Structural limits check

ThermicMaximum

temperature for highest entry speed

• Three different initial speeds (V0=1,100 m/s; V0=1,650 m/s; V0=2,200 m/s)

Maximum flux for highest

entry speed

MechanicalMaximum load

for highest entry speed

Maximum g’s for highest

entry speed

• Three different initial speeds (V0=1,100 m/s; V0=1,650 m/s; V0=2,200 m/s)

16/17

Page 17: Mestrado Integrado em Engenharia Fisica INSTITUTO SUPERIOR TÉCNICO Tese de Mestrado, Dezembro 2012 Control and command of non-powered lift- enabled vehicles.

Conclusions

• The algorithm works well with control times intervals up to 30 seconds and is by nature self-recoverable at all control times

• Any point inside the Maximum Range curve can be reached with minimum error (around or below 100 meters)

• Three main types of trajectory are designed dependent on the HAC distance (close or far) and whether or not the glider has excessive speed

• Sensitivity to initial conditions is limited and the glider will always reach the HAC should the initial speed be enough and the trajectory angle γ adequate

Conclusions & Next Steps

ImproveLower Error

reaching HACHigher Speeds (up to 30 M)

ExtendHAC Velocity

DirectionLanding

maneuvers

UpgradeThurst (and

variable mass)Moving Non-Flat

Earth & Wind

Next steps

17/17