Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo...

181
Universidade Federal de Goiás Instituto de Ciências Biológicas Programa de Pós-Graduação em Ecologia e Evolução Homogeneização biótica em ambientes aquáticos continentais DANIELLE KATHARINE PETSCH Goiânia 2018

Transcript of Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo...

Page 1: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

1

Universidade Federal de Goiás

Instituto de Ciências Biológicas

Programa de Pós-Graduação em Ecologia e Evolução

Homogeneização biótica em ambientes

aquáticos continentais

DANIELLE KATHARINE PETSCH

Goiânia

2018

Page 2: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

2

Page 3: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

3

DANIELLE KATHARINE PETSCH

Homogeneização biótica em ambientes

aquáticos continentais

Tese apresentada ao Programa de Pós-Graduação

em Ecologia e Evolução do Departamento de

Ecologia do Instituto de Ciências Biológicas da

Universidade Federal de Goiás como requisito

parcial para obtenção do título de Doutora em

Ecologia e Evolução.

Orientador: Prof. Dr. Adriano Sanches Melo

Goiânia

2018

Page 4: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

4

Page 5: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

5

Page 6: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

6

Page 7: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

7

DEDICATÓRIA

Dedico esse trabalho aos meus pais Osmar e Maria

Helena e ao meu noivo Yuri pelo apoio irrestrito em todas

minhas decisões - mesmo e principalmente por aquelas

que me fizeram estar longe deles.

Page 8: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

8

“It's a dangerous business, Frodo, going out your door. You step onto the

road, and if you don't keep your feet, there's no knowing where you might

be swept off to.”

J.R.R. Tolkien - The Lord of the Rings

Page 9: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

9

AGRADECIMENTOS

Assim como Bilbo Bolseiro na saga O Senhor dos Anéis, eu ainda não tinha me

aventurado para terras distantes da minha casa até certa altura da minha vida – até o fim

do mestrado. No entanto, a jornada do doutorado que começou em Goiânia me levou

também para outros destinos inesperados onde conheci lugares incríveis e encontrei

pessoas fantásticas que tornaram a caminhada muito mais fácil, feliz e especial – e

também fizeram a seção dos agradecimentos se tornar mais longa!

Agradeço, primeiramente, à minha família por constituir o porto seguro de todas

minhas aventuras. Em especial, agradeço aos meus pais Osmar e Maria Helena e ao meu

noivo Yuri pelo amor e apoio incondicional em todas as decisões que me fizeram chegar

até aqui. A distância foi muitas vezes difícil, mas o amor de vocês sempre me deu forças

para continuar.

Agradeço ao Adriano por ser o melhor orientador do mundo! Um exemplo de

ética e profissionalismo. Foi um orientador maravilhoso desde o primeiro dia de

doutorado até o fim da tese, quando estávamos na mesma cidade ou distantes por cerca

de 8.000 quilômetros. É minha inspiração para o futuro que desejo seguir! Sinto-me

privilegiada por dizer que fui sua aluna.

Agradeço aos amigos de Maringá por me incentivarem e apoiarem a fazer o

doutorado em Goiânia, mas também por sempre me receberem de braços abertos todas

as (muitas) vezes que retornava à UEM: aos amigos da graduação (Lô, Say, Nati,

Barbris, Ju, Nay, Dri e Fer), aos amigos do mestrado (Lô, Nati, Barbris, Jean, Ju, Bia,

Vini, Camis, Herick) e aos amigos do laboratório Zoobentos (Gi, Camis, Flávio, Rafa,

Rê, Ana, Jess, Vá, Alice e Róger).

Agradeço aos amigos de Goiânia, que me fizeram entender o ditado de que o que

faz um lugar ser bom são as pessoas que vivem nele. Encontrei pessoas maravilhosas

Page 10: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

10

nessa cidade que me proporcionaram uma estadia imensamente feliz! Agradeço a todos

os colegas do PPG EcoEvol pela convivência diária! Muitos foram tão receptivos,

acolhedores e queridos que se tornaram os “ursinhos carinhosos”. Em especial,

agradeço Barbba, Laris, Flávia, Vini, Cibele, Lilian, Lara, Fernando, Leila, Olívia,

Angélica, André, Tati, Raíssa e Klein. A todos os amigos do LETS, mas especialmente

ao Luciano, conterrâneo parceiro e irmão de orientação, e também Vini, Jaques, Jean,

Lores, Leila, Jesus, Marco Túlio, Júlio, Regata, Alice e Elisa. Aos amigos do residencial

New Orleans, minha casinha goiana por três anos, pelas festinhas juninas, disputas na

dança da cadeira e pelos episódios emocionantes de Game of Thrones nos domingos à

noite: Vini, Thársis, Fabi, Lê, Isaque, Breno, Lara, Rherison, Laris e Kayque. Todos

vocês contribuíram de alguma forma para que eu me sentisse mais em casa na terra do

pequi!

Agradeço aos amigos que fiz nos quatro meses em Rio Claro. Erison, Fer e Cris

pela gentil hospedagem. Agradeço ao Tadeu e aos demais do LaTa e agregados por me

ajudarem tanto no planejamento das coletas, na triagem e identificação do material, mas

também pelos almoços no RU e churrasquinhos com panceta na “casinha”: Xuleta,

Edineusa, Jéssica, Larica, Sayuri e Raul. Finalmente, agradeço imensamente a equipe

mais linda de coleta de riachos desse Brasil: Amá, Carlinhos e Larica, por “meterem o

loko” comigo desde os riachos “padrão Finlândia” até os riachos não lá muito bons.

Tanto a gigante competência de todos vocês como as comidinhas deliciosas, as disputas

do fusca azul e a cantoria ao som da diva Sandy tornaram tudo mais fácil e muito

prazeroso. Coletaria muito mais que 100 riachos ao lado de vocês!

Agradeço às pessoas incríveis que encontrei nos quatro meses que vivi no

Canadá. Ao Karl Cottenie, por me receber e me orientar tão bem. Aos colegas de office,

Michelle e Josh, por serem sempre tão gentis e atenciosos comigo. Ao Elmer e Elvira,

Page 11: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

11

por me ensinarem muito mais que inglês, mas também servirem de inspiração como

casal e seres humanos. A Hynnaya, Fabi e Ricardo por compartilharem diversos

momentos canadenses com aquele toque brazuca. À Gabe, por ser a melhor landlady

que esse Canadá já viu e me dar a oportunidade de conviver com sua família linda e de

morar em sua maravilhosa casa “Darling”, que foi um verdadeiro lar por quatro meses.

Só pude chamar de lar por causa dos roommies que tive: Paty, Harley, Lucky (o dog

mais fofo e temperamental que existe) e, principalmente, Bruna e Laura, presentes do

Canadá que carregarei por toda a vida. Esse período incrível que vivenciei nessas terras

canadenses não teria metade da graça se não fosse por vocês. Obrigada pelas comidas

maravilhosas e pela parceria em todas as aventuras que inclui não me deixarem desistir

de esquiar mesmo quando essa parecia ser uma mádeia; pedalar de pijamas; encarar frio

abaixo de 10 graus negativos para passear; e andar em uma das 10 maiores montanhas-

russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que

estive no Canadá – e mesmo fora dele.

