INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types,...

78
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA - INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO GRADIENTE DE INUNDAÇÃO NOS PADRÕES BIOGEOGRÁFICOS DE ANFÍBIOS E RÉPTEIS SQUAMATA NO SUDESTE DA AMAZÔNIA LEANDRO JOÃO CARNEIRO DE LIMA MORAES Manaus, AM Outubro, 2015

Transcript of INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types,...

Page 1: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA - INPA

PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA

INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO

GRADIENTE DE INUNDAÇÃO NOS PADRÕES BIOGEOGRÁFICOS

DE ANFÍBIOS E RÉPTEIS SQUAMATA NO SUDESTE DA AMAZÔNIA

LEANDRO JOÃO CARNEIRO DE LIMA MORAES

Manaus, AM

Outubro, 2015

Page 2: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

LEANDRO JOÃO CARNEIRO DE LIMA MORAES

INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO

GRADIENTE DE INUNDAÇÃO NOS PADRÕES BIOGEOGRÁFICOS

DE ANFÍBIOS E RÉPTEIS SQUAMATA NO SUDESTE DA AMAZÔNIA

Orientadora: Dra. Camila Cherem Ribas

Coorientador: Dr. Dante Pavan

Dissertação apresentada ao Instituto Nacional de

Pesquisas da Amazônia como parte dos requisitos

para obtenção do título de Mestre em Biologia

(Ecologia).

Manaus, AM

Outubro, 2015

Page 3: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

II

BANCA EXAMINADORA DA DEFESA ORAL PÚBLICA:

Dra. Fernanda de Pinho Werneck

(Instituto Nacional de Pesquisas da Amazônia)

Dr. Fernando Mendonça d’Horta

(Instituto Nacional de Pesquisas da Amazônia)

Dr. Igor Luis Kaefer

(Universidade Federal do Amazonas)

Aprovado por unanimidade

Page 4: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

III

M827 Moraes, Leandro João Carneiro de Lima

Influência combinada dos rios como barreira e do gradiente de

inundação nos padrões biogeográficos de anfíbios e répteis

Squamata no sudeste da Amazônia / Leandro João Carneiro de Lima

Moraes. --- Manaus: [s.n.], 2015.

viii, 78 f. : il. color.

Dissertação (Mestrado) --- INPA, Manaus, 2015.

Orientador : Camila Cherem Ribas.

Coorientador : Dante Pavan.

Área de concentração : Ecologia.

1. Rios como barreira. 2. Tipos florestais. 3. Herpetofauna. I.

Título.

CDD 597.6

Sinopse:

Estudei a influência relativa dos rios como barreira e tipos florestais (formados pelo

gradiente de inundação) na geração dos padrões biogeográficos das assembleias de

anfíbios e répteis Squamata da região do Médio Rio Tapajós, sudeste da Amazônia.

Detectei que esses fatores afetam diferencialmente a distribuição das espécies e os

rios são barreiras mais efetivas para determinadas assembleias e grupos funcionais,

permitindo a previsão dos impactos causado pelas grandes hidrelétricas.

Palavras chave: Assembleias, tipos florestais, Rio Tapajós, herpetofauna,

hidrelétricas.

Page 5: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

IV

AGRADECIMENTOS

Agradeço aos meus orientadores Camila Ribas e Dante Pavan por despertarem e

apoiarem a ideia deste projeto e pelo aprendizado e disposição constantes.

Aos meus pais Maria Helena e João Carlos e minha irmã Bia pelo apoio desde o

primeiro momento.

À Marina, minha eterna companheira de aventuras, por aceitar o desafio da

mudança e estar presente em cada momento desta caminhada, iniciando a formação da

nossa família, com a Sushi!

Aos amigos que participaram ativamente da nossa vida em Manaus e nos

ajudaram muito: Renata, Felipe, Marcelo, Vanessa, Priscilla, Andrea Vanessa, Rafa.

Ao INPA e ao Programa de Pós-Graduação em Ecologia por toda a estrutura

disponibilizada, pelas disciplinas e também à todos os integrantes das turmas 2013 e

2014 da Ecologia.

À todos os integrantes que passaram pela Equipe de Herpetofauna e pelo

exigente levantamento dos dados para este projeto: Dante, Luis, Cassimiro, Jerriane, Ana

Barbara, Tainá, Daniel, Luanna, Eder, Elizângela, Mauro, Willian, Wilzon, João Paulo,

Michelle, Rafael, Guilherme, Hallana, Luciana, Albedi e Zé Mário. Agradeço também aos

responsáveis por valiosos registros ocasionais de espécies: Gustavo, Ciça, Odgley, Victor,

André Ravetta, Dante Buzzetti, Claudeir, Elizângela, Wilzon, Mauro, Mariel e Eduardo.

Ao ajudantes de campo Edcarlos, Adson ‘Pote’, Sebastião I, II e III, Dill, Carlinhos,

Clayton, Alcindo ‘Kassamba’, Francisco ‘Lorô’, Ronaldo, Waldir, Wesley, Raimundo,

Gerson ‘Marabá’, Antônio, Warlysson ‘Nhonho’, Mariel e Edhimar, pela companhia e

auxílio durante as árduas caminhadas, pelos ensinamentos e por permanecerem firmes

perante as adversidades.

Ao Seu Léo, Dona Maria I, Dona Maria II, Dona Esmeralda (e os outros moradores

da Vila Rayol), Gisleine, Luciana, Dona Francisca, moradores da Vila Machado, Chico

Pires, Duro, Adriano, Vilica, Baixinho, Bodó, irmãos ‘Frank’, Airton, Seu Zé, e também

outros moradores da região do estudo pela ajuda logística no campo, seja abrindo

trilhas, cozinhando ou pilotando os veículos, mas também pelos ensinamentos

constantes.

À CNEC WorleyParsons Engenharia S/A e aos integrantes da empresa pela

possibilidade do estudo, através do Estudo de Impacto Ambiental do AHE São Luiz do

Page 6: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

V

Tapajós, construção das trilhas de amostragem, financiamento e logística das campanhas

de amostragem.

Aos integrantes da Força Nacional, Polícia Federal e Polícia Rodoviária Federal

pelo auxílio na segurança durante a realização de algumas campanhas de amostragem.

Ao Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

(IBAMA) pela concessão da licença de coleta de espécimes na área de estudo.

À Claudene Barros e aos integrantes do Laboratório de Biologia Molecular

GENBIMOL da Universidade Estadual do Maranhão – campus Caxias (UEMA) pelo auxílio

no sequenciamento dos espécimes.

À Fernanda Werneck, Richard Vogt, Ariane Silva e Vinicius Carvalho pelo auxílio e

possibilidade de acesso à Coleção de Anfíbios e Répteis do INPA.

A todos os outros pesquisadores que ajudaram de alguma maneira. Na

identificação de espécies/linhagens: Pedro Ivo Simões, José Cassimiro, Igor Kaefer,

Vinicius Carvalho, Marcelo Gordo, Rafael Fraga, Pedro Peloso, Marinus Hoogmoed, Paulo

Bernarde, Alfredo Santos-Jr, Albertina Lima, T.C. Ávila-Pires, Omar Entiauspe, Diego

Santana, Sarah Mângia, Rafael de Sá, Antoine Fouquet, Renata Amaro, Stefan Lötters,

Thiago Kashi e Willian Duellman. Nas análises estatísticas: Pedro Martins, Juliana

Schietti, Randolpho Dias-Terceiro. Na revisão do inglês: Guilherme Sampaio.

Aos Drs. Sérgio Borges, Luciano Naka, Pedro Ivo Simões, Igor Kaefer, Adrian

Barnett, Albertina Lima, Fernanda Werneck, Fernando d’Horta e Marcelo Gordo e aos

integrantes do grupo de Biogeografia e Evolução de Vertebrados pelas sugestões

valiosas ao projeto, através de discussões, correções do plano, aula de qualificação e

defesa da dissertação.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) pela

concessão da bolsa de mestrado.

E finalmente, às principais estrelas deste projeto, os anfíbios e répteis da região

do Médio Rio Tapajós, pela possibilidade da realização deste estudo e por fomentarem a

nossa curiosidade acadêmica. Espero que este trabalho desperte a necessidade da

conservação da biodiversidade nesta região pouco explorada mas muito ameaçada e

com alto valor biológico.

Page 7: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

VI

Page 8: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

VII

RESUMO

A histórica busca pelo reconhecimento dos padrões e processos evolutivos de

organismos amazônicos visando reconstruir a história evolutiva desta paisagem megadiversa

levou à diversas hipóteses. Com o avanço nas técnicas de amostragem e análise, é crescente a

utilização de locais inexplorados e organismos pouco recorridos como modelo nesta busca,

como os anfíbios e répteis Squamata. Neste estudo, buscamos entender a influência integrada

de rios como barreira e do gradiente de inundação na geração e manutenção dos padrões

atuais de distribuição das assembleias de anfíbios e répteis Squamata na região do Médio Rio

Tapajós, na Amazônia Oriental, que é pouco conhecida e atualmente ameaçada pela iminente

atividade antrópica. Para isso, detectamos os indivíduos em pontos amostrais localizados em

todas as margens dos grandes rios, Tapajós e Jamanxim, através de busca ativa, armadilhas de

interceptação e queda e encontros ocasionais nos principais períodos do ciclo hidrológico

fluvial. Identificamos os táxons com uma abordagem integrativa morfológica, acústica,

ecológica e molecular, detectamos e testamos os padrões de distribuição com ordenações uni

e multivariadas, regressões lineares e segmentadas e análise de variância. No total, detectamos

92 anfíbios e 101 répteis, 26 e sete, respectivamente, mostraram efeito dos rios como barreira

à sua distribuição, evidenciando o Rio Tapajós como uma possível barreira recente e o Rio

Jamanxim como uma barreira fraca. Foram encontradas diferenças na composição das

assembleias restritas ou não às florestas ripárias e as mais afetadas pelo rio como barreira

foram os anfíbios e répteis não ripários, e os anfíbios ripários de igarapés. Anfíbios pequenos,

diurnos e terrestres e répteis pequenos a médios, diurnos e semi-arborícolas também

demonstram ser especialmente afetados pelos rios como barreira, e devem ser priorizados em

novos estudos com esta temática. A região do Médio Rio Tapajós é evidenciada como uma

zona de contato faunística, limitando a distribuição de linhagens típicas das regiões Oeste e

Leste da Amazônia. A dinâmica fluvial controla os padrões de distribuição na região e pode

mudar com alterações provenientes de ações antrópicas, promovendo ou impedindo a

segregação dos táxons e extinguindo ambientes relevantes, reforçando a necessidade da

preservação desta dinâmica.

Palavras-chave: Assembleias, tipos florestais, Rio Tapajós, herpetofauna, hidrelétricas.

Page 9: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

VIII

ABSTRACT

Combined influence of riverine barriers and flooding gradient on biogeographic

patterns of amphibians and squamates in South-eastern Amazonia

The historical search for recognition of evolutionary patterns and processes of

Amazonian organisms aiming to reconstruct the evolutionary history of this mega-diverse

landscape led to several hypotheses. Advances in sampling and analysis methods allowed the

use of unexplored localities and organisms as a model for this search, such as amphibians and

squamates. In this study, we seek to understand the integrated influence of riverine barriers

and the flooding gradient in current assemblages distribution patterns of amphibians and

squamates in the Middle Tapajós River region, eastern Amazonia, which is little known and

threatened by imminent anthropogenic activity. For this, we detect individuals at sampling

units located in all banks of the main rivers, Tapajós and Jamanxim, through active search,

pitfall traps and occasional encounters in all periods of fluvial hydrological cycle. We identify

the taxa with a morphological, acoustic, ecological and molecular integrative approach, detect

and test the distribution patterns with uni- and multivariate ordinations, linear and piecewise

regressions and analysis of variance. In total, we found 92 amphibians and 101 squamates,

and 26 and seven, respectively, showed riverine barrier effect in their distribution, evidencing

the Tapajós River as a possible recent barrier and the Jamanxim River as a weak barrier.

Differences were found in the composition of assemblages restricted or not to riparian forests

and the most affected by the riverine barrier were non-riparian amphibians and squamates,

and small stream riparian amphibians. Small, diurnal terrestrial amphibians and small-

medium, diurnal semi-arboricole squamates prove to be especially affected by riverine

barriers, and should be priorized in further studies with this theme. The Middle Tapajós River

region is evidenced as a faunistic contact zone, limiting the distribution of typical lineages of

West and East Amazonian regions. The fluvial dynamics controls the distribution patterns in

the region and may be affected by changes from anthropogenic activities, promoting or

preventing the taxa segregation and extinguishing relevant environments, highlighting the

importance to preserve this dynamics.

Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power

plants.

Page 10: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

IX

LISTA DE FIGURAS

Figure 1. Study area. (a) Location in South America, Brazil, Pará and Amazon Basin. (b)

Sampling units, showing the two main rivers and the main interfluves: (M-T) Madeira-

Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-

Xingu and (T/J-X) Tapajós/Jamanxim-Xingu. (c) Scheme of sampling units, with transect (in

black), plots (uniformly distributed in brown and riparian in grey) and pitfall traps (in red). . 32

Figure 2. Direct ordination of the relative abundance of amphibians (a) and squamates (b) in

relation to distance to water gradient. Note that some species increase in abundance or are

restricted to more humid areas (red square). ............................................................................ 33

Figure 3. Linear regression for the three main taxonomical groups studied, between the

NMDS Axis 1 (species composition) and distance to water, divided in modal distances with

three plots agregated: (1) 20-35 m; (2) 36-50 m; (3) 53-62 m;(4) 63-80 m; (5) 82-95 m; (6)

100-150 m; (7) 180-200 m; (8) 250-300 m; (9) 320-380 m; (10) 440- 490 m (11) 500-580 m;

(12) 615-700 m; (13) 715-1120 m; (14) 1200-1400 m; (15) 1700-2140 m. ............................ 34

Figure 4. Direct ordination of presence-absence data for all survey methods revealing a

higher number of amphibians (a) than squamates (b), which are exclusive to one of the main

rivers' banks. Sampling units (letters) and interfluves (acronyms) are on the top. Different

colours correspond to main interfluves and species written in red are significantly (ANOVA,

p≤0.05) more abundant in one interfluve (inside parentheses). ............................................... 35

Figure 5. NMDS ordinations and composition changes between interfluves for amphibian and

squamate assemblages showing the relative riverine barrier strength for these taxa. (a-c)

amphibians; (d-f) lizards and (g-i) snakes. Interfluves: (M-T) Madeira-Tapajós; (M-T/J)

Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-Xingu and (T/J-X)

Tapajós/Jamanxim-Xingu. ........................................................................................................ 36

Figure 6. Relative frequency of amphibian (a) and squamate (b) functional groups with

distribution patterns indicating a riverine barrier influence. In black are the proportion of

species which suffer barrier effect and in gray which do not suffer barrier effect. The total

number of species in each category are inside the bars. Micro-habitat: (TE) terrestrial; (FO)

fossorial; (AR) arboricole; (AQ) aquatic; (SR) semi-arboricole and (SA) semi-aquatic. Body

size: (SM) small; (MD) medium and (LA) large. Activity period: (CR) crepuscular/nocturnal;

(DI) diurnal; (NO) nocturnal and (DN) diurnal/nocturnal........................................................ 37

Page 11: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

X

Figure 7. NMDS ordinations and composition changes for amphibian and squamate

assemblages associated with distinct forest types, clustered by composition variation in

relation to distance to water, showing the relative riverine barrier strength. (a-c) Non-riparian

amphibians; (d-f) Small stream riparian amphibians; (g-i) Large river riparian amphibians; (j-

l) Non-riparian squamates and (m-o) Riparian squamates. Interfluves: (M-T) Madeira-

Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-

Xingu and (T/J-X) Tapajós/Jamanxim-Xingu. ......................................................................... 38

Page 12: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

SUMÁRIO

RESUMO ..................................................................................................................... VII

ABSTRACT .............................................................................................................. VIII

LISTA DE FIGURAS ................................................................................................... IX

INTRODUÇÃO ............................................................................................................... 1

OBJETIVOS ................................................................................................................... 4

CAPÍTULO I ................................................................................................................... 5

ABSTRACT 7

INTRODUCTION 8

MATERIALS AND METHODS 100

RESULTS 122

DISCUSSION 155

ACKNOWLEDGEMENTS 211

REFERENCES 211

SUPPORTING INFORMATION 29

BIOSKETCHES 29

LIST OF FIGURES LEGENDS 30

FIGURES 32

CONCLUSÕES ............................................................................................................. 39

REFERÊNCIAS BIBLIOGRÁFICAS ......................................................................... 61

APÊNDICES ................................................................................................................. 65

Page 13: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

1

INTRODUÇÃO

Na floresta Equatorial Amazônica, uma complexa heterogeneidade ambiental e limites

ambientais pouco evidentes são ofuscados pela uniformidade de grandes extensões de terras

baixas cobertas pelas florestas densas (Hoorn et al., 2010). Com o avanço do conhecimento

científico nesta região, resultado do aumento do esforço e padronização das amostragens,

inovações nas análises e exploração de áreas consideradas como lacunas de conhecimento,

diversos estudos demonstram que variações ambientais são diretamente refletidas nas

variações das distribuições de assembleias distintas (Costa e Magnusson, 2010; Magnusson,

2014; Simões et al., 2014).

Com o acesso à esta variação fina em estudos biogeográficos utilizando abordagens

intra ou interespecíficas e focados em uma determinada região, padrões de distribuição

ofuscados ao longo do tempo são evidenciados (e.g. Naka, 2011; Pomara et al., 2013; Boubli

et al., 2015; Leite et al., 2015; Dias-Terceiro et al., 2015). Assim como os principais

processos causadores da diversificação nesta região, que envolvem interações bidirecionais

entre forças históricas e ecológicas (Losos et al., 2013; Beheregaray et al., 2015). O

reconhecimento da história evolutiva dos organismos permite a associação com as principais

teorias biogeográficas reconhecidas acerca da evolução da paisagem amazônica (Leite e

Rogers, 2013; Smith et al., 2014). Com o avanço e a soma deste conhecimento em

determinadas regiões e utilizando diversos organismos como modelo, pode-se compreender

melhor a história evolutiva da bacia como um todo.

Répteis e anfíbios estão entre os organismos com elevado número de linhagens

conhecidas para a Amazônia (Duellman, 1979, 2005). Na porção brasileira do bioma, ocorrem

cerca de 30% do total de anfíbios e 40% do total de répteis do país (Museu Paraense Emílio

Goeldi, 2012; Costa e Bérnils, 2014; Segalla et al., 2014). Porém, a cada ano diversas

espécies são reconhecidas e descritas (e.g. Orrico et al., 2014; Lima et al., 2014) ou possuem

sua área de ocorrência ampliada (e.g. Simões et al., 2011; Dal Vechio et al., 2015). Estas

descobertas indicam que o reconhecimento pleno da diversidade está longe de ser alcançado,

e este é o primeiro passo para a identificação dos seus principais padrões biogeográficos.