Agradeço às pessoas que encontrei na Alemanha que também tornaram essa

jornada germânica mais fácil. Ao Jonathan Chase, por ter sido um orientador ainda mais

maravilhoso do que imaginei. Aos meus filósofos preferidos, Wecio e Newton,

principalmente ao feliz apoio que me deram nos meus primeiros dias alemães. Agradeço

ao Martin, o alemão mais brasileiro que conheço, por ser um excelente anfitrião

“Leipzigiano”. Aos colegas do iDiv por me receberem tão bem e pela agradável

companhia nesses seis meses; em especial Leana, Thore, Lotte, Eduardo, Andros, Sue,

Elena e Amanda. Agradeço também aos iDivianos Felix, Lotte e Dylan por me

ajudarem no projeto sempre que precisei. Agradeço também aos amigos brasileiros

espalhados pela Europa que foram parceiros de diversas viagens que estarão sempre

guardadas nas minhas mais lindas recordações: Gabi, Mari, Barbris, Barbba, Carina,

Page 12: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

12

Mayra e Vini. Agradeço ao Jani Heino pela tão gentil recepção durante a semana que

passei em seu laboratório na University of Oulu. Agradeço a Mari (e Mustikka, claro!)

por me hospedar tão bem e me mostrar a melhor experiência finlandês (sauna escaldante

alternada com um rio gelado!).

Agradeço aos maravilhosos colaboradores que tive o privilégio de trabalhar ao

longo dos diferentes capítulos. Em especial, ao Karl Cottenie, Jonathan Chase, Tadeu

Siqueira, Fabiana Schneck, Jani Heino e Juliana Dias.

Agradeço também a todas as pessoas que forneceram dados para a realização da

meta-análise e também às pessoas que me auxiliaram com informações sobre os

atributos funcionais dos insetos aquáticos.

Finalmente, agradeço aos órgãos que proporcionaram suporte financeiro e

oportunidades para que eu pudesse realizar tranquilamente meu doutorado no Brasil

bem como nos períodos fora: à Capes pela bolsa de doutorado no Brasil e na Alemanha

pelo Programa de Doutorado Sanduíche no Exterior (PDSE), e a Global Affairs Canada

– Emerging Leaders in the Americas Program (ELAP) pela bolsa canadense.

Enfim, a todos que me ajudaram de alguma forma nessa jornada do doutorado,

deixo meu sincero muito obrigada!

Page 13: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

13

SUMÁRIO

Apresentação da Tese ............................................................................. 14

Resumo ..................................................................................................... 16

Abstract .................................................................................................... 17

Introdução Geral ..................................................................................... 18

Capítulo 1. Causes and consequences of biotic homogenization in

freshwater ecosystems ............................................................................... 26

Capítulo 2. Substratum simplification reduces beta diversity of stream

algal communities …….……………….……..…..……………………… 55

Capítulo 3. Floods homogenize aquatic communities across time but not

across space in a Neotropical floodplain …….…………..………..……. 84

Capítulo 4. Human land-use does not homogenize aquatic insect

communities in boreal and tropical streams ………..………………….. 119

Capítulo 5. Land-use effects on streams biodiversity: a meta-analysis...152

Considerações finais ............................................................................. 180

Page 14: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

14

APRESENTAÇÃO DA TESE

Esta tese inclui Introdução Geral, cinco capítulos na forma de artigos e Considerações

Finais. A Introdução Geral apresenta os principais referenciais teóricos e problemas

ecológicos que motivaram a elaboração dessa tese. Cada capítulo representa um

manuscrito científico elaborado com base nas normas da revista em que foi publicado

ou será submetido, embora algumas modificações tenham sido feitas para facilitar a

leitura da tese. O primeiro capítulo, fruto da minha qualificação de doutorado, foi

publicado na revista International Review of Hydrobiology em 2016, e é intitulado

“Causes and consequences of biotic homogenization in freshwater ecosystems”. Ele

trata de uma revisão teórica sobre as principais causas e consequências da

homogeneização biótica em ambientes aquáticos continentais. No segundo capítulo,

intitulado “Substratum simplification reduces beta diversity of stream algal

communities”, utilizei dados de um experimento de campo conduzido pela Profª Dra

Fabiana Schneck para avaliar se a simplificação de habitats causa homogeneização

biótica de algas perifíticas. Ele foi publicado na revista Freshwater Biology em 2017. O

terceiro capítulo, intitulado “Floods homogenize aquatic communities across time but

not across space in a Neotropical floodplain”, foi desenvolvido em colaboração com o

Prof. Dr. Karl Cottenie durante meu doutorado sanduíche na University of Guelph

(Guelph, Canadá), bem como com pesquisadores do PPG em Ecologia de Ambientes

Aquáticos Continentais e Nupelia/UEM que forneceram dados de 16 anos de

monitoramento do projeto PELD (“Pesquisas Ecológicas de Longa duração”) na

planície de inundação do alto rio Paraná. O manuscrito está redigido nas normas da

revista Aquatic Sciences e trata do efeito do pulso de inundação sob a diversidade beta

de macrófitas e zooplâncton no espaço e no tempo. Já o quarto capítulo da tese, “Human

land-use does not homogenize aquatic insect communities in boreal and tropical

Page 15: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

15

streams”, está inserido em um projeto maior intitulado “Scaling biodiversity in tropical

and boreal streams: implications for diversity mapping and environmental assessment

(ScaleBio)”, coordenado no Brasil pelo Profº Dr Tadeu Siqueira e na Finlândia pelo

Profº Dr Jani Heino. Visitei os laboratórios coordenados por ambos os professores e

participei das coletas nos 100 riachos brasileiros. O manuscrito trata da comparação da

diversidade beta entre riachos boreais e entre riachos tropicais e da possível

homogeneização biótica em ambas as regiões devido à redução da heterogeneidade

ambiental e aumento da severidade ambiental mediados pelo intensivo uso do solo. Esse

manuscrito está redigido no formato da revista Ecological Indicators. Finalmente, o

quinto e último capítulo da tese cujo título é “Land-use effects on stream biodiversity: a

meta-analysis” corresponde a uma meta-análise e foi desenvolvido em parceria com o

Profº Dr. Jonathan Chase durante meu doutorado sanduíche no German Centre for

Integrative Biodiversity Research (iDiv) (Leipzig, Alemanha). Trata dos efeitos de

diferentes tipos de uso do solo sob a biodiversidade em riachos. Esse manuscrito está

redigido nas normas da seção Reports da revista Ecology. Por fim, a seção

“Considerações finais” sumariza as principais conclusões da tese.

Page 16: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

16

RESUMO

O aumento da similaridade entre comunidades é um processo conhecido como

homogeneização biótica. Em ecossistemas aquáticos continentais a homogeneização

biótica pode ser promovida por diversas causas naturais (e.g. pulso de inundação) e

antrópicas (e.g. modificações do uso do solo). No primeiro capítulo, revisei as

principais causas e consequências da homogeneização de biotas aquáticas continentais.

No segundo capítulo, por meio de um experimento, demonstrei que a simplificação de

habitats pode causar homogeneização de algas perifíticas, embora o resultado dependa

da forma como se estima a homogeneização. No terceiro capítulo, usando dados de

zooplâncton e macrófitas, mostrei que as cheias homogeneizaram uma mesma lagoa ao

longo do tempo, mas não tornam lagoas mais similares espacialmente. No quarto

capítulo demonstrei que a diversidade beta taxonômica de insetos aquáticos foi maior

entre riachos tropicais enquanto a diversidade beta funcional foi maior entre riachos

boreais. O aumento da degradação ambiental e redução na heterogeneidade de habitat

relacionados ao uso do solo não causaram homogeneização taxonômica nem funcional

dos insetos aquáticos em riachos tropicais ou boreais. Por fim, no quinto capítulo,

observei em uma meta-análise que riachos modificados possuem menor riqueza e

equitabilidade além de uma diferente composição de espécies em relação aos riachos

mais conservados. No entanto, modificações no uso do solo não causaram

homogeneização biótica. Embora os efeitos de possíveis causas de homogeneização de

biotas aquáticas sejam ainda controversos, recomendamos que estudos sobre

biodiversidade incluam a diversidade beta para uma melhor compreensão dos

mecanismos que estruturam as comunidades frente a distúrbios antrópicos ou naturais.

Palavras-chave: Diversidade beta; Hábitats simples; Planície de inundação; Uso do

solo; Homogeneização funcional; Riachos; Meta-análise.

Page 17: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

17

ABSTRACT

The increase in similarity among communities is a process known as biotic

homogenization. In freshwater ecosystems, biotic homogenization may be promoted by

different natural (e.g. flood pulse) and human (e.g. land use) causes. In the first chapter,

I reviewed the main causes and consequences of freshwater homogenization. In the

second chapter, using an experimental approach, I showed that habitat simplification

may cause homogenization of periphytic algae, but the results depended on how

dissimilarity was estimated. In the third chapter, using zooplankton and macrophytes

data, I showed that floods homogenized individual lakes across time but did not make

the lakes spatially more similar. In the fourth chapter, I demonstrated that taxonomic

beta diversity of aquatic insects was higher among tropical streams but functional beta

diversity was higher among boreal streams. The increase of environmental harshness

and decrease of environmental heterogeneity did not cause taxonomic or functional

homogenization of aquatic insects among tropical or boreal streams. Finally, in the fifth

chapter, I found in a meta-analysis that human modified streams have low species

richness and equitability, although a distinct species composition regarding to reference

streams. However, land-use changes did not cause biotic homogenization. Although the

effects of possible biotic homogenization causes are still controversy, we recommend

that biodiversity studies should include beta diversity to better understand mechanisms

structuring communities under pressure of human or natural disturbances.

Keywords: Beta diversity; Habitat simplification; Floodplain; Land use; Functional

homogenization; Streams; Meta-analysis.

Page 18: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

18

INTRODUÇÃO GERAL

A biodiversidade está diminuindo em uma taxa nunca vista antes (Butchart et al., 2010).

Impactos antrópicos tais como a introdução de espécies, a simplificação e alteração de

hábitats e as mudanças climáticas têm causado a extinção de muitas espécies (Rahel &

Olden, 2008; McGill et al. 2015) aumento do número de espécies extintas recentemente

é tão alarmante que estimativas comparando as taxas naturais de extinção em fósseis às

taxas apresentadas atualmente e indicam que podemos estar vivenciando um novo

evento de extinção em massa (Barnosky et al., 2011). No entanto, além da redução do

número de espécies, outras complexas consequências podem ser geradas pela intensa

atividade humana, como o favorecimento de espécies generalistas e de ampla

distribuição em detrimento das mais especialistas e raras, tornando as comunidades cada

vez mais parecidas (Elton, 1958; McKinney & Lockwood, 1999). Esse processo de

aumento da similaridade entre comunidades é conhecido como homogeneização biótica

(Olden et al., 2004), e pode ser mensurado pela diversidade beta (i.e. variabilidade entre

as comunidades). A homogeneização biótica é atualmente considerada como um

processo tão preocupante que o período em que vivenciamos tem sido denominado de

“Homogenoceno” ou “A Nova Pangeia” (Olden, 2006).

Um dos primeiros pesquisadores a reconhecer o processo de homogeneização

biótica foi Charles Elton, em seu livro “The ecology of invasions by animals and plants”

publicado em 1958. Charles Elton percebeu que as extinções e as invasões de espécies

em decorrência da exploração humana e da dispersão mediada pelo comércio

intercontinental estavam tornando as biotas, anteriormente distintas, mais parecidas. No

entanto, os pesquisadores responsáveis por consagrarem o termo de homogeneização

biótica foram Michael L. McKinney e Julie L. Lockwood em 1999, quando postularam

que a homogeneização biótica é a “substituição de biotas locais por espécies não-

Page 19: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

19

nativas, geralmente introduzidas por humanos”. Embora os primeiros estudos sobre

homogeneização biótica tenham focado principalmente nos efeitos da introdução de

espécies exóticas (e.g. Rahel, 2002; Olden & Poff, 2003), muitas outras causas de

aumento da similaridade entre as comunidades foram posteriormente reconhecidas, tais

como modificações no uso do solo (e.g. Siqueira et al., 2015; Solar et al., 2015),

mudanças climáticas (e.g. Magurran et al., 2015) e eutrofização (e.g. Donohue et al.,

2009).

Ecossistemas aquáticos continentais, que estão entre os mais diversos e ao

mesmo tempo entre os mais ameaçados ecossistemas do globo (Strayer & Dudgeon,

2010), tem tido suas comunidades mais homogêneas principalmente devido a causas

relacionadas a atividades humanas, tais como a introdução de espécies não-nativas, o

barramento fluvial e as modificações no uso do solo (e.g. Beisner et al., 2003; Vitule et

al., 2012; Daga et al., 2015; Siqueira et al., 2015). A conservação de ecossistemas

aquáticos continentais é ainda de especial importância devido às diversas funções e

serviços ecossistêmicos que desempenham, tais como provisão e regulação da água,

pesca, produção primária e ciclagem de nutrientes (Millennium Ecosystem Assessment,

2005; Vörösmarty et al., 2010). Além disso, a homogeneização biótica pode também

tornar as comunidades ainda mais vulneráveis frente aos distúrbios promovidos pela

pressão antrópica por sincronizar as respostas entre as comunidades locais (Olden et al.,

2004).

A conversão de áreas vegetais nativas em áreas utilizadas pelo homem é uma das

principais causas de perda da diversidade biológica em ecossistemas aquáticos e

terrestres, dos polos aos trópicos (Sala et al., 2000). A perda de biodiversidade em

ecossistemas aquáticos promovida por mudanças no uso do solo pode ser mediada por

dois principais mecanismos: aumento da severidade ambiental e redução na

Page 20: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

20

heterogeneidade de habitat. A severidade ambiental ocorre quando as condições

abióticas são limitantes para a maioria das espécies (Chase, 2007, 2010), como quando

altas concentrações de nitrogênio e fósforo provindas da agricultura promovem

eutrofização de corpos aquáticos, tornando as condições na água favoráveis apenas a

poucas espécies. Se apenas o mesmo conjunto limitado de espécies ocorre entre os

habitats com condições ambientais mais severas, a dissimilaridade entre essas

comunidades locais é reduzida (Chase, 2007, 2010). Já a redução na heterogeneidade de

habitat em ecossistemas aquáticos pode ocorrer, por exemplo, quando o desmatamento

promove o assoreamento do leito dos riachos reduzindo a diversidade e complexidade

do substrato. A heterogeneidade de habitats aumenta o número de espécies por fornecer

maior disponibilidade de recursos, microhabitats e refúgios (Schneck & Melo, 2013;

Pierre & Kovalenko, 2014; Stein et al., 2014). Tais condições favoráveis a uma maior

gama de espécies podem facilitar a estocasticidade na história de colonização que

associada aos efeitos prioritários (i.e. o efeito dos primeiros colonizadores nos

seguintes), pode tornar as comunidades mais diferentes entre os habitats mais

heterogêneos do que entre os habitats mais homogêneos (Chase, 2010; Vannette &

Fukami, 2014). Além disso, a variabilidade nas condições abióticas físicas e químicas

pode refletir em uma distinta composição de espécies entre os habitats heterogêneos,

causando menor dissimilaridade entre as comunidades com menor heterogeneidade

ambiental. Ambos os processos, i.e., maior severidade ambiental e menor

heterogeneidade de habitat, são bem conhecidos por reduzir riqueza de espécies em

ecossistemas aquáticos (e.g. Allan, 2004; Leal et al., 2016), mas seus efeitos são ainda

controversos em relação à diversidade beta.