Revisões taxonômicas de espécies amazônicas anteriormente consideradas de ampla

distribuição revelam táxons com diferenças fenotípicas sutis, por exemplo, os répteis Plica

plica (Murphy e Jowers, 2013) e Thecadactylus rapicauda (Bergmann e Russell, 2007) e os

anfíbios Trachycephalus resinifictrix (Gordo et al., 2013), Adenomera spp. (Fouquet et al.,

Page 14: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

2

2014), Allobates femoralis (Simões et al., 2010), Hypsiboas fasciatus e H. calcaratus

(Caminer e Ron, 2014).

A dificuldade do reconhecimento pleno da diversidade de anfíbios e répteis

amazônicos reside principalmente no fato de muitos táxons apresentarem elevado grau de

conservadorismo fenotípico e polimorfismo intraespecífico, dificultando a definição dos

limites específicos (Fouquet et al., 2014; Funk et al., 2011; Jansen et al., 2011). Para a

identificação dos táxons que compõem estes complexos de espécies são necessárias

abordagens integrativas, com o estudo refinado da morfologia, acústica, ecologia,

comportamento e diversidade molecular (Simões et al., 2013; Nascimento, 2014), já que

mesmo táxons semelhantes morfologicamente podem apresentar grandes divergências

genéticas (Fouquet et al., 2014). Neste cenário de métodos integrativos de identificação e o

aumento da densidade de amostragens na Amazônia, a real diversidade destes grupos na

região amazônica está sendo desvendada, assim como as suas complexas histórias evolutivas.

Dentre as muitas lacunas de conhecimento para estes grupos localizadas na porção

brasileira da Amazônia, a região do Médio Rio Tapajós é uma das mais importantes. Os

levantamentos e estudos de anfíbios e répteis realizados na Bacia do Rio Tapajós são

concentrados no trecho do Baixo Rio Tapajós (Neckel-Oliveira et al., 2000; Azevedo-Ramos

e Gallati, 2001; Ribeiro Jr. et al., 2012), enquanto o conhecimento das regiões do Alto e

Médio Rio Tapajós é incipiente (Lima et al., 2014). A exploração destes locais é

historicamente difícil em virtude destes trechos do rio possuírem pequena representatividade

viária e baixa navegabilidade, devido ao leito rochoso (Azevedo-Ramos e Gallatti, 2001). Esta

característica promove a formação de trechos com corredeiras e cachoeiras, tornando esta

região alvo de projetos recentes que visam a construção de um complexo de usinas

hidrelétricas (Brasil, PR, 2011). Com essa iminente ameaça antrópica e o conhecimento que

variações em pequena escala da composição de assembleias nos diferentes ecossistemas

florestais da Amazônia são relatados (e.g. Menin et al., 2007; Pavan, 2007; Jorge, 2014), o

avanço no conhecimento dos padrões de distribuição dos organismos nesta região e seus

processos causadores são extremamente necessários. Especialmente a influência dos grandes

rios nas assembleias de anfíbios e répteis que habitam as florestas ripárias, tipo florestal mais

ameaçado pelo represamento dos rios (Pavan, 2007; Ferreira et al., 2013). Dessa forma, visa-

se evitar a perda desta informação biológica e a previsão e mitigação dos futuros impactos

ambientais causados por estes empreendimentos.

Page 15: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

3

Considerando o avanço do conhecimento para traçar a história evolutiva da Amazônia,

a identificação dos mecanismos geradores da sua megadiversidade, e o incipiente

conhecimento sobre os padrões de distribuição das assembleias de anfíbios e répteis Squamata

no bioma, nós realizamos uma amostragem intensa destes grupos na ameaçada região do

Médio Rio Tapajós. As linhagens foram identificadas através de técnicas integrativas,

buscando evidenciar os principais padrões de distribuição dos organismos e os mecanismos

históricos e ecológicos causadores destes padrões. As questões que pretendemos responder

com esta abordagem foram: se os grandes rios presentes na região atuam de maneira desigual

como barreiras, determinando os limites das distribuições das espécies e se os diferentes tipos

florestais, florestas de terra firme e alagáveis, influenciam os padrões de distribuição das

espécies. Esperamos com este estudo contribuir para o avanço do conhecimento sobre a

biogeografia destes grupos, a história evolutiva da paisagem e a conservação biológica desta

região.

Page 16: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

4

OBJETIVOS

Objetivo geral

Determinar como os padrões biogeográficos encontrados para as assembleias de anfíbios e

répteis Squamata, na região do Médio Rio Tapajós, relacionam-se a fatores históricos e

ecológicos.

Objetivos específicos

Avaliar a influência relativa de barreiras geográficas estabelecidas pelos grandes rios

da região (Tapajós e Jamanxim) sobre os padrões de distribuição de assembleias

encontrados.

Avaliar a influência relativa das variações ambientais determinadas pelo tipo florestal

(Florestas de Terra Firme e Inundáveis) sobre os padrões de distribuição de

assembleias encontrados.

Identificar se assembleias de determinados tipos florestais e organismos de

determinados grupos funcionais são mais afetados pelas barreiras geográficas

estabelecidas pelos grandes rios na região.

Page 17: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

CAPÍTULO I

Moraes, L.J.C.L.; Pavan, D.; Barros, M.C.; Ribas,

C.C. 2015. Combined influence of riverine barriers

and flooding gradient on biogeographical patterns of

amphibians and squamates in South-eastern

Amazonia. Journal of Biogeography em revisão.

Page 18: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

6

Original Article

Distribution patterns of amphibians and squamates in South-eastern Amazonia

Combined influence of riverine barriers and flooding gradient on

biogeographical patterns of amphibians and squamates in South-

eastern Amazonia

LEANDRO JOÃO CARNEIRO DE LIMA MORAES1,5, DANTE PAVAN

2, MARIA CLAUDENE BARROS3

AND CAMILA CHEREM RIBAS4

1 Graduate Program in Ecology, Instituto Nacional de Pesquisas da Amazônia (INPA), Av.

André Araújo, 2936, 69067-375. Manaus, AM, Brazil.

2 Ecosfera Consultoria e Pesquisa em Meio Ambiente LTDA., R. Gioconda Mussolini, 291,

05591-120. São Paulo, SP, Brazil.

3 Graduate Program in Biodiversity, Environment and Health, Universidade Estadual do

Maranhão, Centro de Estudos Superiores de Caxias, Praça Duque de Caxias, S/N, 65604-000.

Caxias, MA, Brazil.

4 Biodiversity Section and Zoological Collections, Instituto Nacional de Pesquisas da

Amazônia (INPA), Av. André Araújo, 2936, 69067-375. Manaus, AM, Brazil

5 Correspondence: Leandro J.C.L. Moraes. E-mail: [email protected]

Word Count

Abstract: 300

Text: 7236

Page 19: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

7

ABSTRACT

Aim To investigate how the distribution patterns of amphibian and squamate assemblages in

the Middle Tapajós River region are influenced by the distance to water (flooded and non-

flooded forests) and riverine barriers (Tapajós and Jamanxim rivers) and, considering the

planned hydroelectric dams on both rivers, to discuss the possible impacts on these

assemblages.

Location Middle Tapajós River, South-eastern Amazonia.

Methods We conducted diurnal and nocturnal surveys combining pitfall traps and active

search along both banks of the Tapajós and Jamanxin Rivers. We identified specimens

through an integrative morphological, acoustic, ecological and molecular approach and

evaluated the influence of riverine barriers and distance to water using uni- and multivariate

ordinations, regressions and ANOVA.

Results We found changes in species composition for both groups along the flooding gradient

and differential riverine barrier effects. The rivers restrict the distribution of 33% of

amphibians and 8% of squamates. For amphibians, the main distribution barrier is the Tapajós

River and for squamates both rivers were of similar importance. The assemblages most

affected by riverine barriers were non-riparian amphibians and squamates, as well as riparian

amphibians associated with small streams. The functional groups most affected were small,

diurnal terrestrial amphibians and small-medium, diurnal semi-arboricole squamates.

Main conclusions The Tapajós River is a distributional boundary for lineages from the

western and eastern Amazonia. The fact that many taxa occur on both banks suggests that the

Tapajós is a recent or semi-permeable barrier and that the Jamanxim is an even weaker

barrier. Anthropogenic actions that affect water level, flooding cycles and river flow may

influence these natural patterns and cause changes to the equilibrium of the riverine barrier

effect. Studies seeking to identify these influences should focus on the most affected

functional groups identified here.

Keywords Assemblages, dispersal limitation, Eastern Amazonia, forest types, herpetofauna,

hydropower plants, Tapajós Basin.

Page 20: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

8

INTRODUCTION

Current distribution patterns are shaped by multidirectional interactions between

several processes acting at different temporal and spatial scales (Vellend, 2010; Losos et al.,

2013). Historically, several processes have been considered drivers of the megadiversity

currently found in the Amazonian rain forest. At the regional scale, these processes include

Andean orogeny and drainage evolution (Hoorn et al., 2010; Latrubesse et al., 2010),

neotectonism (Rossetti, 2014), and climate changes (Haffer, 1969); whereas at the local scale,

they may include interactions among biotic and abiotic factors or intrinsic ecological

constraints (Cornell & Lawton, 1992). The dynamic equilibrium between historical events

and local ecological conditions may have led to the development and maintenance of current

Amazonian diversity patterns (Tuomisto & Ruokolainen, 1997).

At the regional scale, the fluvial dynamics of the Amazon Basin seem to play an

important role in the origin and maintenance of diversity patterns (Wallace 1852). The

influence of the evolution of large rivers on the segregation and vicariance of sister-taxa and

the distribution patterns of some vertebrates, especially birds (Cracraft, 1985; da Silva et al.,

2005) and monkeys (Boubli et al., 2014), strongly support this hypothesis. Nevertheless,

Amazonian rivers vary in hydromorphological dynamics and evolution (Sioli, 1968) and

therefore exert unequal influence on the evolutionary history of the biota (Gascon et al., 2000;

Bates et al., 2004). In addition, species' life-histories, including functional traits such as size

or microhabitat preference, directly influence their dispersal capacity (Gascon et al., 1998;

Burney & Brumfield, 2009; Smith et al., 2014; Fouquet et al., 2015). For example, riparian or

semi-aquatic species are expected to have greater capacity of dispersing across rivers due to

the increased contact with aquatic surface (Schiesari et al., 2003; Aleixo, 2006; Cadena et al.,

2011).

Species assemblages are also influenced by local ecological factors that are assessed

only through fine-scale studies of distribution patterns. Environmental variables structuring

the assemblages of several Amazonian taxa have already been identified. For example,

topographical characteristics, soil composition and microhabitat variation influence the

distribution of plants (Emílio et al., 2013; Schietti et al., 2013; Zuquin et al., 2014) and

squamates (Pavan, 2007; Fraga et al., 2011; Garda et al., 2012). Distance to streams (Menin,

2011), forest type (Gascon et al., 2000; Pavan, 2007) and leaflitter morphology (Menin et al.,

Page 21: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

9

2007) all influence anuran distribution. However, the overall difficulty researchers have faced

in detecting general patterns suggests that the relationship between ecological factors and

distribution patterns is idiosyncratic (Dias-Terceiro et al., 2015).

Amphibians and squamates are among the most diverse Amazonian vertebrate groups,

include several threatened species and play important ecological roles in ecosystem

operations, but few studies have tried to correlate their distribution patterns with evolutionary

processes (Ron, 2000). Studying these groups as a model to investigate the evolutionary

history of the Amazonian landscape may be relevant because they are sensitive to

environmental and climatological changes (Kerby et al., 2010; Mitchell & Janzen, 2010) and

frequently have low individual motility, showing greater vulnerability to these changes and

retaining signals of historical events (Simões et al., 2014). Also, they are generally widely

distributed throughout the basin (Duellman, 1979).

Most of the studies investigating this correlation focus on intraspecific morphological,

acoustic or molecular variation (e.g., Simões et al., 2008; Souza et al., 2013; Fouquet et al.

2014), whereas few address assemblage variations. The studies that do exist show that both

historical and ecological factors help shape species distributions within these groups at

different scales (Ávila-Pires, 1995; Gascon et al., 2000; Ron, 2000; Dias-Terceiro et al.,

2015). The lack of assemblage-level research approaches to investigate these relationships is

caused primarily by the lack of basic knowledge of species distributions that has resulted from

a concentration of studies in a few accessible areas, lack of standardization and short-term

samplings (Azevedo-Ramos & Galatti, 2001). Moreover, incomplete taxonomic knowledge,

can hinder the understanding of real distribution patterns (Fouquet et al., 2007).

Recently, the Amazon basin has been the focus of large developmental projects,

including building dams for hydroelectric energy generation on the primary Amazonian rivers

(Brasil, PR, 2011). These dams will affect the water flow and flooding dynamics of the main

Amazonian rivers and adjacent forests (Nilsson & Berggren, 2000), and it is unknown how

these anthropogenic changes will affect biodiversity. Currently, one of the most threatened

Amazonian rivers is the Tapajós as several ongoing projects aim to build consecutive dams

along this river and its tributaries (Fearnside, 2015).

Here, we aim to understand how the distribution patterns of amphibians and squamates

are influenced by riverine barriers and by distance to water, as a proxy for forest type (upland

or flooded forest) within the poorly known and threatened region of the Middle Tapajós

River. We investigate whether assemblage composition changes with distance from the water

Page 22: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

10

and on the opposite banks of the Tapajós and Jamanxim Rivers, the largest rivers that drain

the area. We also ask whether the riverine barrier effect varies in relation to specific

assemblages or functional groups that occur in forests with different flooding regimes.

MATERIALS AND METHODS

The clear-water Tapajós River is one of the main tributaries of the Amazon River. Its

headwaters drain the Precambrian terrain of the Brazilian Shield, which provides low

sediment input (Sioli, 1968). The middle Tapajós is located in a geological contact zone,

including the northern limit of the cratonic Brazilian Shield and the sedimentary plains of the

Amazon River Basin. The dry season occurs between June and August and the rainy season

between November and March. Average annual temperature is 26°C and annual rainfall

varies from 50 to 375 mm (Alvares et al., 2013).

Amphibian and reptile sampling

Sampling was conducted on both banks of the Tapajós and Jamanxin rivers, at 10

sampling units (Fig. 1). Each unit was comprised of one 4 km transect and seven

perpendicular 250 m plots, four of these in upland forests (non-flooded) and three in

periodically flooded riparian forests. The plots follow the contour lines of the terrain. Detailed

descriptions of environmental variation observed in each sampling unit are available in

Appendix S1. The sampling scheme aims to increase standardization and independence

(Magnusson et al., 2005). We sampled both transects and plots during six survey campaigns

from July 2012 to November 2013, covering all phases of the hydrological cycle.

We used complementary methods to register individuals, seeking to maximize

regional diversity sampling and to reduce the effect of sampling bias. Using the active search

method (Heyer, 1994), five researchers searched for individuals along the centre line of trails

at diurnal and nocturnal periods and in all microhabitats accessible visually or through

vocalization (in the case of male breeding anurans). The number of anurans calling at each

point was estimated during sampling. Each plot was sampled for at least 14 days and nights,

and each transect was sampled for six days and nights, totalling more than 340 days of active

search surveys.

Page 23: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

11

Pitfall traps (Heyer, 1994) were installed at four random plots, each consisting of three

equidistant parallel rows of five buckets. These traps were checked at 24 h intervals for five

consecutive days during each survey campaign, totalling an effort of 600 trap nights.

Individuals registered through methods other than those described here, or collected by third

parties, were considered casual encounters.

Taxa delimitation and identification

We used an integrative approach to taxa delimitation, combining morphological,

acoustic, ecological and molecular techniques (Padial et al., 2010). The morphological,

acoustic and ecological analyses was based in author’s observations, species descriptions,

taxonomic revisions and field guides, and included comparisons with voucher specimens

deposited in the collection of amphibians and reptiles at the National Institute for Amazonian

Research, including some type series. Molecular species identification was employed for

cryptic species complexes. DNA was extracted from tissue samples and the 16S rRNA gene,

which is one of the standard markers for these groups (Vences et al., 2012), was amplified

through a polymerase chain reaction (PCR) and sequenced in an ABI PRISM 3500 (Life

Technologies) sequencer. Additional sequences from related taxa and outgroups were

obtained from Genbank. Sequences were aligned in CLUSTAL OMEGA (Sievers et al., 2011)

and phylogenetic trees were inferred using Maximum Likelihood in MEGA 5 (Tamura et al.,

2011). Clade support was estimated by bootstrap. See Appendix S2 for details of integrative

species identification.

Data analyses

To detect whether and how environmental variations between distinct forest types

influences assemblage structure, we constructed direct ordinations and dissimilarity matrices

using the qualitative (presence-absence) data from the plot surveys. Dissimilarity was

measured using the Jaccard index, and the dimensionality was reduced using one axis of a

non-metric multidimensional scale (NMDS) (Clarke, 1993). Because some upland plots were

located next to water, we considered forest type variation as a continuous measure based on

proximity of plots to water bodies. Using regional hydrographic maps, we measured the

Page 24: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

12

straight-line distance at 90° from the beginning of the plot to the nearest water body.

Correlation between species composition and water proximity (flooding gradient) was

analysed by linear regression. We excluded the species for which we sampled less than 5

individuals because it is more difficult to determine whether they are associated with a

particular forest type.

To evaluate the riverine barrier effect, we constructed dissimilarity matrices using the

entire qualitative data from sampling units in each interfluve (Madeira-Tapajós, Tapajós-

Jamanxim, Madeira-Tapajós/Jamanxim, Tapajós/Jamanxim-Xingu and Tapajós-Xingu).

Dissimilarity was measured using the Jaccard index, and we determined the riverine effects

with NMDS. We used these same methods to investigate how riverine barriers affect

assemblages from distinct forest types based on the qualitative data of all surveys, considering

only the species occurring in each assemblage. For this, we determine the size of riparian

forest through assemblages (NMDS Axis1) breakings in relation to distance to water with

piecewise regressions. We generated ordinations for the assemblages of (1) non-riparian

amphibians, (2) small stream riparian amphibians, (3) large river riparian amphibians, (4)

non-riparian squamates, and (5) riparian squamates. The last assemblage showed no

composition changes across the two riparian forests types. We used one first NMDS axis to

test the assemblage differences in interfluves with an ANOVA and Tukey post-hoc test.

To detect significant differences in species abundance between interfluves we also

used ANOVA and Tukey test. We evaluated the riverine barrier effect for species from

different functional groups based on traits that reflect their life-history: activity period,

microhabitat and body size, comparing the relative number of affected species in each

category. All of the analyses were performed in R (R Development Core Team, 2014).

RESULTS

We registered 14,253 amphibians of 92 species and 3,410 squamates of 101 species (Table

S1). We excluded species recorded at only one site and obtained a final dataset of 79

amphibians and 82 squamates.