Embora a homogeneização biótica seja geralmente considerada como uma

consequência negativa de atividades antrópicas, fenômenos naturais também podem

Page 21: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

21

homogeneizar as biotas aquáticas. Por exemplo, em sistemas de rio-planície de

inundação as cheias podem aumentar a similaridade biológica entre os ambientes, pois

tendem a aumentar a conectividade e a similaridade ambiental entre os locais (Thomaz

et al., 2007; Bozelli et al., 2015). Por outro lado, durante a seca, os ambientes se tornam

mais diferenciados, o que permitiria uma maior variabilidade de espécies entre os locais.

Esses mecanismos, responsáveis por uma homogeneização espacial das comunidades

em períodos de cheia (i.e. aumento da similaridade entre os locais em um mesmo

período), poderiam também estar relacionados a uma homogeneização temporal das

comunidades (i.e. aumento da similaridade entre os períodos de cheia em um mesmo

local). Adicionar a dimensão temporal em estudos de homogeneização biótica pode

resultar em uma compreensão mais profunda sobre os mecanismos subjacentes ao

aumento da similaridade entre as comunidades aquáticas.

As principais causas e consequências da homogeneização biótica em ambientes

aquáticos continentais são sumarizadas em uma revisão teórica no Capítulo 1. Algumas

dessas possíveis causas de homogeneização biótica são exploradas mais detalhadamente

por meio de diferentes métodos (i.e. experimento, dados observacionais e meta-análise)

nos capítulos seguintes da tese, como a simplificação de habitats (Capítulo 2), pulso de

inundação (Capítulo 3) e modificações no uso do solo (Capítulo 4 e Capítulo 5). Mais

especificamente, investiguei no segundo capítulo, por meio de uma abordagem

experimental, se a comunidade de algas perifíticas é mais homogênea entre substratos

simples do que entre substratos complexos. No terceiro capítulo, investiguei se as

comunidades aquáticas de um mesmo local são mais similares entre períodos de cheia

do que entre períodos de seca em uma planície de inundação neotropical. Também

investiguei se as comunidades aquáticas são espacialmente mais similares entre si

durante o período de cheia do que durante o período de seca. No quarto capítulo,

Page 22: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

22

utilizando 100 riachos amostrados no Brasil e 100 riachos amostrados na Finlândia,

investiguei se a diversidade beta taxonômica e funcional é maior entre riachos tropicais

do que entre boreais e se mudanças no uso do solo, mediadas por degradação e

homogeneidade ambiental, reduzem a diversidade beta taxonômica e funcional em

ambas as regiões climáticas. Finalmente, no quinto capítulo, conduzi uma meta-análise

em riachos para investigar se modificações no uso do solo reduzem a riqueza observada,

extrapolada e a equitabilidade, e ainda se mudam a composição de espécies e reduzem a

diversidade beta acarretando em homogeneização biótica.

Referências

Allan J. D. 2004. Landscapes and riverscapes: the influence of land use on stream

ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35: 257–

284.

Barnosky A. D. et al. 2011. Has the Earth's sixth mass extinction already arrived?

Nature, 471: 51-57.

Beisner B. E., Ives A. R. & Carpenter S. R. 2003. The effects of an exotic fish invasion

on the prey communities of two lakes. Journal of Animal Ecology, 72: 331–342.

Bozelli R. L., Thomaz S. M., Padial A. A., Lopes P. M. & Bini L. M. 2015. Floods

decrease zooplankton beta diversity and environmental heterogeneity in an

Amazonian floodplain system. Hydrobiologia, 753: 233-241.

Butchart S. H. M. et al. 2010. Global biodiversity: Indicators of recent declines.

Science, 328: 1164-1168.

Chase J. M. 2007. Drought mediates the importance of stochastic community assembly.

Proceedings of the National Academy of Sciences USA, 104: 17430–17434.

Page 23: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

23

Chase J. M. 2010. Stochastic community assembly causes higher biodiversity in more

productive environments. Science, 328: 1388–1391.

Daga V. S., Skora F., Padial A. A., Gubiani E. A. & Vitule J. R. S. 2015.

Homogenization dynamics of the fish assemblages in Neotropical reservoirs:

comparing the roles of introduced species and their vectors. Hydrobiologia, 746:

327–347.

Donohue I., Jackson A. L., Pusch M. T. & Irvine K. 2009. Nutrient enrichment

homogenizes lake benthic assemblages at local and regional scales. Ecology,

90: 3470–3477.

Elton C. S. 1958. The ecology of invasions by animals and plants. London: Methuen.

Leal C. G. et al. 2016. Multi-scale assessment of human-induced changes to Amazonian

instream habitats. Landscape Ecology, 31: 1725–1745.

Magurran A. E., Dornelas M., Moyes F., Gotelli N. J. & McGill B. 2015. Rapid biotic

homogenization of marine fish assemblages. Nature Communications, 6: 1–5.

McGill B J., Dornelas M., Gotelli N. J. & Magurran A. E. 2015. Fifteen forms of

biodiversity trend in the Anthropocene. Trends in Ecology & Evolution, 30:

104:113.

McKinney M. L. & Lockwood J. L. 1999. Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends in Ecology &

Evolution, 14: 450-453.

Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well Being. Island

Press, Washington DC.

Olden J. D. & Poff N. L. 2003. Toward a mechanistic understanding and prediction of

biotic homogenization. The American Naturalist, 162: 442–460.

Page 24: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

24

Olden J. D. 2006. Biotic homogenization: a new research agenda for conservation

biogeography. Journal of Biogeography, 33: 2027–2039.

Olden J. D., Poff N. R., Douglas M. R., Douglas M. E. & Fausch K. D. 2004.

Ecological and evolutionary consequences of biotic homogenization. Trends in

Ecology & Evolution, 19: 18-24.

Pierre J. I. S. & Kovalenko K. E. 2014. Effect of habitat complexity attributes on

species richness. Ecosphere, 5: 1–10.

Rahel F. J. 2002. Homogenization of freshwater faunas. Annual Review of Ecology,

Evolution, and Systematics, 33: 291–315.

Rahel F. J. & Olden J. D. 2008. Assessing the effects of climate change on aquatic

invasive species. Conservation Biology, 22: 521–533.

Sala O. E. et al. 2000. Global biodiversity scenarios for the year 2100. Science, 287:

1770-1774.

Schneck F. & Melo A. S. 2013. High assemblage persistence in heterogeneous habitats:

an experimental test with stream benthic algae. Freshwater Biology, 58: 365–

371.

Siqueira T., Lacerda C. G. T. & Saito V. S. 2015. How does landscape modification

induce biological homogenization in tropical stream metacommunities?

Biotropica, 47: 509–516.

Solar R. B. C. et al. 2015. How pervasive is biotic homogenization in human-modified

tropical forest landscapes? Ecology Letters, 18: 1108–1118.

Stein A., Gerstner K. & Kreft H. 2014. Environmental heterogeneity as a universal

driver of species richness across taxa, biomes and spatial scales. Ecology

Letters, 17: 866–880.

Page 25: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

25

Strayer D. J. & Dudgeon D. 2010. Freshwater biodiversity conservation: recent progress

and future challenges. Journal of the North American Benthological Society, 29:

344-358.

Thomaz S. M., Bini L. M. & Bozelli R. L. 2007. Floods increase similarity among

aquatic habitats in river floodplain systems. Hydrobiologia, 579: 1-13

Vannette R. L. & Fukami T. 2014. Historical contingency in species interactions:

towards niche-based predictions. Ecology Letters, 17: 115–124.

Vitule J. R. S., Skóra F. & Abilhoa V. 2012. Homogenization of freshwater fish faunas

after the elimination of a natural barrier by a dam in Neotropics. Diversity and

Distributions, 18: 111–120.

Vörösmarty C. J. et al. 2010. Global threats to human water security and river

biodiversity. Nature, 467: 555–561.

Page 26: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

26

CAUSES AND CONSEQUENCES OF BIOTIC

HOMOGENIZATION IN FRESHWATER

ECOSYSTEMS1

1 Petsch, D. K. 2016. Causes and consequences of biotic homogenization in freshwater

ecosystems. International Review of Hydrobiology, 101:113–122.

C APÍTULO 1

1

Page 27: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

27

Abstract

Biotic homogenization goes beyond the increase in taxonomic similarity among

communities. It also involves the loss of biological differences in any organizational

level (e.g., populations or communities) in terms of functional, taxonomic or genetic

features. There are many ways to measure biotic homogenization, and the results

depend on temporal and spatial scales, the biological group and the richness of the

communities. In freshwater ecosystems, the main investigated causes of biotic

homogenization correspond to the introduction of non-native species, damming, and

changes in land use. However, other natural and anthropogenic causes also increase

similarity among aquatic biota, such as climatic change, changes in productivity, and

flood and drought events. The consequences of biotic homogenization in freshwater

ecosystems are less explored than its causes, despite its severe implications, such as

lesser resistant/resilient communities, loss of ecosystem functions, and higher

vulnerability to diseases. Finally, biotic homogenization is a complex process that

requires attention in conservation strategies, especially because forecasts suggest that

freshwater biotas will continue to become more homogeneous in the future.

Keywords: Beta diversity / Aquatic communities / Similarity / Dams / Biological

invasions

Page 28: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

28

1 Overview

Biodiversity is declining at an accelerated rate due to human activity. However, human

influences may not only reduce the number of species, but also increases similarity

among biotas, for instance by losing rare species and spreading common species in a

process recognized as biotic homogenization (McKinney and Lockwood, 1999).

Paleontological records suggest that biotic homogenization events occurred in the past,

such as the Great American Biotic Interchange, when the formation of the Panamanian

land bridge allowed the mixing of species between North and South America (Olden,

2006). However, these past events seem localized and isolated compared to current ones

(Olden and Poff, 2004). Nowadays, the biotic homogenization is considered so alarming

that this contemporary period is recognized as “New Pangea” or “Homogecene” (Olden,

2006).

Charles Elton was probably the first to recognize the process of biotic

homogenization (Olden, 2006). In his book The ecology of invasions by animals and

plants published in 1958, Elton suggested the breakdown of Wallace’s faunal realms

due to human-mediated dispersal among continents. In fact, current evidences suggest

that Wallace’s six classic faunal realms defined by dispersal limitation may be replaced

by only two defined by climate (i.e., temperate or tropical) (Capinha et al., 2015).

However, McKinney and Lockwood (1999) were responsible for the first formal

definition of biotic homogenization, related to the “replacement of local biotas with

nonindigenous species, usually introduced by humans”. According to McKinney and

Lockwood (1999), biotic homogenization occurs when a disturbance promotes the

geographic expansion of some species (“winners”) and the geographic reduction of

others (“losers”).

Page 29: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

29

Many studies reviewed different aspects of biotic homogenization, such as its

definition and quantification (Olden and Rooney, 2006), mechanisms (Oden and Poff,

2004), conservation strategies (Olden, 2006) and its ecological, evolutionary (Olden et

al., 2004) and human (Olden et al., 2005) consequences. Particularly for freshwater

ecosystems, Rahel (2002) summarized the main causes of biotic homogenization. He

focused mainly on studies using fish in North America and investigated some

anthropogenic causes of biotic homogenization. This study is intended to fill some gaps

from the Rahel (2002) review. In particular, other causes of biotic homogenization are

reviewed, not only anthropogenic causes, and bias is avoided for a single region or

biological group. An attempt is made to understand how freshwater biotas become more

homogenous and what the consequences of this are. Different types of biotic

homogenization are defined along with ways to measure it. Biotic homogenization

patterns on different spatial and temporal scales are discussed and the main natural and

anthropogenic causes of biotic homogenization in freshwater systems are investigated.

Finally, some possible consequences of biotic homogenization from various

perspectives are discussed.

2 Defining biotic homogenization types

In biotic homogenization, some biological differences are lost (Olden et al., 2011).

Biotas may become more similar in taxonomic, functional, phylogenetic, and genetic

features (see Fig. 1 for a summary of biotic homogenization types). Taxonomic

homogenization is the most common form of biotic homogenization, defined as the

increase of similarity in species composition among communities (Olden and Rooney,

2006). Higher similarity among fish communities in dams compared with in free river

stretches (Clavero and Hermoso, 2011), and among zooplankton communities during

Page 30: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

30

flood pulses (Bozelli et al., 2015) are some examples of taxonomic homogenization in

freshwater ecosystems.

Figure 1. Summary of biotic homogenization types among communities and among

populations.

However, the loss and gain of species driving biotic homogenization are not

random and may be influenced by species features (McKinney and Lockwood, 1999).

More sensitive species may be replaced by more tolerant species following

environmental change (McKinney and Lockwood, 1999; Olden and Rooney, 2006;

Olden et al., 2011). This replacement may lead to a functional homogenization (i.e.,

increasing species features similarity). For instance, fish communities were more

functionally similar over the years due to entry of non-native species (Pool and Olden,

2012).

Communities may also become more homogenous in a phylogenetic way.

Phylogenetic homogenization (i.e., increased relatedness among species) may occur, for

instance, by: (i) conservation of traits that provide tolerance to some environmental

change, or (ii) the entry of non-native but phylogenetically related species. One example

in freshwater systems is the hypothesis of phylogenetic homogenization among native

frog communities in ponds invaded by a non-native frog (Both and Melo, 2015).

Page 31: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

31

Phylogenetic and taxonomic similarities differ mainly because the last ignore

phylogenetic relatedness (i.e., species as independent units) while the former do

consider it (i.e., species as not independent units). From a phylogenetic perspective, four

different species belonging to same family correspond to a less diverse community than

four different species all belonging to different families. The taxonomic perspective

does not make such distinction.

Additionally, individuals in a population are not identical and may vary in

features related to morphology, behavior, or physiology (Bolnick et al., 2011).

Therefore, the variability of phenotypic features of individuals in a population (e.g.,

body size or mouth morphology) may also be investigated in the biotic homogenization

context. One hypothetical example: individuals of one fish species could have a high

variability of morphological or behavioral traits related to feeding in unimpacted

streams due to the high variety of available resources. However, in modified streams,

the variability of these traits could be reduced due to the low diversity of available

resources.

The decrease of genetic variability within and among populations can also lead

to genetic homogenization (Olden et al., 2004; Olden and Rooney, 2006). The main

mechanisms underlying genetic homogenization involve intentional translocation of

populations, introduction of species outside their original distribution area, and the

bottleneck effect due to drastic reduction of population size (Olden et al., 2004).

Although genetic homogenization is poorly investigated in freshwater ecosystems, this

process can result in significant ecological and evolutionary consequences (see the

section “Concluding remarks and perspectives”).

3 Measuring biotic homogenization

Page 32: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

32

Biotic homogenization may be quantified by many ways. One strategy is to quantify

increasing similarity among biotas over time (Olden et al., 2004; Olden and Rooney,

2006). For that, similarity among biotas is calculated at a given time (i.e., historical

period), and after an interval of time (i.e., current period) (e.g., Vitule et al., 2012; Daga

et al, 2015; Miyazono et al., 2015). However, biotic homogenization may also be

measured by comparing the similarity between biotas subject and not subject to some

homogenizing factor at the same time period (e.g., impacted vs. unimpacted streams;

Siqueira et al., 2015).

Biotic homogenization among communities may be quantified by beta diversity

(e.g., variability among communities) in terms of functional, phylogenetic, and

taxonomic composition. Beta diversity may be calculated using different metrics (some

of the most used are Jaccard, Sørensen, and Bray-Curtis). The choice of metric is

important to quantify biotic homogenization because they may capture different aspects

of similarity among communities. For example, Siqueira et al. (2015) investigated

taxonomic homogenization of aquatic insects among modified streams using the

Jaccard, Gower and Manhattan indexes. However, they only found biotic

homogenization using the Manhattan index that emphasized the differences in relative

abundances of species. Therefore, in this case, the highest similarity among modified

streams was attributed to changes in the relative abundances of species rather than the

simple presence or absence of species (Siqueira et al., 2015).