Page 25: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

13

Flooding gradient

We detected significant changes in species composition associated with proximity to

water for the amphibians and lizards, and weak changes for the snakes (Table 1). The

abundance of some species increased close to a watercourse, whereas some species occurred

exclusively in these areas, including the amphibians Hypsiboas multifasciatus, H.

leucocheilus and Allobates magnussoni and the squamates Bothrops atrox and Uranoscodon

superciliosus (Fig. 2, 3). However, no species occurred exclusively in upland forests, which

was expected because of their varying degrees of dependence on water.

Riverine barriers: widely distributed taxa

Of 79 amphibian species, 49 were detected on all banks of both main rivers. Of these,

33 are also widely distributed in the Amazonia, whereas three are found only south of the

Amazon River, five are restricted to the central portion of the southern Amazonia and one is

distributed in the eastern Amazonia. Nine other species are poorly known or new taxa with

unknown distributions. At least 16 of the widely distributed taxa are species complexes and

intraspecific analyses may reveal restricted lineages (Table S1).

Regarding the squamates, of the 82 species identified, 54 were widely distributed; and

of these, 48 are also widely distributed in the Amazonia. However, at least two are species

complexes, especially snakes of the genus Atractus. One species is restricted to the south of

the Amazon River and one to the central portion of the southern Amazonia. Two species are

distributed in the eastern Amazonia and at least two have uncertain distribution due to

conspicuous habits or taxonomic uncertainty (Table S1).

Riverine barriers: taxa with distributions restricted by rivers

The distribution patterns of 30 amphibian and 27 reptile species indicated some

riverine barrier effect, with species occurrence restricted to one bank of the main river (Fig.

4). We excluded four amphibians and 20 squamates from the analyses as they were already

Page 26: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

14

historically registered on opposite margins or are poorly understood, indicating that the

riverine effect on these species could have been due to sampling bias.

Fifteen amphibians are restricted to the western bank of the Tapajós, 10 to the eastern

bank and one to the eastern bank of the Jamanxim. Only the Tapajós represented an effective

barrier, with different species composition on opposite banks. No composition difference was

found on opposite banks of the Jamanxim (Table 1). NMDS ordination reflects this

dissimilarity and shows a large break in composition associated with the Tapajós and no break

associated with the Jamanxim (R²=0.74, stress=0.05) (Fig. 5).

Among the squamates, two species were restricted to the western bank of the Tapajós,

three to the eastern bank and two to the eastern bank of the Jamanxim. The lizard assemblages

on interfluves show some influence from both rivers as barriers. For snakes, no riverine

barrier effect was detected (Table 1). In the NMDS ordination, the Tapajós and Jamanxim

show some influence as geographical boundaries for lizard assemblages (R²=0.82,

stress=0.09) and not significant for snake assemblages (R²=0.49, stress=0.16) (Fig. 5).

Some species were present on both banks of these rivers but had extremely unequal

abundances on opposite banks. For example, we recorded 49 individuals of the lizard Norops

trachyderma on the eastern bank of the Tapajós and only one on the western bank; and for the

frog Rhinella gr. margaritifera1, we identified 88 individuals on the western bank and one on

the eastern bank. In total, six amphibians and six squamates have unequal abundances

between interfluves. Of these, eight are more abundant in the Madeira-Tapajós, two in the

Tapajós-Jamanxim and two in the Tapajós-Xingu (Fig. 4).

The amphibian functional groups most affected by the riverine barrier effect were

small, diurnal and terrestrial species, especially the genera Pristimantis (four taxa), Allobates

and Leptodactylus (three taxa each). The most affected squamate functional groups were

small-medium sized, diurnal and semi-arboricole species, especially lineages of the genus

Gonatodes (two species) (Fig. 6).

Riverine barrier effects on species along the flooding gradient

Because amphibians and squamates are not uniformly distributed in forests with

different degrees of flooding, we tested the riverine barrier effect for different classes of

assemblages. For amphibians, the riverine barrier effect was stronger for non-riparian and

Page 27: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

15

riparian assemblages associated with small streams. In the latter case, this result was

influenced by the fact that some species typical of this environment such as Hypsiboas

leucocheilus, H. multifasciatus and Leptodactylus leptodactyloides, are often restricted to one

bank. No significant riverine barrier effect was detected for riparian assemblages associated

with large rivers (Table 1). These effects were visualized in NMDS ordinations: two clusters

were segregated by the Tapajós for non-riparian assemblages (R²=0.84, stress=0.004) and the

small stream riparian assemblages (R²=0.87, stress=0.05), but no clustering occurred for large

river riparian assemblages (R²=0.81, stress=0.06) (Fig. 7).

For squamates, the non-riparian assemblages showed a riverine barrier effect

associated with opposite banks of the Tapajós, whereas the riparian assemblages were

homogeneous (Table 1). In the NMDS ordinations, the Tapajós also segregated two clusters

for the non-riparian assemblages (R²=0.86, stress=0.09) but no clustering occurred for the

riparian assemblages (R²=0.91, stress=0.15) (Fig. 7).

DISCUSSION

We registered several undescribed or recently described taxa in addition to some

distribution extensions, demonstrating the difficulty of characterizing biogeographical

patterns based on current taxonomic knowledge without large sampling efforts to collect

primary data and the use of integrative species identification approaches. Analyses of

amphibian and squamate distribution patterns in the Middle Tapajós River region showed that

both ecological (flooding regimes) and historical (riverine barriers) factors influence the

structure of assemblages, as reported for other Amazonian regions (Gascon et al., 2000; Dias-

Terceiro et al. 2015). Changes in assemblage composition occurred both on opposite banks of

the Tapajós and in forests with different flooding regimes. In addition, some functional

groups are more affected by riverine barriers than others.

Flooding gradient and species assemblages

Several studies have detected changes in assemblage composition in distinct

Amazonian forest ecosystems, e.g., for plants (Wittmann et al., 2004; Schietti et al., 2013),

mammals (Haugaasen & Peres, 2005), birds (Bueno et al., 2012) and amphibians and reptiles

Page 28: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

16

(Doan & Arriaga, 2002; Pavan, 2007). In the Middle Tapajós River region, despite the

relatively small development of riparian ecosystems due to riverine channel morphology, we

detected a change in composition between assemblages along the flooding gradient (distance

to water). This was especially the case for amphibians, which have different patterns even

between distinct riparian forests. These differences may be due to species endogenous

processes, such as intrinsic ecological requirements related to reproduction, behaviour and

physiological constraints, which restrict their distributional ranges (Dale & Fortin, 2014).

The high intra- and interspecific homogenization among riparian assemblages

documented for other Amazonian organisms (e.g., Aleixo, 2006; Cadena et al., 2011) was

corroborated, especially for the assemblages associated with large rivers (Igapó forests). This

indicates that dispersal across and along the river is facilitated for these organisms. It has been

suggested that strong water flow may facilitate dispersal by carrying "rafts" of land or

vegetation across or along the rivers (Schiesari et al., 2003; Pavan, 2007).

Contrastingly to literature (e.g. Aleixo, 2006; Cadena et al., 2011), we detected

changes in the composition of small stream riparian amphibian assemblages on opposite

banks of the Tapajós. That difference can be generated by species physiological and

behavioural constraints because individuals remain sedentary in these wetlands and never use

the upland forests and large river riparian forests, thus hindering the exchange of individuals

between banks and may increase morphological and genetic divergence. Analysing the

genetic differences in one amphibian with these characteristics, Mullen et al. (2010) noted

that gene flow can be low even between nearby streams.

Rivers as barriers to dispersal

For amphibians, the Tapajós is the eastern distributional limit of many groups from the

south-western Amazonian highlands, including Hemiphractus scutatus, Dendropsophus

bokermanni and Hypsiboas leucocheilus. Some typical lowland lineages from the Solimões

Basin, such as Ameerega trivittata, Allobates masniger, Scinax cruentommus and

Chiasmocleis bassleri are also registered exclusively on western bank of the Tapajós.

The eastern banks of Tapajós and Jamanxim are the distributional limits for some

amphibians from the Brazilian Shield highlands, such as Adelphobates galactonotus,

Ranitomeya amazonica and Leptodactylus paraensis, and the eastern lowlands, such as

Leptodactylus leptodactyloides and Hypsiboas multifasciatus. Some additional amphibians

Page 29: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

17

with distributions bounded by the Tapajós are enigmatic, and it is difficult to infer

biogeographical patterns. These species include: Synapturanus sp., a genus extremely rare

south of the Amazon River (Albertina Lima, com. pess.); Pristimantis gr. lacrimosus3, an

undescribed taxon, and Pristimantis reichlei, an Andean lineage that was registered on only

the eastern bank of the Tapajós.

The Tapajós is also a distributional limit for squamates. Some typical lowland lineages

of the Solimões Basin and highland lineages of the south-western Amazonia that occur

exclusively on the western bank of the Tapajós include Norops tandai (Solimões Basin) and

Gonatodes hasemani (south-western Amazonia highlands). Typical lineages of the Brazilian

Shield highlands occur exclusively on the eastern banks of the Tapajós and Jamanxim, such

as Enyalius leechi, Gonatodes tapajonicus and Thamnodynastes pallidus, or are much more

abundant on this bank, such as Norops trachyderma.

In the studied region, the Tapajós and Jamanxin rivers contribute unequally to the

origin and maintenance of species distribution patterns. The exchange of individuals between

opposite banks of the Tapajós River is higher for riparian than for non-riparian assemblages,

whereas the Jamanxim was not an effective barrier for amphibians and was a weak barrier for

squamates. Previous studies provided discordant results on the effects of primary Amazonian

rivers as barriers to amphibian and reptile dispersal (Ávila-Pires, 1995; Gascon et al., 2000;

Ron, 2000; Dias-Terceiro et al., 2015). For amphibians, the Tapajós appears to be a stronger

barrier than other Western Amazonian rivers, such as the Juruá River (Ron, 2000), whereas

the relatively young Madeira River has impact as a barrier (Dias-Terceiro et al., 2015). The

Tapajós had a weak barrier effect for lizard assemblages and is not historically considered a

barrier for this group (Ávila-Pires, 1995; da Silva Jr. & Sites, 1995). The river had an even

weaker barrier effect on snake assemblages, which was expected as most species are widely

distributed in the Amazonia due to their high dispersal capacity (da Silva Jr. & Sites, 1995),

or may be due to greater difficulty in detecting them, resulting in fewer records and

preventing the patterns definition (Fraga et al., 2014).

A small portion of taxa recorded in the present study had their distributions bounded

by rivers (33% of amphibians and 8% of squamates), suggesting that the Tapajós might be a

recent or semi-permeable barrier. It seems paradoxical that an ancient river located on stable

geological terrain (Hoorn et al., 2010) has a small influence on the structure of species

assemblages; however, recent phylogeographic studies of several vertebrates (e.g., birds

(Ribas et al., 2012, Fernandes et al., 2013), frogs (Jungfer et al., 2013; Simões et al., 2014)

Page 30: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

18

and snakes (Nascimento, 2014)) show shallow genetic divergences between intraspecific

lineages associated with opposite banks of Brazilian shield rivers. These results may indicate

that the intrinsic ability of each lineage to cross a river and to establish populations on the

other bank are more relevant than the age, hydromorphology or stability of rivers; or, they

may add to the evidence that Brazilian Shield rivers and the surrounding environments have

gone through important historical changes in the recent past that may have affected

distribution patterns (Rossetti, 2014; Ribas et al., in press.).

Diversification of specific functional groups

Small diurnal terrestrial and semi-terrestrial amphibians with restricted territories, such

as those of the genera Allobates, Pristimantis and Adenomera, are abundant in the forest litter

and have a low dispersal capacity. The combination of dispersal limitation, which has already

been postulated as one major driver of speciation (e.g. for birds, Burney & Brumfield, 2009;

Smith et al., 2014 and anurans, Wollenberg et al., 2011), and potential to use new habitats or

ecological niches, due to the greater independence from water during the reproductive cycle

(Duellman & Trueb, 1994), may promote diversification in these groups.

Small semi-arboricole diurnal Gonatodes lizards are equally abundant in forested areas

and live mainly in tree trunks. High abundance and niche competition may promote

ecological divergence in sympatric species of this genus (Vitt et al., 2000). These biotic

interactions and ecological constraints may increase the riverine barrier effect, accelerating

allopatric diversification (Gutiérrez et al., 2014). Based on dated phylogenies, Gamble et al.,

(2008) already postulated that Amazonian Tertiary orogeny and drainage evolution are major

drivers of diversification in this group.

These amphibian and reptile functional groups are most affected by the emergence of

geographical barriers like large rivers, which segregate populations. Therefore, species of

these genera or functional groups should be the preferred model organisms in the study of the

recent evolution of the Amazon Basin (Simões et al., 2014). However, their recent

diversification (Araújo et al., 2008) creates difficulties in identifying taxonomic units, and

better taxonomic knowledge is essential for further biogeographical studies.

Page 31: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

19

Integrated influence of rivers and their floodplains on biodiversity patterns

This study demonstrates the relevance of large rivers as drivers of species diversity

patterns. River dynamics both create distinct environments that allow the establishment of

ecologically distinct assemblages and establish barriers with varying permeabilities for

distinct components of these assemblages, both in current and past times. River dynamics also

create distinct opportunities for fauna exchange between opposite banks as water flow may

increase the longitudinal and transversal passive dispersal of individuals inhabiting riparian

forests but not of those inhabiting upland forests, thereby preventing or promoting lineage

differentiation.

The studied region is a contact zone for amphibians and squamates from the eastern

and western Amazonia. This may be due to rainfall seasonality, temperature and

geomorphological gradients (Sombroek, 2001). The western bank of the Tapajós River is

geomorphically influenced by the Solimões and Amazon sedimentary basins, whereas the

eastern bank is highly influenced by the Brazilian Shield (Sombroek, 2000). This difference is

evident even in the current river morphology, with a sharp curve along the Brazilian Shield

limit. In this region, fauna group components from dense western Amazonian forests,

influenced by the Andes and the sedimentary basin, mix with components from drier eastern

Amazonian forests that are influenced by the Amazonia-Cerrado transition following these

environmental gradients. This mixed influence is evident in the fact that most species

restricted to the western bank of the Tapajós inhabit the Western lowlands (69%), whereas

those restricted to the eastern bank (78%) are typical of the Brazilian Shield.

The river prevents the formation of a continuous gradient in the contact zone of these

two distinct Amazonian regions, acting both as an ecological and physical barrier (Tuomisto

& Ruokolainen, 1997). For this reason, most of the amphibians and squamates that have

shown some riverine barrier effect in this region have no sister-taxa or have unequal

abundances on opposite banks, weakening the effect of this river as a vicariant agent to these

groups and reinforcing the combined action of recent geomorphological changes and various

barrier effects.

Ecological constraints also prevent the establishment of many species detected in this

study within the lower Tapajós River region of the Amazon Sedimentary Basin, where species

richness and composition, especially of amphibian assemblages, change dramatically (see

Page 32: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

20

Neckel-Oliveira et al., 2000). Most of the species that occur in this region are typical of

riparian forests associated with large rivers in the middle Tapajós River region.

Considerations about the potential impacts of planned large dams

The imminent construction of hydropower plants, associated with a waterway to

increase navigability in the Tapajós Basin (Fearnside, 2015), will significantly affect

biogeographical patterns, with the potential to cause several environmental impacts at

different scales. After the dams are complete, the rivers on which they are constructed will be

in a permanently flooded state. The natural fast water flow of the rivers will transform into

lentic systems (Nilsson & Berggren, 2000), breaking the rivers’ longitudinal and transversal

functionality (Junk et al., 1989; Vannote et al., 1990) and affecting several organisms that

have eco-physiological constraints.

Based on the results presented here, we predict that these changes will affect mainly

the riparian assemblages, which are distinct from the upland assemblages and include some

restricted species, by eliminating the environments needed to complete the species’ life cycle.

In the short-term, the fauna rescue programme and river filling process may affect the

historical distribution boundaries, mixing components from opposite margins. In the long-

term, the higher water volume and lower energy may increase the potential of these rivers to

become stronger barriers to dispersal (Ward & Stanford, 1995; Hayes & Sewlal, 2004),

thereby affecting both riparian and non-riparian assemblages. This is especially true on the

Jamanxim, which is currently highly permeable to dispersion during the dry season. A

decrease in the rivers’ permeability will prevent species exchanges among regional species

pools, leading to the development of distinct and poorer local diversities on opposite banks

(Brown et al., 2011). Furthermore, the Tapajós Basin is known to harbour distinct flora and

fauna, with many endemic lineages of plants (Ferreira et al., 2013), frogs (Lima et al., 2014),

lizards (Rodrigues, 1980) and birds (Olmos & Pacheco, 2003). Changes in the fluvial

dynamics of this region will certainly impact these lineages, whose ecological constraints and

evolutionary history associated with the natural fluvial dynamics of the region have led to

their current distribution patterns.

Anthropogenic actions can thus affect the role of rivers as current and historical

drivers of biodiversity patterns, disturbing the regional ecosystem as a whole. Because the

Page 33: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

21

Amazonian rain forest is intrinsically linked to the largest river basin in the world, preserving

the integrity of its rivers is crucial to the maintenance of the forested ecosystems. We stress

that the biogeographical patterns highlighted here should be part of the discussion of the

feasibility of all large developmental projects that affect Amazonian rivers.

ACKNOWLEDGEMENTS

We thank L.F. Storti, J. Cassimiro, M. Hoffman, T.F.D. Rodrigues, J.M.B. Ghelere, A.B.

Barros, E.S. Brito and all field mates who helped us in data survey. I.L Kaefer, F.P. Werneck,

A.P. Lima, M. Gordo, S.H. Borges, L.N. Naka, P.I. Simões, F.M. d’Horta and A. Barnett

provided valuable suggestions. The specimens were collected under collection permit number

066/2012 provided by Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais

Renováveis (IBAMA). CNEC Worleyparsons Engenharia S.A. provided financial and

logistical support. Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq,

Brazil) provided a Master's degree scholarship to L.J.C.L. Moraes and a productivity

fellowship to C.C. Ribas (307951/2012-0).

REFERENCES

Aleixo, A. (2006) Historical diversification of floodplain forest specialist species in the

Amazon: A case study with two species of the avian genus Xiphorhynchus (Aves:

Dendrocolaptidae). Biological Journal of the Linnean Society, 89, 383-395.

Alvares, C.A., Stape, J.L., Sentelhas, P.C., Gonçalves, J.L.M. & Sparovek, G. (2013)

Koppen's climate classification map for Brazil. Meteorologische Zeitschrift, 22, 711-

728.

Araújo, M.B., Nogués-Bravo, D., Diniz-Filho, A.F., Haywood, A.M., Valdes, P.J. &

Rahbeck, C. (2008) Quaternary climate changes explain diversity among reptiles and

amphibians. Ecography, 31, 8-15.

Ávila-Pires, T.C.S. (1995) Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische

Verhandelingen, 299, 1-706.

Page 34: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

22

Azevedo-Ramos, C. & Galatti, U. (2002) Patterns of amphibian diversity in Brazilian

Amazonia: conservation implications. Biological Conservation 103, 103-111.

Bates, J.M., Haffer, J. & Grismer, E. (2004) Avian mitochondrial DNA sequence divergence

across a headwater stream of the Rio Tapajós, a major Amazonian river. Journal of

Ornithology, 145, 199-205.