It is also important to take into account richness differences among communities

in order to quantify biotic homogenization. One reason is because the dissimilarity

among communities measured by traditional indices (e.g., Jaccard and Sørensen) may

arise by replacement and species richness difference among communities (Baselga

2010, 2012). For example, beta diversity may remain similar between historical and

Page 33: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

33

current periods because an increased difference in species richness between time

periods can obscure the fact that the assemblages have become more similar due to the

loss of unshared species (Baeten et al., 2012; Angeler, 2013). In this way, since

dissimilarity indexes may be affected by richness differences, obviously the detection of

biotic homogenization may also be affected.

While taxonomic beta diversity can be measured by the proportion of shared

species, phylogenetic and functional dissimilarities can be quantified by the proportion

of shared branches in a functional or phylogenetic dendrogram (Graham and Fine,

2008). Indices used to calculate taxonomic beta diversity (e.g., Jaccard and Sørensen)

could be adapted to calculate functional and phylogenetic beta diversity (e.g.,

phyloSør). The decrease of phenotypic trait variability among individuals (e.g.,

morphological and behavioral features) may be quantified by measurements of variance

and the standard deviation of some feature. Finally, genetic homogenization can be

quantified from genetic composition as allelic frequency, percentage of polymorphic

loci or average heterozygosity (Olden and Rooney, 2006).

4 How spatial and temporal scales affect homogenization of freshwater

biotas

A better understanding of community assembly often depends on the spatial or temporal

scales employed, and the scale perception depends on species features (e.g.,

geographical range and life cycle) (Wiens, 1989). The relationship between beta

diversity and spatial scale is dependent on two scale components: spatial extent (i.e.,

total sampled area), and spatial grain (i.e., sample unit size) (Wiens, 1989; Barton et al.,

2013). On the one hand, beta diversity tends to increase with higher spatial extent

(Barton et al., 2013; Spasojevic et al., 2016), mainly due to higher environmental

Page 34: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

34

heterogeneity and dispersal limitation (Nekola and White, 1999). On the other hand,

beta diversity tends to decrease with increasing spatial grain (Barton et al., 2013;

Spasojevic et al., 2016) due to high probabilities of recording introductions and lower

probabilities of recording extirpations (Olden, 2006). In sum, we could expect higher

levels of biotic homogenization among coarser spatial grains and lower spatial extents

(Olden, 2006). Moreover, using political units (i.e., states, provinces, countries) as the

observation unit may result in underestimated biotic homogenization because natural

and biogeographic barriers (e.g., mountains and watersheds) that define the historical

distinctiveness of a region are not considered (Olden, 2006).

More specifically for freshwater ecosystems, biotic homogenization at different

spatial scales has resulted in contrasting patterns. Fish communities in reservoirs were

more homogeneous taxonomically among sub-catchments and became more different in

the same sub-catchment over time, indicating that fauna was more concordant in space

than in time (Daga et al., 2015). Fish communities were more similar among Canadian

provinces and more dissimilar among eco-regions of a single province (i.e., more

homogenous in a larger extent and grain) (Taylor, 2010). Finally, communities of

benthic invertebrates were more homogeneous due to eutrophication both at local and

regional scales (i.e., without difference among employed scales) (Donohue et al., 2009).

Investigating biotic homogenization across time may indicate different processes

acting in different periods. For instance, fish communities in reservoirs were more

dissimilar between historical periods but became more homogeneous in a more current

comparison (Petesse and Petrere, 2012). This phenomenon may occur, for example,

when non-native species initially invade only some communities (i.e., tendency to

differentiate biota) but later they are established across all the metacommunity (i.e.,

tendency to homogenize the biota). Indeed, biotic differentiation arising from the entry

Page 35: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

35

of non-native species can lead to biotic homogenization (Toussaint et al., 2014), a

process that demands caution because it is only understood through temporal

monitoring. Furthermore, consequences of anthropogenic changes are not always

immediate. Following a disturbance event, local species extinction may take some time,

a delay known as "extinction debt" (Kuussaari et al., 2009). Therefore, the historical

legacy of a disturbance can also influence contemporary patterns of biotic

homogenization in freshwater ecosystems (as demonstrated in terrestrial ecosystems by

the influence of historical agriculture in understory plant beta diversity; Mattingly et al.,

2015).

5 Causes of freshwater biotic homogenization

Biotic homogenization in freshwater systems may derive from anthropogenic and

natural causes. Rahel (2002) reviewed the main causes of freshwater homogenization

related only to anthropogenic activities, such as non-native species introduction,

damming, land use, and urbanization. Here, other possible causes of biotic

homogenization in freshwater systems are added, natural or anthropogenic, such as

productivity, climatic changes, drought, and flood. Different causes of biotic

homogenization may act together (e.g., non-native species establishment favored by

dams (e.g., Johnson et al., 2008) or by climatic changes (Rahel and Olden, 2008)).

Although the causes of biotic homogenization are diverse, the mechanisms that generate

biotic homogenization are species entry and/or extinction, or increase and/or decrease of

species range, usually associated to some natural or anthropogenic environmental

change (Rahel, 2002) (Fig. 2).

5.1 Introduction of non-native species

Page 36: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

36

Non-native species introduction seems to be the most studied and widespread cause of

biotic homogenization in freshwater ecosystems. The introduction of non-native species

can either increase similarity when the same species invade communities (i.e., biotic

homogenization) or decrease similarity when different species are established among

communities (i.e., biotic differentiation) (Rahel, 2002). The establishment of non-native

species can also increase the similarity among communities indirectly if the introduction

drives the extinction of native species unshared among communities (e.g., by predation

or competition) (Rahel, 2002; Olden and Poff, 2003).

The introduction of non-native species in freshwater ecosystems is usually

mediated by overcoming geographical barriers at different scales, such as oceans (e.g.,

ballast water of ships) or high waterfalls between locations in a same river (e.g.,

damming) (Rahel, 2007). Many studies have identified biotic homogenization due to the

introduction of non-native species for different biological groups in freshwater

ecosystems, such as fish (Olden & Poff, 2012; Toussaint et al, 2014; Daga et al, 2015),

benthic invertebrates (Sardiña et al., 2011), and floodplain forest understories (Johnson

et al., 2014). The introduction of non-native species is usually facilitated by other

causes of biotic homogenization (see below).

5.2 Damming

One well-known effect of damming is the homogenization of river flow (Poff et al.,

2007). Consequently, communities may also become more homogeneous, as

highlighted in the title of a paper by Moyle and Mont (2007): "Homogeneous rivers,

homogeneous faunas". River flow homogenization may act synergistically with other

changes induced by dams, such as reduction of sediment flow, river bed simplification,

reduction of connectivity among the sub-catchments of a floodplain, changes in thermal

Page 37: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

37

regime (Poff et al., 2007), reduction of the intensity and duration of flood pulses (Souza

Filho, 2009), and facilitation of invasion of non-native species (Johnson et al., 2008).

Moreover, many native species are locally extinct due to new environmental conditions

imposed by the reservoirs (e.g., migratory fish or species that do not tolerate lentic

conditions; Agostinho et al., 2016).

The relationship between biotic homogenization and damming was investigated

for different biotas and using different techniques. For instance, fish fauna was found to

be more homogeneous among reservoirs when compared to free river stretches (Clavero

and Hermoso, 2011; Pool and Olden, 2012). Comparing historical and contemporary

periods, fish communities were more homogeneous among stretches of a river above a

dam but more differentiated in sections below the dam (Glowacki and Penczak, 2013).