Boubli, J.P., Ribas, C., Lynch Alfaro, J., da Silva, M.N.F., Pinho, G.M., & Farias, I.P. (2014)

Spatial and temporal patterns of diversification on the Amazon: a test of the riverine

hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular

Phylogenetics and Evolution, 82, 400-412.

Brasil, PR (Presidência da República). (2011) PAC-2 Relatórios. PR, Brasília, DF. Available

at: www.brasil.gov.br.

Brown, B.L., Swan, C.M., Auerbach, D.A., Grant, E.H.C., Hitt, N.P., Maloney, K.O., Patrick,

P. (2011) Metacommunity theory as a multispecies, multiscale framework for studying

the influence of river network structure on riverine communities and ecosystems.

Journal of the North American Benthological Society, 30, 310-327.

Bueno, A.S., Bruno, R.S., Pimentel, T.P., Sanaiotti, T.M. & Magnusson, W.E. (2012) The

width of the riparian habitats for understory birds in an Amazonian forest. Ecological

Applications, 22, 722-734.

Burney, C.W. & Brumfield, R.T. (2009) Ecology predicts levels of genetic differentiation in

neotropical birds. American Naturalist, 174, 358-368.

Cadena, C.D., Gutiérrez-Pinto, N., Dávila, N. & Chesser, R.T. (2011) No population genetic

structure in a widespread aquatic songbird from the Neotropics. Molecular

Phylogenetics and Evolution, 58, 540-545.

Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure.

Australian Journal of Ecology, 18, 117-143.

Cornell, H.V. & Lawton, J.H. (1992) Species interactions, local and regional processes, and

limits to the richness of ecological communities: a theoretical perspective. Journal of

Animal Ecology, 61, 1-12.

Cracraft, J. (1985) Historical biogeography and patterns of differentiation within the South

American avifauna: areas of endemism. Ornithological Monographs, 36, 49-84.

Dale M.R.T. & Fortin M.J. (2014). Spatial analysis: a guide for ecologists. 2nd edn.

Cambridge University Press, Cambridge.

Page 35: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

23

Dias-Terceiro, R.G., Kaefer, I.L., de Fraga, R., de Araújo, M.C., Simões, P.I. & Lima, A.P.

(2015) A matter of scale: historical and environmental factors structure anuran

assemblages from the Upper Madeira river, Amazonia. Biotropica, 47, 259-266.

Doan, T.M. & Arriaga, W.A. (2002) Microgeographic variation in species composition of the

herpetofaunal commities of Tambopata region, Peru. Biotropica, 34, 101-117.

Duellman, W.E. (1979) The South American herpetofauna: Its origin, evolution, and

dispersal. Museum of Natural History/University of Kansas, Kansas.

Duellman, W.E. & Trueb L. (1994) Biology of Amphibians. Johns Hopkins University Press,

Baltimore.

Emílio, T., Quesada, C.A., Costa, F. et al. (2013) Soil physical constraints limit palm and tree

basal area in Amazonian forests. Plant Ecology & Diversity, 7, 130204073052004.

Fearnside, P.M. 2015. Amazon Dams and Waterways: Brazil’s Tapajós Basin Plans. Ambio,

44, 426-439.

Ferreira, L.V., Cunha, D.A., Chaves, P.P., Matos, D.C.L. & Parolin, P. 2013. Impacts of

hydroelectric dams on alluvial riparian plant communities in eastern Brazilian

Amazonian. Anais da Academia Brasileira de Ciências, 85, 241-251.

Fernandes, A.M., Gonzalez, J., Wink, M. & Aleixo, A. (2013) Multilocus phylogeography of

the wedge-billed woodcreeper Glyphorynchus spirurus (Aves, Furnariidae) in lowland

Amazonia: widespread cryptic diversity and paraphyly reveal a complex diversification

pattern. Molecular Phylogenetics and Evolution, 66, 270-282.

Fouquet, A., Gilles, A., Vences, M., Marty, C., Blanc, M. & Gemmell, N.J. (2007)

Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses.

PLoSOne, 32, e1109.

Fouquet, A., C.S. Cassini, C.F.B. Haddad, N. Pech & Rodrigues, M.T. (2014) Species

delimitation, patterns of diversification and historical biogeography of the Neotropical

frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, 41, 855-

870.

Fouquet, A., Courtois, E.A., Baudain, D., Jucivaldo Dias Lima, J.D., Souza, S.M., Noonan,

B.P. & Rodrigues, M.T. (2015) The trans-riverine genetic structure of 28 Amazonian

frog species is dependent on life history. Journal of Tropical Ecology, 31, 361-373.

Fraga, R., Lima, A.P. & Magnusson, W.E. (2011) Mesoscale spatial ecology of a tropical

snake assemblage: the width of riparian corridors in Central Amazonia. The

Herpetological Journal, 21, 51-57.

Page 36: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

24

Fraga, R., Stow, A.J., Magnusson, W.E. & Lima, A.P. (2014) The Costs of Evaluating

Species Densities and Composition of Snakes to Assess Development Impacts in

Amazonia. PLoS ONE, 9, e105453.

Gascon, C., Lougheed, S.C. & Bogart, J.P. (1998) Patterns of genetic population

differentiation in four species of Amazonian frogs: a test of the Riverine Barrier

Hypothesis. Biotropica, 30, 104–119.

Gascon, C., Malcolm, J.R., Patton, J.L., Silva, M.N.F., Bogart, J.P., Lougheed, S.C., Peres,

C.A., Neckel, S. & Boag, P. (2000) Riverine barriers in the geographic distribution of

Amazonian species. Proceedings of the National Academy of Sciences, 97, 13672-

13677.

Garda, A.A., Wiederhecker, H.C., Gainsbury, A.M., Costa, G.C., Pyron, R.A., Vieira, G.H.C.,

Werneck, F.P. & Colli, G.R. (2012) Microhabitat Variation Explains Local-scale

Distribution of Terrestrial Amazonian Lizards in Rondônia, Western Brazil. Biotropica,

45, 245–252.

Gutiérrez, E.E., Boria, R.A. & Anderson, R.P. (2014) Can biotic interactions cause allopatry?

Niche models, competition, and distributions of South American mouse opossums.

Ecography, 37: 741–753.

Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.

Haugaasen, T. & Peres, C.A. (2005) Mammal assemblage structure in Amazonian flooded

and unflooded forests. Journal of Tropical Ecology, 21, 133-145.

Hayes F.E. & Sewlal, J.A.N. (2004) The Amazon River as a dispersal barrier to passerine

birds: effects of river width, habitat and taxonomy. Journal of Biogeography, 31, 1809-

1818.

Heyer, W.R., Donnelly, M.A., Mcdiarmid, R.W., Hayek, L.C. & Foster, M.S. (1994)

Measuring and monitoring biological diversity: Standard methods for amphibians.

Smithsonian Institution Press, Washington.

Hoorn, C., Wesselingh, F.P., terSteege, H., Bermudez M.A., Mora A., Sevink J., Sanmartín

I.A., Sanchez-Meseguer, A, Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D.,

Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T. & Antonelli, A.

(2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and

biodiversity. Science, 330, 927-931.

Jungfer, K.H., Faivovich, J., Padial, J.M. et al. (2013) Systematics of spiny-backed treefrogs

(Hylidae: Osteocephalus): an Amazonian puzzle. Zoologica Scripta, 42, 351-380.

Page 37: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

25

Junk W.J., P.B. Bayley & Sparks, R.E. (1989) The flood pulse concept in river – floodplain

systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110-

127.

Kerby, J.L., Richards-Hrdlicka, K.L., Storfer, A. & Skelly, D.K. (2010) An examination of

amphibian sensitivity to environmental contaminants: are amphibians poor canaries?

Ecology Letters, 13, 60-67.

Latrubesse, E.M., Cozzuol, M., Silva-Caminha, S.A.F., Rigsby, C.A., Absy, M.L. &

Jaramillo, C. (2010) The Late Miocene paleogeography of the Amazon Basin and the

evolution of the Amazon river system. Earth-Science Reviews, 99, 99-124.

Lima, A.P., Simões, P.I. & Kaefer, I.L. (2014). A new species of Allobates (Anura:

Aromobatidae) from the Tapajós River basin, Pará State, Brazil. Zootaxa 3889: 355-

387.

Losos, J.B., Arnold, S.J., Bejerano, G., Brodie III, E.D., Hibbett, D., Hoekstra, H.E., Mindell,

D.P., Monteiro, A., Moritz, C., Allen Or, H., Petrov, D.A., Renner, S.A., Ricklefs, R.E.,

Soltis, P.S. & Turner T.L. (2013) Evolutionary biology for the 21st century. PLoS

Biology, 11, e1001466.

Magnusson, W.E., Lima, A.P., Luizão, R., Luizão, F., Costa, F.R.C., de Castilho, C.V. &

Kinupp, V.P. (2005) RAPELD: a modification of the Gentry method for biodiversity

surveys in long-term ecological research sites. Biota Neotropica. 5, 1-5.

Menin, M., Lima, A.P., Magnusson, W.E. & Waldez, F. (2007) Topographic and edaphic

effects on the distribution of terrestrially reproducing anurans in Central Amazonia:

mesoscale spatial patterns. Journal of Tropical Ecology, 23, 539-547.

Menin, M., Waldez, F. & Lima, A.P. (2011) Effects of environmental and spatial factors on

the distribution of anuran species with aquatic reproduction in central Amazonia.

Herpetological Journal, 21, 255-261.

Mitchell N.J. & Janzen, F.J. (2010) Temperature-dependent sex determination and

contemporary climate change. Sexual Development, 4, 129-140.

Mullen, L.B., Woods, H.A., Schwartz, M.K., Sepulveda, A.J., Lowe, W.H. (2010) Scale-

dependent genetic structure of the Idaho giant salamander (Dicamptodon atterimus) in

stream networks. Molecular Ecology, 19, 898-909.

Nascimento, D.S. (2014) Filogenia molecular de serpentes neotropicais do grupo Bothrops

atrox (Linnaeus, 1758) (Viperidae: Crotalinae). Msc. dissertation. Universidade de

Brasília, Brasília.

Page 38: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

26

Nilsson C. & Berggren, K. (2000) Alteration of riparian ecosystems caused by river

regulation. BioScience, 50, 783-792.

Olmos, F. & Pacheco, J.F. (2003) Rediscovery of Golden-crowned Manakin Lepidothrix

vilasboasi. Cotinga, 20, 48-50.

Padial, J.M., Miralles, A., de la Riva, I. & M. Vences (2010) The integrative future of

taxonomy. Frontiers in Zoology, 7, 16.

Pavan, D. (2007) Assembléias de répteis e anfíbios do Cerrado ao longo da bacia do rio

Tocantins e o impacto do aproveitamento hidrelétrico da região na sua conservação.

Phd. thesis. Universidade de São Paulo, São Paulo.

R Development Core Team. (2014) R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria.

Ribas, C.C., Aleixo, A., Nogueira, A.C.R., Miyaki, C.Y. & Cracraft, J. (2012) A

palaeobiogeographic model for biotic diversification within Amazonia over the past

three million years. Proceedings of the Royal Society B: Biological Sciences, 279, 681-

689.

Rodrigues, M.T. 1980. Descrição de uma nova espécie de Gonatodes da Amazônia (Sauria,

Gekkonidae). Papéis Avulsos de Zoologia, 33, 309-314.

Ron, S. (2000) Biogeographic area relationships of lowland Neotropical rainforest based on

raw distributions of vertebrate groups. Biological Journal of Linnean Society, 71, 379-

402.

Rossetti, D.F. (2014) The role of tectonics in the late Quaternary evolution of Brazil’s

Amazonian landscape. Earth Science Reviews, 139, 362-389.

Schiesari, L., Zuanon, J., Azevedo-Ramos, C., Garcia, M., Gordo, M., Messias, M. & Vieira,

E.M. (2003) Macrophyte rafts as dispersal vectors for fishes and amphibians in the

Lower Solimões River, Central Amazon. Journal of Tropical Ecology, 19, 333-336.

Schietti, J., Emilio, T., Rennó, C.D., Drucker, D.P., Costa, F.R.C., Nogueira, A., Baccaro,

F.B., Figueiredo, F., Castilho, C.V., Kinupp, V., Guillaumet, J.L., Garcia, A.R.M. Lima,

A.P. & Magnusson, W.E. (2013) Vertical distance from drainage drives floristic

composition changes in an Amazonian rainforest. Plant Ecology & Diversity, 6, 1-13.

Simões, P.I., Lima, A.P., Magnusson, W.E., Hödl, W. & Amézquita, A. (2008) Acoustic and

morphological differentiation in the frog Allobates femoralis: Relationships with the

upper Madeira River and other potential geological barriers. Biotropica, 40, 607-614.

Page 39: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

27

Simões, P.I., Stow, A., Hödl, W., Amézquita, A., Farias, I.P. & Lima, A.P. (2014) The value

of including intraspecific measures of biodiversity in environmental impact surveys is

highlighted by the Amazonian brilliant-thighed frog (Allobates femoralis). Tropical

Conservation Science, 7, 811-828.

da Silva Jr., N.J. & Sites Jr., J.W. (1995) Patterns of diversity of neotropical squamate reptiles

species with emphasis on the Brazilian Amazon and the conservation potential of

indigenous reserves. Conservation Biology, 9, 873-901.

da Silva, J.M.D., Rylands, A.B. & da Fonseca, G.A.B. (2005) The fate of the Amazonian

areas of endemism. Conservation Biology, 19, 689-694.

Sioli, H. (1968) Hydrochemistry and geology in the Brazilian Amazon region. Amazoniana,

1, 267-277.

Smith, B.T., McCormack, J.E., Cuervo, A.M., Hickerson, M.J., Aleixo, A., Cadena, C.D.,

Pérez-Emán, J., Burney, C.W., Xie, X., Harvey, M.G., Faircloth, B.C., Glenn, T.C.,

Derryberry, E.P., Prejean, J., Fields, S. & Brumfield, R.T. (2014) The drivers of

tropical speciation. Nature, 515, 406-409.

Sombroek, W.G. (2000) Amazon landforms and soils in relation to biological diversity. Acta

Amazonica, 30, 81-100.

Sombroek, W. (2001) Spatial and temporal patterns of Amazon rainfall - Consequences for

the planning of agricultural occupation and the protection of primary forests. Ambio, 30,

388-396.

Souza, S.M., Rodrigues, M.T. & Cohn-Haft, M. (2013) Are amazonia rivers biogeographic

barriers for lizards? A study on the geographic variation of the spectacled lizard

Leposoma osvaldoi Ávila-Pires (Squamata, Gymnophthalmidae). Journal of

Herpetology, 47, 511-519.

Tuomisto, H. & Ruokolainen, K. (1997) The role of ecological knowledge in explaining

biogeography and biodiversity in Amazonia. Biodiversity and Conservation, 6, 347-357

Vannote, R.L., Minshal, G.W., Cummins, K.W., Sedell, J.R. & Cushing, C.E. (1980) The

River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences, 37,

130-137

Vellend, M. (2010) Conceptual synthesis in community ecology. The Quarterly Review of

Biology, 85, 183-206.

Page 40: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

28

Vences, M., Nagy, Z.T., Sonet, G. & Verheyen, E. (2012) DNA barcoding amphibians and

reptiles. In: Kress, W.J., & D. L. Erickson (eds.): DNA Barcodes: Methods and

Protocols. Springer Protocols Methods in Molecular Biology, 858, 79-107.

Vitt, L.J., Souza, R.A., Sartorius, S.S., Ávila-Pires, T.C.S. & Espósito, M.C. (2000)

Comparative ecology of sympatric Gonatodes (Squamata: Gekkonidae) in the western

Amazon of Brazil. Copeia, 2000, 83-95.

Wakeley, J. & Aliacar, N. (2001) Gene genealogies in a metapopulation. Genetics 159, 893-

905.

Wallace, A.R. (1852) On the monkeys of the Amazon. Proceedings of the Zoological Society

of London, 20, 107-110.

Ward J.V. & Stanford, J.A. (1995) The serial discontinuity concept: extending the model to

floodplain rivers. Regulated rivers: Research & Management, 10, 159-168.

Wittmann, F., Junk, W.J. & Piedade, M.T.F. (2004) The várzea forests in Amazonia: flooding

and the highly dynamic geomorphology interact with natural forest succession. Forest

Ecology and Management, 196, 199-212.

Wollenberg, K.C., Vieites, D.R., Glaw, F. & Vences, M. (2011) Speciation in little: the role

of range and body size in the diversification of Malagasy mantellid frogs. BMC

Evolutionary Biology, 11, 217.

Zuquim, G., Tuomisto, H., Jones, M.M., Prado, J., Figueiredo, F.O.G., Moulatlet, G.M.,

Costa, F.R.C., Quesada, C.A. & Emilio T. (2014). Predicting environmental gradients

with fern species composition in Brazilian Amazonia. Journal of Vegetation Science,

25, 1195-1207.

Page 41: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

29

Table 1. Summary statistical results of distance to water (linear regression) and riverine barriers effects (ANOVA)

to changes in species composition of distinct taxa and assemblages, and the main rivers differential barrier

strengths (Tukey test). Italicized results are significant (≤0.05). Interfluve barriers: (Tapajós 1) Madeira-Tapajós

vs. Tapajós-Xingu; (Tapajós 2) Madeira-Tapajós vs. Tapajós-Jamanxim; (Jamanxim 1) Madeira-

Tapajós/Jamanxim vs. Tapajós/Jamanxim-Xingu; (Jamanxim 2) Tapajós-Jamanxim vs. Tapajós/Jamanxim-Xingu.

Taxa Groups and

assemblages

Distance to

water

Riverine

barrier

Tapajós

1

Tapajós

2

Jamanxim

1

Jamanxim

2

F1,13 p F4,18 p p p p p

Am

ph

ibia

ns

Total 34.9 0.001 7.6 <0.001 0.001 0.005 0.2 0.9

Non-riparians - - 9.2 <0.001 <0.001 0.003 0.09 0.9

Small streams

riparians - - 3.9 0.01 0.02 0.03 0.8 0.8

Large rivers

riparians - - 0.9 0.4 - - - -

Sq

uam

ate

s Lizards 12.5 0.003 7.3 0.001 0.02 0.6 0.004 0.09

Snakes 3.7 0.07 0.7 0.6 - - - -

Non-riparians - - 5.8 0.003 0.006 0.02 0.2 0.09

Riparians - - 0.6 0.6 - - - -

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Appendix S1. Forest types description.

Appendix S2. Integrative taxa identification.

Table S1. List of registered species.

BIOSKETCHES

Leandro J.C.L. Moraes is a graduate student in Ecology at the National Institute of

Amazonian Research (INPA), and this study is part of his Msc. Dissertation. He is interested

in biogeographical patterns and integrated evolutionary history of amphibians/reptiles and

landscape in Neotropical region.

Author’s contributions: L.J.C.L.M., D.P. and C.C.R. conceived the idea. L.J.C.L.M. and D.P.

collected the data. M.C.B. performed molecular sequencing. L.J.C.L.M, D.P. and C.C.R.

Page 42: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

30

analyzed the data. L.J.C.L.M. led the writing and all authors contributed to writing and

reviewing the manuscript.

Editor: Şerban Procheş

LIST OF FIGURES LEGENDS

Figure 1. Study area. (a) Location in South America, Brazil, Pará and Amazon Basin. (b)

Sampling units, showing the two main rivers and the main interfluves: (M-T) Madeira-

Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-

Xingu and (T/J-X) Tapajós/Jamanxim-Xingu. (c) Scheme of sampling units, with transect (in

black), plots (uniformly distributed in brown and riparian in grey) and pitfall traps (in red).

Figure 2. Direct ordination of the relative abundance of amphibians (a) and squamates (b) in

relation to distance to water gradient. Note that some species increase in abundance or are

restricted to more humid areas (red square).

Figure 3. Linear regression for the three main taxonomical groups studied, between the

NMDS Axis 1 (species composition) and distance to water, divided in modal distances with

three plots agregated: (1) 20-35 m; (2) 36-50 m; (3) 53-62 m;(4) 63-80 m; (5) 82-95 m; (6)

100-150 m; (7) 180-200 m; (8) 250-300 m; (9) 320-380 m; (10) 440- 490 m (11) 500-580 m;

(12) 615-700 m; (13) 715-1120 m; (14) 1200-1400 m; (15) 1700-2140 m.

Figure 4. Direct ordination of presence-absence data for all survey methods revealing a

higher number of amphibians (a) than squamates (b), which are exclusive to one of the main

rivers' banks. Sampling units (letters) and interfluves (acronyms) are on the top. Different

colours correspond to main interfluves and species written in red are significantly (ANOVA,

p≤0.05) more abundant in one interfluve (inside parentheses).

Figure 5. NMDS ordinations and composition changes between interfluves for amphibian and

squamate assemblages showing the relative riverine barrier strength for these taxa. (a-c)

amphibians; (d-f) lizards and (g-i) snakes. Interfluves: (M-T) Madeira-Tapajós; (M-T/J)

Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-Xingu and (T/J-X)

Tapajós/Jamanxim-Xingu.

Figure 6. Relative frequency of amphibian (a) and squamate (b) functional groups with

distribution patterns indicating a riverine barrier influence. In black are the proportion of

species which suffer barrier effect and in gray which do not suffer barrier effect. The total

Page 43: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

31

number of species in each category are inside the bars. Micro-habitat: (TE) terrestrial; (FO)

fossorial; (AR) arboricole; (AQ) aquatic; (SR) semi-arboricole and (SA) semi-aquatic. Body

size: (SM) small; (MD) medium and (LA) large. Activity period: (CR) crepuscular/nocturnal;

(DI) diurnal; (NO) nocturnal and (DN) diurnal/nocturnal.

Figure 7. NMDS ordinations and composition changes for amphibian and squamate

assemblages associated with distinct forest types, clustered by composition variation in

relation to distance to water, showing the relative riverine barrier strength. (a-c) Non-riparian

amphibians; (d-f) Small stream riparian amphibians; (g-i) Large river riparian amphibians; (j-

l) Non-riparian squamates and (m-o) Riparian squamates. Interfluves: (M-T) Madeira-

Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-

Xingu and (T/J-X) Tapajós/Jamanxim-Xingu.

Page 44: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

32

FIGURES

Figure 1. Study area. (a) Location in South America, Brazil, Pará and Amazon Basin. (b) Sampling units, showing the two main rivers and the main interfluves: (M-T)

Madeira-Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-Xingu and (T/J-X) Tapajós/Jamanxim-Xingu. (c) Scheme of sampling units,

with transect (in black), plots (uniformly distributed in brown and riparian in grey) and pitfall traps (in red).

Page 45: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

33

Figure 2. Direct ordination of the relative abundance of amphibians (a) and squamates (b) in relation to distance to water gradient. Note that some species increase in

abundance or are restricted to more humid areas (red square).

Page 46: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

34

Figure 3. Linear regression for the three main taxonomical groups studied, between the NMDS Axis 1 (species composition) and distance to water, divided in modal distances

with three plots agregated: (1) 20-35 m; (2) 36-50 m; (3) 53-62 m;(4) 63-80 m; (5) 82-95 m; (6) 100-150 m; (7) 180-200 m; (8) 250-300 m; (9) 320-380 m; (10) 440- 490 m

(11) 500-580 m; (12) 615-700 m; (13) 715-1120 m; (14) 1200-1400 m; (15) 1700-2140 m.

Page 47: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

35

Figure 4. Direct ordination of presence-absence data for all survey methods revealing a higher number of amphibians (a) than squamates (b), which are exclusive to one of the

main rivers' banks. Sampling units (letters) and interfluves (acronyms) are on the top. Different colours correspond to main interfluves and species written in red are

significantly (ANOVA, p≤0.05) more abundant in one interfluve (inside parentheses).

Page 48: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

36

Figure 5. NMDS ordinations and composition changes between interfluves for amphibian and squamate assemblages showing the relative riverine barrier strength for these

taxa. (a-c) amphibians; (d-f) lizards and (g-i) snakes. Interfluves: (M-T) Madeira-Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim; (T-X) Tapajós-

Xingu and (T/J-X) Tapajós/Jamanxim-Xingu.

Page 49: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

37

Figure 6. Relative frequency of amphibian (a) and squamate (b) functional groups with distribution patterns indicating a riverine barrier influence. In black are the proportion

of species which suffer barrier effect and in gray which do not suffer barrier effect. The total number of species in each category are inside the bars. Micro-habitat: (TE)

terrestrial; (FO) fossorial; (AR) arboricole; (AQ) aquatic; (SR) semi-arboricole and (SA) semi-aquatic. Body size: (SM) small; (MD) medium and (LA) large. Activity period:

(CR) crepuscular/nocturnal; (DI) diurnal; (NO) nocturnal and (DN) diurnal/nocturnal.

Page 50: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

38

Figure 7. NMDS ordinations and composition changes for amphibian and squamate assemblages associated with distinct forest types, clustered by composition variation in

relation to distance to water, showing the relative riverine barrier strength. (a-c) Non-riparian amphibians; (d-f) Small stream riparian amphibians; (g-i) Large river riparian

amphibians; (j-l) Non-riparian squamates and (m-o) Riparian squamates. Interfluves: (M-T) Madeira-Tapajós; (M-T/J) Madeira-Tapajós/Jamanxim; (T-J) Tapajós-Jamanxim;

(T-X) Tapajós-Xingu and (T/J-X) Tapajós/Jamanxim-Xingu.

Page 51: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

39

CONCLUSÕES

O Médio Rio Tapajós e o Rio Jamanxim possuem contribuição desigual na geração

dos padrões de distribuição das assembleias de anfíbios e répteis Squamata nesta

região.

O Médio Rio Tapajós é uma barreira mais efetiva para os anfíbios, enquanto o Rio

Jamanxim é uma barreira fraca, sendo mais efetiva para os répteis Squamata.

As assembleias de anfíbios e répteis Squamata divergem em relação aos tipos

florestais presentes na região (florestas ripárias e de terra firme).

As assembleias que sofrem efeito dos grandes rios como barreira são os anfíbios e

répteis Squamata não ripários, e os anfíbios ripários de igarapés. Os anfíbios ripários

de igapó e os répteis ripários não sofrem este efeito, indicando uma maior dispersão

entre margens. No entanto, para os répteis, a detecção dos padrões reais pode ser

influenciada pela baixa detectabilidade das espécies, especialmente de serpentes.

Os anfíbios pequenos, diurnos e terrestes e os répteis pequenos a médios, diurnos e

semi-arborícolas são os grupos funcionais especialmente afetados pelos grandes rios

como barreira nesta região, especialmente os gêneros de anfíbios Allobates,

Adenomera, Pristimantis e Leptodactylus e de répteis Gonatodes. Esta característica é

conferida pela baixa capacidade de dispersão destas espécies, evidenciando esses

organismos como bons modelo em novos estudos biogeográficos.

Os gradientes ambientais na região do Médio Rio Tapajós geram uma zona de contato

faunística, onde assembleias provenientes dos ambientes à Oeste e Leste da Amazônia

se encontram. O Rio Tapajós funciona como uma barreira ecológica e física para essas

faunas distintas, devido à diferentes restrições ecológicas.

Alterações antrópicas na região, como a construção de usinas hidrelétricas, podem

alterar os efeitos naturais dos grandes rios como mecanismos geradores dos padrões de

diversidade, assim como extinguir linhagens endêmicas e ambientes relevantes para o

ciclo de vida das espécies, especialmente as florestas ripárias. A preservação da

integridade fluvial é tão importante quanto a preservação dos ecossistemas florestais.

Page 52: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

40

SUPPORTING INFORMATION

Appendix S1. Forest types description.

We briefly described the principal forest types on study area based in observations along the sampling surveys and literature records. The

fluvial dynamic of Tapajós River led to the development and maintenance of two principal forest types: riparian and non-riparian forests. The

riparian forests can be further divided into two main types, those that occur on the banks of the large rivers (Igapó) and those occurring along the

banks of small streams within the forest (Palm swamp forests):

Non-riparian forest Riparian forest Riparian forest

Upland forests Large rivers riparian forests Small streams riparian forests

Name in Portuguese Terra firme. Igapó. Açaizal.

Location in study

area1

Predominant forest type in the region,

homogeneously distributed among interfluves.

Mainly on western margin of the Tapajós

River. Rarer on eastern margin and in the

banks of the Jamanxim River.

Homogeneously distributed among interfluves,

following the course of small streams.

Forest type origin1

In the dry land of plateaus and slopes the

forests do not suffer the direct effect of

riverine flood pulse, creating this forest type.

The maintenance of natural patterns of their

assemblages actively depends on the integrity

of adjacent flooded forests, as many species

use them during its life cycle.

Flooding period of Tapajós and Jamanxim

rivers during the rainy season is essential for

nutrients retention in ecosystem and

maintenance of high biomass in their banks as

these are quickly exported downstream due to

the rapid water flow. The interaction of this

flood pulse, rapid water flow and low

sediments input create that distinct forest type.

The water flow is lower and often interrupted by

fall of organic material from the marginal forest,

generating a muddy environment dominated by

adapted palms.

Flood pulse

oscillation1,4

Do not suffers. Sazonal, one pulse by year and predictable. Higher, frequent and unpredictable, suffering

greater effect of local rainfall.

Productivity2 Lower. Higher. Higher.

Canopy1,3 Tall, non-uniform. Tall, uniform or non-uniform Short, usually uniform.

Page 53: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

41

Non-riparian forest Riparian forest Riparian forest

Upland forests Large rivers riparian forests Small streams riparian forests

Number of strata1,3 Three. Two. One or Two.

Solar incidence1 Lower. Higher. Higher, anthropogenic changes by cutting the

palms to collect their fruit or palmetto favour the

onset of clearing areas.

Main typical plant

species3

Trees: Bertollethia excelsa, Goupia glabra,

Jacaranda copaia, Protium paniculatum,

Carapa guianensis, Apeiba echinata and

Dialium guianense. Palms: Oenocarpus

distichus, Astrocaryum vulgare, Attalea

speciosa, A. maripa

Trees: Goupia glabra, Protium spruceanum,

Macrolobium acaciifolium, Apeiba echinata,

Paramachaerium ormosioides, Dialium

guianense, Hevea brasiliensis. Palms:

Oenocarpus distichus, Socratea exorrhiza,

Attalea speciosa, A. maripa.

Palms: Euterpe oleracea, Socratea exorriza.

Trees: Mollia lepidota, Protium spruceanum.

Main typical

amphibian species1

Natural water bodies are very rare, which

decreases the abundance of aquatic-breeding

species. Although no amphibian is restrict to

this forest, the abundance of terrestrial or

semi-terrestrial breeding species increase, as

Adenomera spp., Allobates spp., Ameerega

spp. and Pristimantis spp. and those that

reproduce in water filled trunk cavities, as

Trachycephalus spp. and Osteocephalus spp.

Aquatic breeding species which reproduce in

lakes and marginal channels that arise in the

dry and beginning of flooding periods in these

forests, as Leptodactylus petersii, L.

mystaceus, Hypsiboas boans, H.

geographicus, H. calcaratus, Rhinella marina,

Rhaebo guttatus, Dendropsophus spp., Scinax

cruentommus, Osteocephaus taurinus.

Aquatic breeding species which depends on the

low water flow to reproduce, as Hypsiboas

leucocheilus, H. multifasciata, H. cinerascens,

Dendropsophus spp., Allobates magnussoni and

A. aff. flaviventris. When the stream runs through

a rocky channel and the water flow increases,

abundance of centrolenids known to reproduce in

these environments also increase, as

Hyalinobatrachium cappellei and Vitreorana

ritae.

Main typical

squamate species1

Small lizards of forest litter, which prefer the

low sunlight input through the canopy, as

Chatogekko amazonicus and Pseudogonatodes

cf. guianensis and species of family

Gymnophthalmidae.

Heliothermic lizards, as Ameiva ameiva,

Tupinambis teguixin, Copeoglossum

nigropunctatum.

Heliothermic lizards, as Ameiva ameiva,

Kentropyx calcarata or Copeoglossum

nigropunctatum and semi-aquatic lizards, as

Potamites ecpleopus, Leposoma spp., Neusticurus

bicarinatus and Uranoscodon superciliosus.

Several snakes forage in these humid regions,

following the greater amphibians, lizards and

mammals abundance.

Page 54: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

42

Non-riparian forest Riparian forest Riparian forest

Upland forests Large rivers riparian forests Small streams riparian forests

Images

Photo by Elizângela Brito

Photo by Leandro Moraes

Photo by Leandro Moraes

Photo by Dante Pavan

Photo by Dante Pavan

Photo by Dante Pavan

Photo by Dante Pavan

Photo by Marina Maximiano

Photo by Leandro Moraes

Page 55: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

43

Non-riparian forest Riparian forest Riparian forest

Upland forests Large rivers riparian forests Small streams riparian forests

Photo by Dante Pavan

Photo by Leandro Moraes

1 Author’s, personal observations; 2 Furch, 1997; 3 Domingues, 2014, 4 Junk et al., 1989.

Page 56: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

44

Appendix S2. Integrative taxa identification.

We adopt the evolutionary species concept (Wiley, 1978) and the integrative approach

of taxa identification was realized through several steps in order to delimit units for

biogeographical analyses (Padial et al., 2010). The first step performed was the morphological

delimitation and taxa were delimited by morphometric and colouration patterns analyses.

Simultaneously, we performed acoustic analyses, by comparison of sonograms and

spectrograms for amphibians, as well as environmental analyses, such as preferred habitat of

the species and behavioral observations. These steps filtered cryptic groups located in taxa

delimited by morphological approach. The identification of taxa delimited through these steps

was performed with original descriptions, field guides and taxonomic revisions, as well as

comparisons with voucher specimens deposited in the collection of amphibians and reptiles at

the National Institute for Amazonian Research. Several researchers and taxonomic experts

also assisted in identifying the taxa as Pedro Ivo Simões (PUC-RS), José Cassimiro da Silva

Junior (USP), Igor Luis Kaefer (UFAM), Vinicius Tadeu de Carvalho (UFAM), Jerriane

Oliveira Gomes (MPEG), Marcelo Gordo (UFAM), Miguel Trefaut Urbano Rodrigues (USP),

Rafael de Fraga (INPA), Pedro Luis Vieira Peloso (AMNH), Marinus Steven Hoogmoed

(MPEG), Paulo Sérgio Bernarde (UFAC), Alfredo Pedroso dos Santos-Jr (PUC-RS),

Albertina Pimentel Lima (INPA), Teresa Cristina Ávila-Pires (MPEG), Omar Machado

Entiauspe (IFSUL), Diego José Santana Silva (UFMS), Sarah Mângia Barros (UFPB), Rafael

O. de Sá (U. Richmond), Renata C. Amaro (USP), Antoine Fouquet (CNRS Guyane), Stefan

Lötters (U. Trier), Thiago de Carvalho Kashi (UFU) e Willian Edward Duellman (U. Kansas).

If the taxonomic delimitation after analyzing all the data of the previous steps still

remained confusing and irresolute, we performed molecular species identification. Among

amphibians, molecular data was obtained for the following genera and species groups:

Caecilia sp., Allobates sp., Amazophrynella sp., Rhinella gr. margaritifera, Rhinella gr.

marina, Pristimantis gr. lacrimosus, Pristimantis gr. conspicillatus, Pristimantis aff.

ockendeni, Hemiphractus sp., Dendropsophus gr. microcephalus, Hypsiboas gr.

albopunctatus, Hypsiboas aff. boans, Hypsiboas aff. geographicus, Osteocephalus sp.,

Phyllomedusa gr. hypocondrialis, Scinax gr. ruber, Scinax gr. rostratus, Trachycephalus sp.,

Adenomera sp., Leptodactylus gr. melanonotus, Leptodactylus gr. pentadactylus e

Leptodactylus aff. mystaceus. Among squamates molecular data was used for the following

genera and species groups: Chironius sp., Norops gr. chrysolepis, Plica sp. and Cercosaura

Page 57: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

45

sp. In total, we obtained sequences of the mtDNA gene coding for the 16S rRNA for 132

individuals. Total DNA was isolated using the phenol-chloroform protocol (Sambrook &

Russel, 2001). Amplifications of mtDNA 16S gene region were performed using the primers:

L1987-5'GCCTCGCCTGTTTACCAAAAAC3' and H2609-5'CCGGTCTGAACTCAGATC

ACGT3' (Palumbi et al., 1991). Sequencing was performed using the Big Dye Terminator

sequencing kit (Applied Biosystems) and an automatic DNA sequencer ABI PRISM 3500

(Life Technologies). Sequences from closely related taxa were downloaded from GenBank.

Alignment was performed in CLUSTAL OMEGA (Sievers et al., 2011) and corrected manually,

and phylogenetic trees were constructed using maximum likelihood in MEGA 5 (Tamura et al.,

2011). Clade support was estimated by bootstrap (1000 replicates).

To determine to which lineage within a species complex each individual belong we

evaluated bootstrap support and p-distances. The molecular identification was circularly

compared with the morphological, acoustic and ecological delimitation, increasing the

reliability of distribution patterns See Fig. S1 for an example of this integrative identification,

for the genus Allobates.

Page 58: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

46

Figure S1. Example of integrative taxa identification for genus Allobates. (a) taxa are delimited by comparative morphological (a1), acoustic (a2) and ecological (a3) data. In (a3),

green dots indicate species that occur preferentially in upland forests and blue dots species of small streams riparian forests. (b) Phylogenetic tree of 16S mtDNA used for molecular

delimitation, diferent colours represent distinct lineages with elevated clade support, and taxa recorded in the study are highlighted, located inserted in some of these lineages. These

delimitations approaches are cyclically compared, defining the seven taxonomic units for biogeographical analyses.