Dams may reduce connectivity among habitats because they represent a new

barrier to the migration of some species. However, dams may connect habitats that were

originally separated by flooding large natural barriers. For instance, Seven Falls

(Parana, Brazil) was a large barrier to the dispersion of Paraná River fishes;

consequently, fish compositions above and below the falls were very dissimilar (Julio-

Junior et al., 2009). However, after the flooding of the Seven Falls by the Itaipu Dam,

fish communities above and below the dam became more similar than before the

damming (Vitule et al., 2012). Another interesting example is small dams removal.

Kornis et al. (2015) observed that fish fauna between portions upstream and

downstream of the dam became more similar after dam removal, because some

opportunistic species that favored more lentic conditions and the warmer water in the

lower portions colonized the upper portions.

5.3 Land use

Page 38: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

38

The detrimental consequences of inadequate land use are not restricted to loss of native

vegetation (Lake et al., 2010). In aquatic ecosystems, land use may increase the

sedimentation and the entry of nutrients (e.g., N and P), cause water pollution by heavy

metals, promote habitat simplification, reduce the shading and consequently increase

water temperature and decrease dissolved oxygen and organic matter input from

riparian vegetation (Allan, 2004). One of the main biological consequences of land use

in freshwater ecosystems is the loss of more sensitive species and the expansion of more

tolerant ones (e.g., Scott & Helfman, 2001; Lougheed et al., 2008), which may

homogenize the biota. Land use can increase similarity among biotas both in lotic (e.g.,

stream macroinvertebrates; Siqueira et al., 2015), and in lentic ecosystems (e.g.,

macrophytes and zooplankton in floodplains; Lougheed et al., 2008). Moreover,

different land uses (e.g., pasture, agriculture, and forestry) can lead to different patterns

of similarity depending on the impact intensity (Siqueira et al., 2015).

As cities are built only to support human needs, they are very similar to each

other and restrictive for most native species (McKinney, 2006). Human settlement

introduces, accidentally or intentionally, many non-native species, and provides

favorable conditions for their establishment (McKinney, 2006). Urbanization may

homogenize aquatic biota via the establishment of cosmopolitan non-native species and

the extirpation of unique native species in water bodies (Rahel, 2000; Marchetti et al.,

2006, but see Barboza et al., 2015). Moreover, urbanization may have effects not only

on a local scale (i.e., loss of species due to deforestation), but also regional (i.e., spread

of pollutants) and even global scales (i.e., urban centers as the most responsible for

greenhouse gas emissions that may increase water temperature) (Grimm, 2008).

5.4 Productivity

Page 39: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

39

The effects of productivity (usually measured as an increase of N, P and/or chlorophyll-

a) on similarity in freshwater ecosystems are varied. Chase (2010) found biotic

homogenization among low productivity experimental ponds due to deterministic

processes that allowed only the establishment of a few species in most ponds. However,

an increase of nutrients homogenized benthic invertebrate communities within and

between Irish lakes (Donohue et al., 2009). Fish communities from Danish lakes also

became more similar as a consequence of homogenization of benthic habitats exploited

by fish due to eutrophication (Menezes et al., 2015).

Artificial and rapid increases of nutrients may act as a deterministic filter

allowing only a few species to establish among eutrophic environments (Donohue et al.,

2009). However, very low productivity could also act in the same way as a strong filter.

In this way, initial nutrient content and velocity of eutrophication may explain the

contrasting results found among studies in freshwater ecosystems (Donohue et al.,

2009).

5.5 Climatic changes

Although the global climate has undergone natural changes across geological time,

human actions are accelerating this process, which is predicted as one of the major

threats to biodiversity in near future scenarios (Sala et al., 2000). The main climatic

changes predicted involve, on a local scale, changes in climatic conditions (e.g.,

temperature increases, rainfall modifications), changes in climate extremes (e.g., drastic

droughts and floods), and changes in seasonality (e.g., delay in starting seasons) (Garcia

et al., 2014). Some species may adapt to new environmental conditions by increasing,

decreasing or changing their distributional range, but may also suffer a decrease in their

abundances or even become locally extinct (Ackerly et al., 2010). All these mechanisms

Page 40: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

40

could lead to biotic homogenization. Here in this section, I focus in global warming.

Fish from the North Atlantic, for example, became more similar due to changes in their

range driven by the increase in seawater temperature over the period 1986 to 2013

(Magurran et al., 2015).

More specifically for freshwater ecosystems, climatic changes may raise water

temperatures, increase climatic extremes (e.g., drastic flood or drought; see next

sections) and alter the flow of streams (Poff et al., 2007). However, few studies have

investigated the relationship between biotic homogenization and observed and projected

climatic changes in freshwater ecosystems. For example, fish in streams under a global

warming scenario may become more similar taxonomically and functionally due to

increased colonization opportunities due to climatic change (Buisson and Grenouillet,

2009). However, the increase in water temperature in Swedish lakes and rivers over 34-

years did not change the composition of aquatic invertebrates (Burgmer et al., 2007).

5.6 Flood

Floodplains are systems with high environmental heterogeneity and high biodiversity in

terms of aquatic and terrestrial species (Agostinho et al., 2004). Hydrological regimes,

characterized by periods of high and low water, are a key mechanism in these floodplain

river systems (Junk et al., 1989; Thomaz et al., 2004). During the drought period, many

aquatic habitats (lakes, channels, wetlands) remain isolated and local forces (i.e.,

environmental heterogeneity, biotic interactions and water re-suspension in the case of

shallow lakes) may become more evident (Thomaz et al., 2004; Thomaz et al., 2007;

Bozelli et al., 2015). During the flood period, high water levels may connect habitats

and, as a consequence, increase the exchange of water, sediment, nutrients and

organisms promoting more homogenous habitats (Thomaz et al., 2007, Bozelli et al,

Page 41: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

41

2015). Flooding is a particular mode of homogenization because it is seasonal in nature

and somewhat predictable.

Many streams and small rivers are subjected to flash floods (i.e., very quick with

an intense increase of discharge). Flash floods may facilitate species downstream drift

or even lead to local extirpations. In this sense, passive emigration after flooding could

be an additional mechanism for biotic homogenization among river reaches regarding

species entry and extinctions. Flash floods facilitated the downstream dispersal of

introduced fishes in the headwater streams of the Atlantic Forest, which could mix the

fish fauna and increase similarity between the headwaters and larger rivers (Magalhães

and Jacobi, 2013).

5.7 Drought

Extreme drought events may also lead to biotic homogenization. Here, the main

mechanisms are related to environmental restrictions imposed by droughts. For

example, communities within experimental ponds subject to a severe drought were

more homogeneous than communities that did not suffer drought (Chase, 2007). The

environmental severity imposed by drought acted as a filter allowing only a subset from

the species pool to survive under such conditions, making these ponds more similar

(Chase, 2007).

Dry-land rivers may suffer desertification and salinization in association with

changes in communities. For example, a tributary in North America had its water

discharge reduced, which resulted in a higher salinity in the contemporary period (2010)

in relation to a historical period (1970) (Miyazono et al., 2015). During the historical

period, the main river above the confluence was more saline. In that period, the tributary

contributed to reduce salinity downstream of the confluence and, thus, to increase

habitat heterogeneity in the basin. With the tributary salinization, the main river below

Page 42: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

42

the confluence also became saline in the contemporary period. The fish community

responded to the salinity changes and as a result the portions above and below the

confluence became more similar in the current period (2010) in relation to the historical

one (1970). In this way, fish homogenization did not occur due to the entry of non-

native species, but due to the tolerance of native species to salinity. As the stretch below

the confluence became more saline, species sensitive to salinity had reduced abundance

or were excluded, while species tolerant to salinity from the upper reaches also

colonized the lower reaches.