Page 59: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

47

Table S1. Amphibians and squamates registered in the study area, their relative riverine barrier effect and forests types preference. Survey methods: (AS) Active search; (PT) Pitfall traps

and (CE) Casual encounter. Preferred forest type in the study region: (UF) Upland forests, (RF) Riparian forests, (SRF) Small streams riparian forests, (LRF) Large rivers riparian forests,

(IP) Indistinct preference and (AQ) Aquatic. Known distribution: (WD) Widely distributed in Amazonia; (EA) Eastern Amazonia; (CAS) Central Amazonia at South of Amazon River,

(CWA) Central-western Amazonia, (SA) Widely distributed at South of Amazon river, (DD) Disjunct distribution and (WA) Western Amazonia. Distribution in study area: (WD) Widely

distributed, (RE) Restricted to one margin of main rivers and (site N) Only recorded at site N. Restricted to interfluve: (MT) Madeira-Tapajós, (MTJ) Madeira-Tapajós/Jamanxim, (TJ)

Tapajós-Jamanxim, (TX) Tapajós-Xingu and (TJX) Tapajós/Jamanxim-Xingu. Activity period: (CR) crepuscular/nocturnal, (DI) diurnal, (NO) nocturnal and (DN) diurnal/nocturnal. Micro-

habitat: (TE) terrestrial, (FO) fossorial, (AR) arboricole, (AQ) aquatic, (SR) semi-arboricole and (SA) semi-aquatic. Body size: (SM) small, (MD) medium and (LA) large. Abundance: We

consider the number of individuals registered as a measure of abundance, but these numbers are relative to each group due to distinct encounter rates. Amphibians: abundant (n≥100),

uncommon (11<n<100) and rare (n≤10). Lizards and Amphisbaenians: abundant (n≥50), uncommon (11<n<50) and rare (n≤10). Snakes: abundant (n≥10), uncommon (6<n<10) and rare

(≤5 individuals).

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Amphibia

Gymnophiona

Caeciliidae

Caecilia tentaculata (Linnaeus 1758) PT, CE IP WD22 WD _ no NO22 FO8,22 LA8 rare (5)

Caudata

Plethodontidae

Bolitoglossa tapajonica Brcko et al., 2013 AS, CE UF, SRF CAS23 WD _ no NO8,23 AR23 SM8 uncommon (31)

Anura

Allophrynidae

Allophryne ruthvenii Gaige, 1926 AS UF, RF WD1 WD _ no NO8,45 AR8,45 SM8 uncommon (14)

Aromobatidae

Allobates femoralis (Boulenger, 1884) PT, AS, CE UF, RF WD1 WD _ no DI8,46 TE8,46 SM8 abundant (476)

Allobates masniger (Morales, 2002) PT, AS, CE UF, SRF CAS24 RE MT yes DI8,46 TE8,46 SM8 abundant (211)

Allobates magnussoni Simões et al., 2014 PT, AS, CE SRF CAS25 WD _ no DI8,46 TE8,46 SM8 uncommon (69)

Allobates tapajos Lima, Simões & Kaefer, 2015 PT, AS, CE UF, RF ? WD _ no DI8,46 TE8,46 SM8 uncommon (89)

Allobates cf. crombiei PT, AS, CE UF, SRF EA26 RE TX yes DI8,46 TE8,46 SM8 abundant (182)

Allobates aff. flaviventris PT, AS SRF CWA25 RE MT yes DI8,46 TE8,46 SM8 uncommon (23)

Allobates sp. AS, CE UF, SRF ? site J _ _ DI8,46 TE8,46 SM8 rare (5)

Bufonidae

Amazophrynella vote Ávila et al., 2012 PT, AS, CE UF, RF CAS27 WD _ no DI8,46 TE8,46 SM8 abundant (556)

Amazophrynella sp. AS SRF ? site J _ _ DI8,46 TE8,46 SM8 uncommon (17)

Page 60: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

48

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Atelopus sp. PT, AS, CE UF, SRF ? RE TX yes DI8,46 TE8,46 SM8 uncommon (12)

Rhaebo guttatus (Schneider, 1799) PT, AS, CE UF, RF WD1 WD _ no NO8,46 TE8,46 LA8 uncommon (64)

Rhinella magnussoni Lima, Menin & Araújo, 2007 PT, AS, CE UF, SRF CAS28 WD _ no DI8,46 TE8,46 MD8 abundant (535)

Rhinella marina (Linnaeus, 1758) PT, AS, CE UF, RF WD1 WD _ no NO8,46 TE8,46 LA8 uncommon (84)

Rhinella gr. margaritifera1 PT, AS, CE UF, SRF ? WD _ no DI8,46 TE8,46 LA8 uncommon (95)

Rhinella gr. margaritifera2 PT, AS, CE UF, SRF ? WD _ no DI8,46 TE8,46 LA8 abundant (461)

Rhinella gr. margaritifera3 PT, AS UF, SRF ? RE MT yes DI8,46 TE8,46 MD8 rare (3)

Centrolenidae

Hyalinobatrachium cappellei Van Lidth de Jeude, 1904 AS, CE SRF WD29 WD _ no NO8,45 AR8,45 SM8 uncommon (60)

Vitreorana ritae (Lutz, 1952) AS, CE SRF WD1 site J _ _ NO8,45 AR8,45 SM8 rare (6)

Ceratophryidae

Ceratophrys cornuta (Linnaeus, 1758) PT, AS, CE UF, RF WD1 WD _ no NO8,46 TE8,46 MD8 uncommon (29)

Craugastoridae

Pristimantis reichlei Padial & De la Riva, 2009 PT, AS, CE UF, SRF WA30 RE TX yes CR8,47 TE8,47 SM8 abundant (120)

Pristimantis gr. conspicillatus1 PT, AS, CE UF, RF ? RE MT yes CR8,47 TE8,47 SM8 abundant 446)

Pristimantis gr. conspicillatus2 PT, AS, CE UF, RF ? RE TX yes CR8,47 TE8,47 SM8 abundant (2145)

Pristimantis gr. lacrimosus1 AS, CE UF, SRF ? WD _ no CR8,47 AR8,47 SM8 uncommon (28)

Pristimantis gr. lacrimosus2 AS, CE IP ? site C _ _ CR8,47 AR8,47 SM8 uncommon (22)

Pristimantis gr. lacrimosus3 AS, CE SRF ? RE TX yes CR8,47 AR8,47 SM8 rare (2)

Pristimantis sp1 AS, CE UF, SRF ? RE MTJ no8 CR8,47 TE8,47 SM8 rare (5)

Pristimantis sp2 AS IP ? site D _ _ _ _ _ rare (1)

Pristimantis sp3 AS, CE UF, RF ? WD _ no CR8,47 TE8,47 SM8 uncommon (68)

Odontophrynidae

Proceratophrys concavitympanum Giaretta et al., 2000 AS IP CAS31 site J _ _ NO8,31 TE8,31 MD8 rare (3)

Dendrobatidae

Adelphobates galactonotus (Steindachner, 1864) PT, AS, CE UF, RF EA1 RE TX yes DI8,46 TE8,46 SM8 abundant (192)

Ameerega hahneli (Boulenger, 1884) AS, CE UF, RF WD1 site D _ _ DI8,46 TE8,46 SM8 rare (6)

Ameerega trivitatta (Spix, 1824) PT, AS, CE UF, SRF WD1 RE MT yes DI8,46 TE8,46 SM8 abundant (214)

Ranitomeya amazonica (Schulte, 1999) AS, CE IP DD32 RE TJX yes DI8,46 AR8,46 SM8 rare (4)

Eleutherodactylidae

Adelophryne sp. PT, AS, CE UF, SRF ? RE MT yes DI8 TE8 SM8 uncommon (63)

Hemiphractidae

Page 61: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

49

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Hemiphractus scutatus (Spix, 1824) AS, CE UF, SRF WA1 RE MT yes NO8,46 TE8,46 MD8 rare (3)

Hylidae

Cruziohyla craspedopus (Funkhouser, 1957) CE IP WD33 site B _ _ NO8,46 AR8,46 MD8 rare (2)

Dendropsophus bokermanni (Goin, 1960) AS, CE LRF WA1 RE MT yes NO8,46 AR8,46 SM8 uncommon (16)

Dendropsophus leucophyllatus (Beireis, 1783) AS, CE RF WD1 WD _ no NO8,46 AR8,46 SM8 uncommon (27)

Dendropsophus minutus (Peters, 1872) AS, CE IP WD1 site C _ _ _ _ _ rare (1)

Dendropsophus ozzyi Orrico et al., 2014 AS, CE SRF CAS34 RE MT yes NO8,46 AR8,46 SM8 rare (2)

Dendropsophus gr. microcephalus1 AS, CE RF ? WD _ no NO8,46 AR8,46 SM8 abundant (187)

Dendropsophus gr. microcephalus2 AS, CE RF ? WD _ no NO8,46 AR8,46 SM8 uncommon (63)

Dendropsophus gr. microcephalus3 AS IP ? site C _ _ _ _ _ rare (1)

Dryaderces sp. AS IP ? site E _ _ _ _ _ rare (1)

Hypsiboas boans (Linnaeus, 1758) AS, CE LRF WD1 WD _ no NO8,46 AR8,46 LA8 abundant (170)

Hypsiboas calcaratus (Troschel, 1848) AS, CE LRF WD1 WD _ no NO8,46 AR8,46 MD8 uncommon (13)

Hypsiboas cinerascens (Spix, 1824) AS, CE RF WD1 WD _ no NO8,46 AR8,46 SM8 abundant (318)

Hypsiboas fasciatus (Günther, 1858) AS, CE LRF WD1 WD _ no NO8,46 AR8,46 SM8 uncommon (47)

Hypsiboas geographicus (Spix, 1824) AS, CE LRF WD1 WD _ no NO8,46 AR8,46 MD8 rare (6)

Hypsiboas leucocheilus (Caramaschi & Niemeyer, 2003) AS, CE SRF CAS35 RE MT yes NO8,46 AR8,46 MD8 uncommon (71)

Hypsiboas multifasciatus (Günther, 1859) AS, CE SRF EA1 RE TX yes NO8,46 AR8,46 MD8 abundant (208)

Hypsiboas sp1 AS, CE SRF ? WD _ no NO8,46 AR8,46 MD8 uncommon (27)

Hypsiboas sp2 AS, CE SRF ? WD _ no NO8,46 AR8,46 MD8 uncommon (14)

Osteocephalus buckleyi (Boulenger, 1882) AS, CE SRF WD1 WD _ no NO8,46 AR8,46 SM8 uncommon (41)

Osteocephalus leprieurii(Duméril and Bibron, 1841) AS, CE UF, RF WD1 WD _ no NO8,46 AR8,46 SM8 abundant (156)

Osteocephalus taurinus Steindachner, 1862 AS, CE UF, RF WD36 WD _ no NO8,46 AR8,46 LA8 abundant (287)

Osteocephalus gr. taurinus AS, CE UF, RF WD36 WD _ no NO8,46 AR8,46 MD8 abundant (805)

Phyllomedusa hypochondrialis (Daudin, 1800) AS, CE UF, RF EA37 WD _ no NO8,46 AR8,46 SM8 uncommon (86)

Phyllomedusa tomopterna (Cope, 1868) CE UF, RF WD1 WD _ no NO8,46 AR8,46 SM8 rare (2)

Phyllomedusa vaillanti Boulenger, 1882 AS, CE UF, RF WD1 WD _ no NO8,46 AR8,46 MD8 abundant (101)

Scinax cruentommus (Duellman, 1972) AS, CE LRF WA1 RE MT yes NO8,46 AR8,46 SM8 uncommon (28)

Scinax garbei (Miranda-Ribeiro, 1926) AS, CE UF, RF WD1 WD _ no NO8,46 AR8,46 SM8 uncommon (12)

Scinax gr. ruber CE LRF WD1 WD _ no NO8,46 AR8,46 SM8 rare (8)

Trachycephalus coriaceus (Peters, 1867) AS UF WD1 RE TX no1 NO8,46 AR8,46 LA8 rare (2)

Trachycephalus cunauaru Gordo et al., 2013 AS, CE UF WD38 WD _ no NO8,46 AR8,38 LA8 abundant (398)

Page 62: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

50

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Trachycephalus helioi Nunes et al., 2013 AS, CE UF CAS39 WD _ no NO8,46 AR8,39 LA8 abundant (303)

Leptodactylidae

Adenomera andreae (Müller, 1923) PT, AS, CE UF, RF WD41 WD _ no DI8,41 TE8,41 SM8 abundant (2822)

Adenomera sp1 PT, AS, CE UF, SRF CAS41 RE MT yes DI8,41 TE8,41 SM8 rare (3)

Adenomera sp2 PT, AS, CE UF, SRF EA41 RE TX yes DI8,41 TE8,41 SM8 abundant (164)

Engystomops freibergi (Donoso-Barros, 1969) PT, AS, CE UF, RF SA40 WD _ no NO8,40 TE8,40 SM8 abundant (583)

Leptodactylus knudseni Heyer, 1972 AS UF WA42 RE MT yes NO8,42 TE8,42 LA8 rare (3)

Leptodactylus leptodactyloides (Andersson, 1945) AS,CE SRF DD42 RE TX yes NO8,42 TE8,42 SM8 uncommon (28)

Leptodactylus mystaceus (Spix, 1824) PT, AS, CE UF, RF WD42 WD _ no NO8,42 TE8,42 SM8 abundant (110)

Leptodactylus paraensis Heyer, 2005 PT, AS, CE UF EA42 RE TX yes NO8,42 TE8,42 LA8 rare (4)

Leptodactylus pentadactylus (Laurenti, 1768) PT, AS, CE RF WD42 WD _ no NO8,42 TE8,42 LA8 abundant (152)

Leptodactylus petersii (Steindachner, 1864) PT, AS, CE RF WD42 WD _ no NO8,42 TE8,42 SM8 uncommon (56)

Leptodactylus rhodomystax Boulenger, 1884 PT, AS, CE UF, RF WD42 WD _ no NO8,42 TE8,42 MD8 uncommon (79)

Leptodactylus stenodema Jiménez de la Espada, 1875 CE IP WA42 site G _ _ _ _ _ rare (1)

Leptodactylus sp1 PT, AS, CE UF ? WD _ no NO8 TE8 LA8 abundant (173)

Leptodactylus sp2 AS IP ? site J _ _ _ _ _ rare (1)

Lithodytes lineatus (Schneider, 1799) PT, AS, CE UF WD1 WD _ no NO8,46 TE8,46 MD8 uncommon (49)

Microhylidae

Chiasmocleis avilapiresae Peloso and Sturaro, 2008 PT, AS, CE UF, RF SA43 WD _ no NO8,43 FO8,43 SM8 uncommon (34)

Chiasmocleis bassleri Dunn, 1949 PT, AS UF, RF WA43 RE MT yes NO8,43 FO8,43 SM8 rare (5)

Chiasmocleis hudsoni Parker, 1940 PT, AS, CE UF, RF WD43 WD _ no NO8,43 FO8,43 SM8 uncommon (63)

Ctenophryne geayi Mocquard, 1904 PT, AS UF, RF WD44 WD _ no NO8,46 FO8,46 MD8 abundant (142)

Hamptophryne boliviana (Parker, 1927) PT, AS UF, RF WD1 RE TJX no1 NO8,46 FO8,46 SM8 rare (3)

Synapturanus sp. AS UF ? RE MT yes NO8,46 FO8,46 SM8 uncommon (11)

Pipidae

Pipa arrabali Izecksohn, 1976 PT, AS, CE AQ DD1 RE TJ no1 NO8,46 AQ8,46 SM8 rare (8)

Pipa pipa (Linnaeus, 1758) AS, CE AQ WD1 WD _ no NO8,46 AQ8,46 LA8 rare (8)

Page 63: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

51

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Reptilia

Squamata

Amphisbaenidae

Amphisbaena amazonica Vanzolini 1951 PT, CE IP WD4 RE MT no4 NO8,46 FO8,46 MD8 rare (3)

Amphisbaena sp1 PT IP ? RE MTJ no7 NO8,46 FO8,46 MD8 rare (2)

Amphisbaena sp2 AS, CE IP ? WD _ no NO8,46 FO8,46 SM8 rare (3)

Aniliidae

Anilius scytale (Linnaeus, 1758) AS, CE UF, RF WD3 RE TX no3 NO8,16 FO8,16 LA8 rare (3)

Boidae

Boa constrictor (Linnaeus, 1758) CE UF, RF WD3 RE MTJ no3 NO8,16 TE8,16 LA8 rare (2)

Corallus batesii (Gray, 1860) AS, CE UF SA5 RE MT no5 NO8,16 AR8,16 LA8 rare (3)

Corallus hortulanus (Linnaeus, 1758) AS, CE UF, RF WD3 WD _ no NO8,16 AR8,16 LA8 abundant (25)

Epicrates cenchria (Linnaeus, 1758) AS, CE UF, RF WD3 RE MTJ no3 NO8,16 SR8,16 LA8 uncommon (6)

Eunectes murinus (Linnaeus, 1758) CE RF, AQ WD3 site B _ _ _ _ _ rare (1)

Colubridae

Apostolepis sp. CE UF ? site E _ _ _ _ _ rare (1)

Atractus latifrons (Günther, 1868) PT UF WD3 site G _ _ _ _ _ rare (1)

Atractus major Boulenger, 1894 PT, AS UF, RF WD3 RE TX no3 NO8,16 FO8,16 MD8 rare (2)

Atractus snethlagae Cunha & Nascimento, 1983 AS, CE UF, RF WD3 RE MTJ no3 NO8,16 FO8,16 MD8 rare (2)

Atractus cf. schach PT, CE UF, RF ? RE TJX no3 NO8,16 FO8,16 MD8 rare (3)

Chironius fuscus (Linnaeus, 1758) PT, AS, CE UF, RF WD3 WD _ no DI8,16 TE8,16 LA8 abundant (17)

Chironius multiventris Schmidt & Walker, 1943 AS, CE UF, RF WD3 WD _ no DI8,16 SR3,8 LA8 uncommon (6)

Chironius scurrulus (Wagler, 1824) AS, CE UF, RF WD3 RE MTJ no3 DI8,16 TE8,16 LA8 rare (4)

Dendrophidion dendrophis (Schlegel, 1837) CE UF WD3 WD _ no DI8,16 TE8,16 MD8 rare (2)

Dipsas catesbyi (Sentzen, 1796) AS, CE UF, RF WD9 WD _ no NO8,9 SR8,9 MD8 abundant (23)

Dipsas pavonina Schlegel, 1837 AS, CE UF, RF DD9 RE TX yes NO8,9 SR8,9 MD8 uncommon (9)

Drepanoides anomalus (Jan, 1863) PT, AS, CE UF, RF WD3 WD _ no NO8,16 TE8,16 MD8 abundant (15)

Drymarchon corais (Boie, 1827) AS, CE UF, RF WD16 WD _ no DI8,16 TE8,16 LA8 rare (3)

Drymoluber dichrous (Peters, 1863) AS, CE UF, RF WD10 WD _ no DI8,16 TE8,16 LA8 abundant (17)

Erythrolamprus aesculapii (Linnaeus, 1766) CE UF, RF WD3 site J _ _ _ _ _ rare (1)

Erythrolamprus breviceps (Cope, 1860) PT, CE UF, RF WD3 RE TX no3 DI8,48 TE8,48 MD8 rare (3)

Erythrolamprus oligolepis (Boulenger, 1905) PT UF, RF SA18 RE MT no18 DI8,48 TE8,48 MD8 rare (3)

Page 64: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

52

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Erythrolamprus reginae (Wagler, 1824) PT, AS, CE UF, RF WD3 WD _ no DI8,48 TE8,48 MD8 abundant (17)

Erythrolamprus typhlus (Linnaeus, 1758) PT, AS, CE UF, RF WD3 WD _ no DI8,48 TE8,48 MD8 abundant (14)

Helicops angulatus (Linnaeus, 1758) AS, CE RF, AQ WD3 WD _ no DN8,16 AQ8,16 MD8 abundant (15)

Helicops polylepis Günther, 1861 AS, CE RF, AQ WD16 WD _ no DN8,16 AQ8,16 MD8 rare (3)

Hydrodynastes bicinctus (Herrmann, 1804) CE RF, AQ WD16 site B _ _ DI8,16 AQ8,16 LA8 rare (2)

Hydrops martii (Wagler, 1824) CE AQ WD3 site B _ _ NO8,16 AQ8,16 LA8 rare (2)

Hydrops triangularis (Wagler, 1824) CE AQ WD12 RE MT no3 NO8,12 AQ8,12 MD8 rare (2)

Imantodes cenchoa (Linnaeus, 1758) AS, CE UF, RF WD3 WD _ no NO8,16 AR8,16 MD8 abundant (38)

Imantodes lentiferus (Cope, 1894) AS, CE UF, RF WD16 WD _ no NO8,16 AR8,16 MD8 rare (4)

Leptodeira annulata (Linnaeus, 1758) PT, AS, CE UF, RF WD3 WD _ no NO8,16 SR8,16 MD8 abundant (16)

Leptophis ahaetulla (Linnaeus, 1758) CE UF, RF WD3 WD _ no DI8,16 SR8,16 MD8 rare (2)

Mastigodryas boddaerti (Sentzen, 1796) AS, CE UF, RF WD3 WD _ no DI8,16 TE8,16 MD8 uncommon (6)

Oxyrhopus formosus (Wied, 1820) PT, AS, CE UF, RF WD16 WD _ no NO8,16 SR8,16 MD8 abundant (11)

Oxyrhopus melanogenys (Tschudi, 1845) PT, AS, CE RF WD16 WD _ no NO8,16 TE8,16 MD8 abundant (19)

Oxyrhopus petolarius Reuss, 1834 AS UF, RF WD16 site C _ _ _ _ _ rare (1)

Philodryas argentea (Daudin, 1803) AS, CE UF, RF WD3 WD _ no DI8,16 SR8,16 MD8 abundant (19)

Pseudoboa coronata Schneider, 1801 PT IP WD3 site I _ _ _ _ _ rare (1)

Phrynonax polylepis (Peters, 1867) AS, CE UF, RF WD3 WD _ no DI8,16 TE8,16 LA8 rare (5)

Rhynobothrium lentiginosum (Scopoli, 1785) AS, CE UF, RF WD11 WD _ no NO8,16 TE8,16 LA8 rare (4)

Siphlophis cervinus (Laurenti, 1768) AS, CE UF, RF WD3 RE TJX no3 NO8,16 SR8,16 MD8 rare (2)

Siphlophis compressus (Daudin, 1803) PT, AS, CE UF, RF WD3 WD _ no NO8,16 SR8,16 MD8 abundant (27)

Siphlophis worontzowi (Prado, 1940) CE RF WD17 site B _ _ _ _ _ rare (1)

Spilotes pullatus (Linnaeus, 1758) CE UF, RF WD3 site J _ _ _ _ _ rare (1)

Spilotes sulphureus (Wagler, 1824) CE UF WD3 site E _ _ _ _ _ rare (1)

Taeniophallus brevirostris (Peters, 1863) PT UF WD3 site B _ _ _ _ _ rare (1)

Taeniophallus quadriocellatus Santos-Jr et al., 2008 PT, AS UF, RF EA19 WD _ no DN8,19 TE8,19 MD8 rare (3)

Taeniophallus sp. PT UF, RF ? site A _ _ DN8,19 TE8,19 MD8 rare (2)

Tantilla melanocephala (Linnaeus, 1758) PT, AS, CE UF, RF WD3 RE MTJ no3 DN8,16 TE8,16 MD8 uncommon (7)

Thamnodynastes cf. pallidus (Linnaeus, 1758) AS,CE UF, SRF EA16 RE TJX yes NO8,16 SR8,16 MD8 uncommon (9)

Xenopholis scalaris (Wucherer, 1861) PT, AS, CE UF, RF WD3 WD _ no NO8,16 TE8,16 SM8 abundant (17)

Dactyloidae

Dactyloa phyllorhina (Myers & Carvalho, 1945) PT IP CAS2 site I _ _ _ _ _ rare (1)

Page 65: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

53

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Dactyloa punctata (Daudin, 1802) PT, AS, CE UF, RF WD2 WD _ no DI2,8 AR2,8 MD8 uncommon (13)

Norops fuscoauratus (D'Orbigny, 1837) PT, AS, CE UF, RF WD2 WD _ no DI2,8 AR2,8 SM8 abundant (86)

Norops ortonii (Cope, 1868) PT, AS, CE UF, RF WD2 WD _ no DI2,8 AR2,8 SM8 rare (8)

Norops tandai (Ávila-Pires, 1995) PT, AS, CE UF, RF CAS2 RE MT yes DI2,8 AR2,8 SM8 abundant (96)

Norops trachyderma (Cope, 1875) PT, AS, CE UF, RF DD2 WD _ no DI2,8 AR2,8 SM8 abundant (211)

Elapidae

Micrurus hemprichii (Jan, 1858) PT, AS, CE UF, RF WD3 WD _ no NO8,16 TE8,16 MD8 abundant (27)

Micrurus lemniscatus (Linnaeus, 1758) AS, CE RF WD3 WD _ no NO8,16 SA8,16 LA8 uncommon (7)

Micrurus paraensis Cunha & Nascimento, 1973 AS, CE UF, RF EA20 WD _ no NO8,16 TE8,16 MD8 rare (3)

Micrurus surinamensis (Cuvier, 1817) AS, CE UF, RF WD3 RE MTJ no3 NO8,16 SA8,16 LA8 rare (2)

Gymnophthalmidae

Alopoglossus angulatus (Linnaeus, 1758) PT, CE UF, RF WD2 WD _ no DI2,8 TE2,8 SM8 rare (6)

Arthrosaura reticulata (O'Shaughnessy, 1881) PT, AS, CE UF, RF WD2 WD _ no DI2,8 TE2,8 SM8 uncommon (24)

Bachia flavescens (Bonnaterre, 1789) PT UF WD2 WD _ no DI2,8 FO2,8 SM8 rare (2)

Cercosaura argulus Peters, 1863 PT, CE UF WD13 site J _ _ DI2,8 TE2,8 SM8 rare (3)

Cercosaura ocellata Wagler, 1830 PT, AS, CE UF, RF WD14 WD _ no DI2,8 TE2,8 SM8 abundant (67)

Cercosaura sp. PT, AS, CE UF, RF ? WD _ no DI8 TE8 SM8 uncommon (19)

Iphisa elegans Gray, 1851 PT, AS, CE UF, SRF WD2 WD _ no DI2,8 TE2,8 SM8 abundant (105)

Leposoma osvaldoi Ávila-Pires, 1995 PT, AS, CE SRF CAS2 WD _ no DI2,8 TE2,8 SM8 abundant (87)

Neusticurus bicarinatus (Linnaeus, 1758) AS SRF WD2 site J _ _ _ _ _ rare (1)

Potamites ecpleopus Cope, 1876 PT, AS, CE SRF DD2 RE TX yes DI2,8 SA2,8 SM8 abundant (50)

Ptychoglossus brevifrontalis Boulenger, 1912 PT, AS, CE UF WD2 WD _ no DI2,8 TE2,8 SM8 uncommon (26)

Rondonops biscutatus Colli et al., 2015 PT IP ? site G _ _ _ _ _ rare (1)

Iguanidae

Iguana iguana (Linnaeus, 1758) AS, CE LRF WD2 WD _ no DI2,8 SR2,8 LA8 rare (4)

Leiosauridae

Enyalius leechii (Boulenger, 1885) PT, AS UF EA2 RE TX yes DI2,8 SR2,8 MD8 rare (4)

Leptotyphlopidae

Trilepida macrolepis (Peters, 1857) AS, CE UF, RF WD16 WD _ no NO8,16 FO8,16 MD8 rare (4)

Phyllodactylidae

Thecadactylus rapicauda (Houttuyn, 1782) AS, CE UF, RF WD2 WD _ no NO2,8 AR2,8 MD8 uncommon (35)

Page 66: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

54

Taxa Survey

Methods

Forest

type

Known

distribution

Distribution

in study area

Restricted

to

Riverine

barrier

effect

Activity

period

Micro

habitat

Body

size Abundance (n)

Polychrotidae

Polychrus marmoratus (Linnaeus, 1758) AS IP WD2 site J _ _ _ _ _ rare (1)

Scincidae

Copeoglossum nigropunctatum (Spix, 1825) PT, AS, CE UF, RF WD2 WD _ no DI2,8 SR2,8 SM8 abundant (121)

Sphaerodactylidae

Chatogekko amazonicus (Andersson, 1918) PT, AS, CE UF WD2 WD _ no DI2,8 TE2,8 SM8 abundant (170)

Gonatodes hasemani Griffin, 1917 PT, AS, CE UF, RF WA2 RE MT yes DI2,8 SR2,8 SM8 rare (4)

Gonatodes humeralis (Guichenot, 1855) PT, AS, CE UF, RF WD2 WD _ no DI2,8 SR2,8 SM8 abundant (449)

Gonatodes tapajonicus Rodrigues, 1980 PT, AS, CE UF, SRF CAS2 RE TJX yes DI2,8 SR2,8 SM8 abundant (118)

Pseudogonatodes cf. guianensis Parker, 1935 PT, AS UF WD2 RE MTJ no2 DI2,8 TE2,8 SM8 uncommon (14)

Teiidae

Ameiva ameiva (Linnaeus, 1758) PT, AS, CE UF, RF WD2 WD _ no DI2,8 TE2,8 MD8 abundant (429)

Kentropyx calcarata Spix, 1825 PT, AS, CE UF, RF WD2 WD _ no DI2,8 TE2,8 MD8 abundant (593)

Tupinambis longilineus Ávila-Pires, 1995 AS IP CAS15 site E _ _ DI2,8 TE2,8 LA8 rare (2)

Tupinambis teguixin (Linnaeus, 1758) PT, AS, CE LRF WD2 RE MTJ no2 DI2,8 TE2,8 LA8 rare (9)

Tropiduridae

Plica plica (Linnaeus, 1758) PT, AS, CE UF, RF WD2 WD _ no DI2,8 AR2,8 MD8 abundant (51)

Plica umbra (Linnaeus, 1758) PT, AS, CE UF, RF WD2 WD _ no DI2,8 AR2,8 MD8 uncommon (39)

Uranoscodon superciliosus (Linnaeus, 1758) PT, AS, CE RF WD2 WD _ no DI2,8 AR2,8 MD8 uncommon (26)

Typhlopidae

Amerotyphlops reticulatus (Linnaeus, 1758) PT, CE UF WD3 WD _ no NO8,16 FO8,16 MD8 uncommon (6)

Viperidae

Bothrops atrox (Linnaeus, 1758) AS, CE RF WD3 WD _ no NO8,16 TE8,16 LA8 abundant (57)

Bothrops bilineata (Wied, 1821) AS, CE UF SA21 WD _ no NO8,16 AR8,16 MD8 rare (3)

Bothrops taeniata (Wagler, 1824) AS, CE UF SA6 RE MTJ no6 NO8,16 SR8,16 LA8 rare (4)

Lachesis muta (Linnaeus, 1766) AS, CE UF WD3 RE MTJ no3 NO8,16 TE8,16 LA8 rare (3)

References: 1 Frost, 2015; 2 Ávila-Pires, 1995; 3 Fraga et al., 2013; 4 Gans, 2005; 5 Henderson et al., 2009; 6 Souza et al., 2013; 7 Jerriane Gomes, pers. comm.; 8 Authors, personal

observations; 9 Lima & Prudente, 2009; 10 Caldeira-Costa et al., 2013; 11 Arruda et al., 2015; 12 Albuquerque & de Lema, 2008; 13 Freitas et al., 2013; 14 Sales et al., 2014; 15 Caldeira-Costa

et al., 2008; 16 Wallach et al., 2014; 17 Dal Vechio et al., 2015; 18 França et al., 2013; 19 Santos Jr. et al., 2008; 20 Feitosa et al., 2007; 21 Bernarde et al., 2011; 22 Maciel & Hoogmoed, 2011; 23 Brcko et al., 2013; 24 Tsuji-Nishikido et al., 2012; 25 Lima et al., 2014; 26 Lima et al., 2012; 27 Ávila et al., 2012; 28 Lima et al., 2007; 29 Noronha et al., 2012; 30 Padial & De la Riva, 2009;

Page 67: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

55

31 Bernardo et al., 2012; 32 Brown et al., 2011; 33 Bitar et al., 2015; 34 Orrico et al., 2014; 35 Pansonato et al., 2011; 36 Jungfer et al., 2013; 37 Bruschi et al., 2013; 38 Gordo et al., 2013; 39

Nunes et al., 2013; 40 Funk et al., 2008; 41 Fouquet et al., 2014; 42 Sá et al., 2014; 43 Peloso et al., 2014; 44 Freitas et al., 2014, 45 Guayasamin et al., 2009, 46 Pough et al., 2015, 47 Lynch &

Duellmann, 1997, 48Dixon, 1989.

Page 68: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

56

REFERENCES

Albuquerque, N.R. & de Lema, T. (2008) Taxonomic revision of the Neotropical water snake

Hydrops triangularis (Serpentes, Colubridae). Zootaxa, 1685, 55-66.

Arruda, L.A.G, Carvalho, M.A. & Kawashita-Ribeiro, R.A. (2015) New records of the

Amazon banded snake Rhinobothryum lentiginosum (Serpentes: Colubridae) from Mato

Grosso State, Brazil, with natural history notes. Salamandra, 51, 199-205.

Ávila, R.W., Carvalho, V.T., Gordo, M., Kawashita-Ribeiro R.A. & Morais, D.H. (2012) A

new species of Amazophrynella (Anura: Bufonidae) from southern Amazonia. Zootaxa,

3484, 65-74.

Ávila-Pires, T.C.S. (1995) Lizards of Brazilian Amazonia (Reptilia: Squamata). Zoologische

Verhandelingen, 299, 1-706.

Bernarde, P.S., Costa, H.C., Machado R.A. & São-Pedro, V.A. (2011) Bothriopsis bilineata

bilineata (Wied, 1821) (Serpentes: Viperidae): New records in the states of Amazonas,

Mato Grosso and Rondônia, northern Brazil. Check List, 7, 343-347.

Bernardo, P.H., Matiazzi, W. & Guerra-Fuentes, A. (2012) Distribution extention and

distribution map of Chiasmocleis jimi Caramaschi and Cruz 2002 (Amphibia: Anura:

Microhylidae) and Proceratophrys concavitympanum Giaretta, Bernarde and Kokubum,

2000 (Amphibia: Anura: Cycloramphidae). Check List, 8, 152-154.

Bitar, Y.O.C, Silva, K.R.A., Filho, H.F.S. & Pinheiro, L.C. (2015) Amphibia, Anura, Hylidae,

Cruziohyla craspedopus (Funkhouser, 1957): distribution extension and first record

from the state of Pará, Brazil. Check List, 11, 1-2.

Brcko, I.C., Hoogmoed, M.S. & Neckel-Oliveira, S. (2013) Taxonomy and distribution of the

salamander genus Bolitoglossa Duméril, Bibron & Duméril, 1854 (Amphibia, Caudata,

Plethodontidae) in Brazilian Amazonia. Zootaxa 3686, 401-431.

Bruschi, D.P., Busin, C.S., Toledo, L.F., Vasconcellos, G.A., Strussmann, C., Weber, L.N.,

Lima, A.P., Lima, J.D. & Recco-Pimentel, S.M. (2013) Evaluation of the taxonomic

status of populations assigned to Phyllomedusa hypochondrialis (Anura, Hylidae,

Phyllomedusinae) based on molecular, chromosomal, and morphological approach.

BMC Genetics, 14, 1-14.

Brown, J.L., Twomey, E., Amézquita A., de Souza, M.B., Caldwell, J.P., Lötters, S., von

May, R., Melo-Sampaio, P.R., Mejía-Vargas, D., Pérez-Peña, P.E., Pepper, M.,

Poelman, E.H., Sanchez-Rodriguez, M. & Summers, K. (2011) A taxonomic revision of

Page 69: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

57

the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa,

3083, 1-120.

Caldeira-Costa, H., São Pedro, V.A., Péres Jr, A.K. & Feio, R.N. (2008) Reptilia, Squamata,

Teiidae, Tupinambis longilineus: Distribution extension. Check List, 4, 267-268.

Caldeira-Costa, H., Moura, M.R. & Feio, R.N. (2013) Taxonomic revision of Drymoluber

Amaral, 1930 (Serpentes: Colubridae). Zootaxa 3716, 349-394.

Dal Vechio, F., Junior, M.T., Neto, A.M. & Rodrigues, M.T. (2015) On the snake Siphlophis

worontzowi (Prado, 1940): notes on its distribution, diet and morphological data.

Checklist, 11, 1-5

Dixon, J.R. (1989) A key and checklist to the neotropical snake genus Liophis, with country

list and maps. Smithsonian Herpetological Information Service, 79, 1-40.

Domingues, M.J. (2014) Flora da AID. In: Estudo de impacto ambiental – EIA, AHE São

Luiz do Tapajós. CNEC WorleyParsons. São Paulo, SP.

Feitosa, D.T., Prudente, A.L.C. & Lima, A.C. (2007): Redescription and variation of

Micrurus paraensis Cunha & Nascimento 1973 (Serpentes, Elapidae). Zootaxa, 1470,

35-45.

Fouquet, A., Cassini, C.S., Haddad, C.F.B., Pech, N. & Rodrigues, M.T. (2014) Species

delimitation, patterns of diversification and historical biogeography of the Neotropical

frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, 41, 855-

870.

Fraga, R. de, Lima, A.P., Prudente, A.L.C. & Magnusson, W.E. (2013) Guide to the snakes of

the Manaus region – Central Amazonia. Editora INPA, Manaus.

França, D.P.F, Freitas, M.A., Bernarde, P.S. & Uhlig, V.M. (2013) Erythrolamprus oligolepis

(Boulenger, 1905) (Serpentes: Dipsadidae): First record for the state of Acre, Brazil.

Check List, 9, 668–669.

Freitas, M.A., Oliveira e Sousa, S., Vieira, R.S., Farias, T. & Moura, G.J.B. (2013) First

record of Cercosaura argulus (Peters, 1863) (Squamata: Gymnophthalmidae) for the

state of Maranhão, Brazil. Check List, 9,1541-1542

Freitas, M.A., Dias, I.R., Farias, T., Oliveira e Sousa, S., Vieira, R.S., de Moura, G.J.B. &

Uhlig, V. (2014) First record of Ctenophryne geayi Mocquard, 1904 (Amphibia: Anura)

for the state of Maranhão, Brazil. Check List, 10, 585-587.

Furch, K. (1997) Chemistry of várzea and igapó soils and nutrient inventory of their

floodplain forests. In: Junk, W.E. (Ed.) The Central Amazon Floodplain. Berlin

Heidelberg: Springer-Verlag.

Page 70: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

58

Funk W.C., Angulo A., Caldwell J.P., Ryan M.J. & Cannatella D.C. (2008) Comparison of

morphology and calls of two cryptic species of Physalaemus (Anura: Leiuperidae).

Herpetologica, 64, 290-304.

Frost, D.R. (2015) Amphibian Species of the World: an Online Reference. Version 6.0.

Electronic Database accessible at http://research.amnh.org/herpetology/amphibia/

index.html. American Museum of Natural History, New York, USA. Acess 06 Jun

2015.

Gans, C. (2005) Checklist and bibliography of the amphisbaenia of the world. Bulletin of the

American Museum of Natural History, 289, 1-130.

Gordo, M., Toledo, L.F., Suárez, P., Kawashita-Ribeiro, R.A., Ávila, R.W., Morais, D.H. &

Nunes, I. (2013). A New Species of Milk Frog of the Genus Trachycephalus tschudi

(Anura, Hylidae) from the Amazonian Rainforest. Herpetologica, 69, 466-479.

Guayasamin, J.M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M. & Vilà, C.

(2009) Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their

sister taxon Allophryne ruthveni. Zootaxa, 2100, 1-97.

Henderson, R.W., Passos, P. & Feitosa, D. (2009) Geographic variation in the Emerald

Treeboa, Corallus caninus (Squamata: Boidae). Copeia, 2009, 572-582.

Jungfer, K.H., Faivovich, J., Padial, J.M., Castroviejo-Fisher, S., Lyra, M.L., Berneck, B.M.,

Iglesias, P.P., Kok, P.J.R., MacCulloch, R.D., Rodrigues, M.T., Verdade, V.K, Torres-

Gastello, C.P., Chaparro, J.C., Valdujo, P.H., Reichle, S., Moravec, J., Gvoždík, V.,

Gagliardi-Urrutia, G., Ernst, R., De la Riva, I., Means, D.B., Lima, A.P., Señaris, J.C.,

Wheeler, W.C. & Haddad, C.F.B. (2013) Systematics of spiny-backed treefrogs

(Hylidae: Osteocephalus): an Amazonian puzzle. Zoologica Scripta, 42, 351-380.

Junk W.J., P.B. Bayley & Sparks, R.E. (1989) The flood pulse concept in river – floodplain

systems. Canadian Special Publication of Fisheries and Aquatic Sciences, 106, 110-

127.

Lima, A.P., Menin, M. & Araújo, M.C. (2007) A new species of Rhinella (Anura: Bufonidae)

from Brazilian Amazon. Zootaxa, 1663, 1-15.

Lima, A.C. & Prudente, A.L.C. (2009) Morphological variation and systematics of Dipsas

catesbyi (Sentzen, 1796) and Dipsas pavonina Schlegel, 1837 (Serpentes: Dipsadinae).

Zootaxa, 2203, 31-48.

Lima, A.P., Erdtmann, L.K. & Amézquita, A. (2012) Advertisement call and colour in life of

Allobates crombiei (Morales) “2000” [2002] (Anura: Aromobatidae) from the type

Locality (Cachoeira do Espelho), Xingu River, Brazil. Zootaxa, 3475, 86-88.

Page 71: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

59

Lima, A.P., Simões, P.I. & Kaefer, I.L. (2014) A new species of Allobates (Anura:

Aromobatidae) from the Tapajós River basin, Pará State, Brazil. Zootaxa, 3889, 355-

387.

Lynch, J.D. & Duellman, W.E. (1997) Frogs of the genus Eleutherodactylus in western

Ecuador. Systematics, ecology, and biogeography. Special Publication. Natural History

Museum, University of Kansas, 23, 1-236.

Maciel, A.O. & Hoogmoed, M.S. (2011) Taxonomy and distribution of caecilian amphibians

(Gymnophiona) of Brazilian Amazonia, with a key to their identification. Zootaxa,

2984, 1-53.

Noronha, J.C., Rodrigues, D.J., Barros, A.B. & Almeida, E.J. (2012) New record and

distribution map of Hyalinobatrachium cappellei (van Lidth de Jeude 1904) (Anura:

Centrolenidae). Herpetology Notes, 5, 467-468.

Nunes, I., Suárez, P., Gordo, M. & Pombal, J.P. (2013) A second species of Trachycephalus

Tschudi (Anura: Hylidae) with a single vocal sac from the Brazilian Amazon. Copeia,

2013, 634-640.

Orrico, V.G.D., Peloso, P.L.V., Sturaro, M.J., Da Silva-Filho, H.F., Neckel-Olivera, S.,

Gordo, M., Faivovich, J. & Haddad, C.F.B. (2014) A new "Bat-voiced" species of

Dendropsophus Fitzinger, 1843 (Anura, Hylidae) from the Amazon Basin, Brazil.

Zootaxa, 3881, 341-361.

Padial, J.M. & De la Riva, I. (2009) Integrative taxonomy reveals cryptic Amazonian species

of Pristimantis (Anura: Strabomantidae). Zoological Journal of the Linnean Society,

155: 97–122.

Palumbi, S.R., Martin, A., Romano, S., Mcmillan, W.O., Stice, L. & Grabowski, G. (1991)

The Simple Fool's Guide to PCR. University of Hawaii, Honolulu.

Pansonato, A., Ávila, R.W., Kawashita-Ribeiro, R.A. & Morais, D.H. (2011) Advertisement

call and new distribution records of Hypsiboas leucocheilus (Anura: Hylidae).

Salamandra, 47, 55-58.

Peloso, P.L.V., Sturaro, M.J., Forlani M.C., Gaucher, P., Motta, A.P. & Wheeler, W.C. (2014)

Phylogeny, taxonomic revision, and character evolution of the genera Chiasmocleis and

Syncope (Anura, Microhylidae) in Amazonia, with descriptions of three new species.

Bulletin of the American Museum of Natural History, 136, 1-96.

Sá, R.O., Grant, T., Camargo, A. Heyer, W.R., Ponssa, M.L. & Stanley, E. (2014)

Systematics of the Neotropical genus Leptodactylus Fitzinger, 1826 (Anura:

Page 72: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

60

Leptodactylidae): Phylogeny, the relevance of non-molecular evidence, and species

accounts. South American Journal of Herpetology, 9, 1-128.

Sales, R.F.D., Jorge J.S., Meira-Ribeiro, M. & Freire, E.M.X. (2014) New record of

Cercosaura ocellata Wagler, 1830 (Squamata, Gymnophthalmidae) in northeastern

Brazil, with a distribution map for the species in South America. Check List 10, 1531-

1534.

Sambrook, J. & Russel D.W. (2001) Molecular Cloning: a Laboratory Manual. 3rd edn. Cold

Spring Harbor Laboratory Press, New York.

Santos Jr., A.P., Di-Bernardo, M., & Lema, T. (2008) New Species of the Taeniophallus

occipitalis Group (Serpentes, Colubridae) from Eastern Amazonia, Brazil. Journal of

Herpetology, 42, 419-426.

Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., McWilliam,

H., Remmert, M., Söding, J., Thompson, J.D. & Higgins, D.G. (2011) Fast, scalable

generation of high-quality protein multiple sequence alignments using Clustal Omega.

Molecular Systems Biology, 7, 539.

Souza, J.D.R., Venâncio, N.M., Freitas, M.A., Souza, M.B. & Veríssimo, D. (2013) First

record of Bothrops taeniatus Wagler, 1824 (Reptilia: Viperidae) for the state of Acre,

Brazil. Check List, 9, 430-431.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5:

Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary

Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28,

2731-2739.

Tsuji-Nishikido, B.M., Kaefer, I.L., Freitas, F.C., Menin, M. & Lima, A.P. (2012) Significant

but not diagnostic: differentiation through morphology and calls in the Amazonian frogs

Allobates nidicola and A. masniger. Herpetological Journal, 22, 105–114.

Wallach, V., Williams, K.L. & Boundy, J. (2014) Snakes of the World: a Catalogue of Living

and Extinct Species. CRC Press, Boca Raton, 1209 pp.

Wiley, E.O. (1978) The evolutionary species concept reconsidered. Systematic Zoology, 27,

17–26.

Page 73: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

61

REFERÊNCIAS BIBLIOGRÁFICAS

Azevedo-Ramos, C.; Galatti, U. 2002. Patterns of amphibian diversity in Brazilian Amazonia:

conservation implications. Biological Conservation, 103: 103-111.

Beheregaray, L.B.; Cooke, G.M.; Chao, N.L.; Landguth, E.L. 2015. Ecological speciation in

the tropics: insights from comparative genetic studies in Amazonia. Frontiers in

Genetics, 5: 1-19.

Boubli, J.P.; Ribas, C.; Lynch Alfaro, J.; da Silva, M.N.F.; Pinho, G.M.; Farias, I.P. 2014.

Spatial and temporal patterns of diversification on the Amazon: a test of the riverine

hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Molecular

Phylogenetics and Evolution, 82: 400-412.

Brasil, PR (Presidência da República). 2011. PAC-2 Relatórios. PR, Brasília, DF. Disponível

em: http://www.brasil.gov.br.

Caminer, M.; Ron, S.R. 2014. Systematics of treefrogs of the Hypsiboas calcaratus and

Hypsiboas fasciatus species complex (Anura, Hylidae) with the description of four new

species. ZooKeys, 370: 1-68.

Costa, F.R.C.; Magnusson, W.E. 2010. The need for large-scale, integrated studies of

biodiversity - the experience of the program for biodiversity research in brazilian

amazonia. Natureza & Conservação, 8: 3-12.

Costa, H.C.; Bérnils, R.S. 2014. Répteis brasileiros: Lista de espécies. Disponível em

<http://www.sbherpetologia.org.br>. Acesso em 06 jun 2015.

Dal Vechio, F.; Junior, M.T.; Neto, A.M.; Rodrigues, M.T. 2015. On the snake Siphlophis

worontzowi (Prado, 1940): notes on its distribution, diet and morphological data.

Checklist, 11(1).

Duellman, W.E. 1979. The South American herpetofauna: Its origin, evolution, and dispersal.

v.7. Kansas: Museum of Natural History/University of Kansas. 485 p.

Duellman, W.E. 2005. Cusco Amazônico. The Lives of amphibians and reptiles in an

Amazonian Rainforest. Comstock Publishing Associates, Cornell University Press,

Ithaca, New York. 488pp.

Fouquet, A.; C.S. Cassini, C.S.; Haddad, C.F.B.; Pech, N.; Rodrigues, M.T. 2014. Species

delimitation, patterns of diversification and historical biogeography of the Neotropical

frog genus Adenomera (Anura, Leptodactylidae). Journal of Biogeography, 41(5): 855-

870.

Page 74: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

62

Funk, W.C.; Caminer, M.; Ron, S.R. 2011. High levels of cryptic species diversity uncovered

in Amazonian frogs. Proceedings of the Royal Society B: Biological Sciences, 279:

1806-1814.

Gordo, M.; Toledo, L.F.; Suárez, P.; Kawashita-Ribeiro, R.A.; Ávila, R.W., Morais, D.H.;

Nunes, I. 2013. A new species of Milk Frog of the genus Trachycephalus Tschudi

(Anura, Hylidae) from the Amazonian rainforest. Herpetologica, 69: 466-479.

Hoorn, C.; Wesselingh, F.P.; terSteege, H.; Bermudez M.A.; Mora A.; Sevink J.; Sanmartín

I.A.; Sanchez-Meseguer, A; Anderson, C.L.; Figueiredo, J.P.; Jaramillo, C.; Riff, D.;

Negri, F. R.; Hooghiemstra, H.; Lundberg, J.; Stadler, T.; Särkinen, T.; Antonelli, A.

2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and

biodiversity. Science, 330: 927-931.

Jansen, M.; Bloch, R.; Schulze, A.; Pfenninger, M. 2011. Integrative inventory of Bolivia’s

lowland anurans reveals hidden diversity. Zoologica Scripta, 40: 567-583.

Jorge, R.F. 2014. Fatores determinantes dos padrões de distribuição e densidade de Allobates

sumtuosus e Atelopus spumarius em duas bacias de drenagem em 64 Km² de floresta de

terra-firme na Amazônia central. Dissertação de Mestrado. Instituto Nacional de

Pesquisas da Amazônia, Manaus, Amazonas.

Leite, Y.L.R.; Kok, P.R.J.; Weksler, M. 2015. Evolutionary affinities of the ‘Lost World’

mouse suggest a late Pliocene connection between the Guiana and Brazilian shields.

Journal of Biogeography, 42: 706–715.

Leite, R.N.; Rogers, D.S. 2013. Revisiting Amazonian phylogeography: insights into

diversification hypotheses and novel perspectives. Organisms Diversity and Evolution,

13(4): 639-664.

Lima, A.P.; Simões, P.I.; Kaefer, I.L. 2014. A new species of Allobates (Anura:

Aromobatidae) from the Tapajós River basin, Pará State, Brazil. Zootaxa, 3889: 355-

387.

Losos, J.B.; Arnold, S.J.; Bejerano, G.; Brodie III, E.D.; Hibbett, D.; Hoekstra, H.E.; Mindell,

D.P.; Monteiro, A.; Moritz, C.; Allen Or, H.; Petrov, D.A.; Renner, S.A.; Ricklefs, R.E.;

Soltis, P.S.; Turner, T.L. 2013 Evolutionary biology for the 21st century. PLoS Biology,

11: e1001466.

Magnusson, W.E. 2014. Uncertainty and the design of in-situ biodiversity-monitoring

programs. Nature Conservation, 8: 77-94.

Page 75: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

63

Menin, M.; Lima, A.P.; Magnusson, W.E.; Waldez, F. 2007. Topographic and edaphic effects

on the distribution of terrestrially reproducing anurans in Central Amazonia: mesoscale

spatial patterns. Journal of Tropical Ecology, 23: 539-547.

Murphy J.C.; Jowers, M.J. 2013. Treerunners, cryptic lizards of the Plica plica group

(Squamata, Sauria, Tropiduridae) of northern South America. ZooKeys, 355: 49-77.

Museu Paraense Emílio Goeldi, 2012. Censo da Biodiversidade da Amazônia Brasileira.

Disponível em < http://www.museu-goeldi.br/censo/>. Acesso em 06 jun 2015.

Nascimento, D.S. 2014. Filogenia molecular de serpentes neotropicais do grupo Bothrops

atrox (Linnaeus, 1758) (Viperidae: Crotalinae). Dissertação de Mestrado. Universidade

de Brasília, Brasília.

Naka, L.N. 2011. Avian distribution patterns in the Guiana Shield: implications for the

delimitation of Amazonian areas of endemism. Journal of Biogeography, 38: 681-696.

Neckel-Oliveira, S.; Magnusson, W.E.; Lima, A.P. 2000. Diversity and distribution of frogs

in an Amazonian savanna in Brazil. Amphibia-Reptilia, 21(3):317-326.

Orrico, V.G.D.; Peloso, P.L.V.; Sturaro, M.; da Silva, J.; Filho, H.F.; Neckel-Oliveira, S.;

Gordo, M.; Faivovich, J.; Haddad, C.F.B. 2014. A new “Bat-Voiced” species of

Dendropsophus Fitzinger, 1843 (Anura, Hylidae) from the Amazon Basin, Brazil.

Zootaxa, 3881: 341-361.

Pavan, D. 2007. Assembléias de répteis e anfíbios do Cerrado ao longo da bacia do rio

Tocantins e o impacto do aproveitamento hidrelétrico da região na sua conservação.

Tese de doutorado. Universidade de São Paulo, São Paulo.

Pomara, L.Y.; Ruokolainen, K.; Young, K.R. 2013. Avian species composition across the

Amazon river: the roles of dispersal limitation and environmental heterogeneity.

Journal of Biogeography, 41: 784-796.

Ribeiro Jr., J.W.; Lima, A.P.; Magnusson, W.E. 2012. The effect of riparian zones on species

diversity of frogs in Amazonian forests. Copeia, 2012(3):375-381.

Segalla, M.V.; Caramaschi, U.; Cruz, C.A.G; Grant, T.; Haddad, C.F.B.; Langone, J.A.;

Garcia, P.C.A. 2014. Brazilian Amphibians: List of Species. Disponível em

<http://www.sbherpetologia.org.br>. Acesso em 06 jun 2015.

Simões, P.I.; Lima, A.P.; Faria, I.P. 2010. The description of a cryptic species related to the

pan-Amazonian frog Allobates femoralis (Boulenger 1883) (Anura: Aromobatidae).

Zootaxa, 2406: 1-18

Simões, P.I.; Kaefer, I.L.; Lima, I.P. 2011. The first record of the rare microhylid Altigius

alios Wild, 1995 in Brazil. Herpetology Notes, 4: 141-142.

Page 76: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

64

Simões, P.I.; Kaefer, I.L.; Farias, I.P.; Lima, A.P. 2013. An integrative appraisal of the

diagnosis and distribution of Allobates sumtuosus (Morales, 2002) (Anura,

Aromobatidae). Zootaxa, 3746: 401-421.

Simões, P.I.; Stow, A.; Hödl, W.; Amézquita, A.; Farias, I.P.; Lima, A.P. 2014. The value of

including intraspecific measures of biodiversity in environmental impact surveys is

highlighted by the Amazonian brilliant-thighed frog (Allobates femoralis). Tropical

Conservation Science, 7(4): 811-828.

Smith, B.T.; McCormack, J.E.; Cuervo, A.M.; Hickerson, M.J.; Aleixo, A.; Cadena, C.D.;

Pérez-Emán, J.; Burney, C.W.; Xie, X.; Harvey, M.G.; Faircloth, B.C.; Glenn, T.C.;

Derryberry, E.P.; Prejean, J.; Fields, S.; Brumfield, R.T. 2014. The drivers of tropical

speciation. Nature, 515, 406-409.

Page 77: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

65

APÊNDICES

Ata da Aula de Qualificação

Page 78: INFLUÊNCIA COMBINADA DOS RIOS COMO BARREIRA E DO … · Keywords: Assemblages, forest types, Tapajós Basin, herpetofauna, hydroelectric power plants. IX LISTA DE FIGURAS Figure

66

Ata da Defesa da Dissertação