6 Ecological, evolutionary and social consequences of biotic

homogenization in freshwater ecosystems

Biotic homogenization is detected in many biological groups as a result of various

causes. However, most studies do not investigate the ecological and evolutionary

consequences in populations, communities or ecosystems. In this way, there are few

realistic examples regarding the consequences of biotic homogenization and more

speculations about this topic.

Here, two interesting studies on consequences of biotic homogenization in

freshwater ecosystems are highlighted. In the first, homogenization of one community

also affected associated species in a predator-prey relationship. More specifically, fish

community homogenization among Canadian lakes due to the replacement of different

dominant native fishes by only one non-native predator also homogenized zooplankton

community prey (Beisner et al., 2003). In the second example, biotic homogenization of

a host community also affected a parasite community. The affinity of freshwater clam

larvae (Anodonta anatina) is very low with non-native fishes. Consequently, the

homogenization of the fish community driven by the loss of native species and

Page 43: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

43

introduction of non-native species reduced the fish species pool suitable for parasitism

by bivalve larvae (Douda et al., 2013).

Olden et al. (2004) suggest many consequences of biotic homogenization in their

review, which may be applied to terrestrial and aquatic systems. Regarding community

homogenization, Olden et al. (2004) suggest consequences, including: (i) high

vulnerability to environmental changes (e.g., extreme drought or pollution) due to

synchrony among communities; (ii) decrease in resilience and/or resistance after some

disturbance; and (iii) damage in ecosystem functions or services (e.g., nutrient cycling

and fish production, respectively). Concerning genetic homogenization, Olden et al.

(2004) suggest that (i) homogenization by intraspecific hybridization can harm the

fitness of individuals for disrupting local adaptations, and (ii) homogenization by

interspecific hybridization may homogenize two previously distinct species that were

adapted to their own environments (see also Agostinho et al., 2010). These

consequences of genetic homogenization may lead small populations to extinction,

especially in fish, where hybridizations are relatively common due to external

fertilization and weak reproductive isolation mechanisms (Olden et al., 2004). Finally,

regarding evolutionary aspects, Olden et al. (2004) suggest that: (i) high gene flow

between populations could hamper allopatric speciation; (ii) hybridization could

increase diversification if the descendants are fertile; and (iii) non-native species

established in a different environment could differentiate phenotypically from the

original population. For more details about speculations described above, see Olden et

al. (2004).

The consequences of biotic homogenization in freshwater ecosystems also

include an economic aspect of lead to losses for ecotourism and fishing (Olden et al.,

2005). For instance, an amateur fisher who had to travel from one region to other one to

Page 44: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

44

fish a particular fish species (thus promoting the tourism industry) may, as a result of

biotic homogenization, opt to catch the fish at a location nearer his/her home. In sum,

biotic homogenization affects tourism because "every place is the same, why go

somewhere?" (Olden et al., 2005 (paraphrasing the words of James Kunstler's book

"The Geography of Nowhere")).

7 Concluding remarks and perspectives

The biotic homogenization promoted by anthropogenic disturbances seems to still be

increasing, since species invasions and extinctions, its main drivers, are not decreasing.

For instance, in 42 simulated scenarios of possible fish invasions and extinctions in

global freshwater systems, the forecast is increases similarity among communities in all

simulated scenarios (Villeger et al., 2015). Although the mitigation of invasions of non-

native species and the loss of native species is difficult, it is not impossible through

governmental actions and dissemination of information on their impacts to the whole

population, to avoid other freshwater communities becoming more homogenous (Olden

et al., 2011).

Page 45: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

45

Figure 2. Conceptual model summarizing the main causes, mechanisms and

consequences of biotic homogenization in freshwater ecosystems. (A) and (B) are

different fish communities which become more similar due to entry of same species (1)

or extinction of unshared species (2). Each letter inside fishes indicates a different

species.

In summary, freshwater systems may become more homogenous due to many

natural and anthropogenic causes (Fig. 2). Biotic homogenization in freshwater systems

has consequences for communities (e.g., resistance/resilience decrease), populations

(e.g., genetic variability reduction increases susceptibility to diseases), biological

interactions (e.g., predators homogenize prey or homogenization of hosts affects the

parasites), or even ecosystems (e.g., affect ecosystem functions and services) (Olden et

al., 2004). However, the consequences of biotic homogenization, particularly in

freshwaters ecosystems should be further explored. Moreover, different temporal and

spatial scales and different biological groups may show complex processes of increasing

similarity among freshwater communities. Therefore, as we live in a changing and

Page 46: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

46

connected world, it is important that the causes and consequences of biotic

homogenization are further investigated.

Acknowledgments

I am grateful to CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior) for granting my PhD scholarship. I am very grateful to Luciano F. Sgarbi,

Jean C. G. Ortega, Louizi S. M. Braghin, Lilian P. Sales, Barbara C. G. Gimenez,

Gisele D. Pinha, Natalia C. Lacerda, Robertson Azevedo, Mario Almeida-Neto, João C.

Nabout and Adriano S. Melo for comments in early versions of this manuscript.

References

Ackerly, D. D., Loarie, S. R., Cornwel, W. K., Weiss, S. B., Hamilton, H., Branciforte,

R., Kraft, N. J. B. 2010: The geography of climate change: implications for

conservation biogeography. Divers Distrib. 16, 476–487.

Agostinho, A. A., Thomaz, S. M., Gomes, L. C. 2004: Threats for biodiversity in the

floodplain of the Upper Paraná River: effects of hydrological regulation by

dams. Ecohydrol Hydrobiol 4, 267-289.

Agostinho, A. A., Pelicice, F. M., Gomes, L. C., Júlio Jr, H. F. 2010: Reservoir fish

stocking: When one plus one may be less than two. Natureza & Conservação 8,

103–111.

Agostinho, A. A., Gomes, L. C., Santos, N. C. L., Ortega, J. C. G., Pelicice, F. M. 2016:

Fish assemblages in Neotropical reservoirs: Colonization patterns, impacts and

management. Fisheries Res. 173, 26–36.

Allan, J. D. 2004: Landscapes and riverscapes: the influence of land use on stream

ecosystems. Annu Rev Ecol Evol Syst 35, 257–284.

Page 47: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

47

Angeler, D. G. 2013: Revealing a conservation challenge through partitioned long-term

beta diversity: increasing turnover and decreasing nestedness of boreal lake

metacommunities. Divers Distrib. 19, 772–781.

Baeten, L., Vangansbeke, P., Hermy, M., Peterken, G.V., Verheyen, K. 2012:

Distinguishing between turnover and nestedness in the quantification of biotic

homogenization. Biodivers Conserv. 21, 1399–1409.

Barboza, L. G. A., Mormul, R. P., Higuti, J. 2015: Beta diversity as a tool for

determining priority streams for management actions. Water Science &

Technol. 71, 1429:1435.

Barton, P. S., Cunningham, S. A., Manning, A. D., Gibb, H., Lindenmayer, D. B.,

Didham, R. K. 2013: The spatial scaling of beta diversity. Global Ecol Biogeogr

22, 639–647.

Baselga, A. 2010: Partitioning the turnover and nestedness components of beta

diversity. Global Ecol Biogeogr 19, 134–143.

Baselga, A. 2012: The relationship between species replacement, dissimilarity derived

from nestedness, and nestedness. Global Ecol Biogeogr 21, 1223-1232.

Beisner, B. E., Ives, A. R., Carpenter, S. R. 2003: The effects of an exotic fish invasion

on the prey communities of two lakes. J Anim Ecol. 72, 331–342.

Bolnick, D. I., Priyanga, A., Araújo, M. S., Bürger, R., Levine, J. M., Novak, M.,

Rudolf, V. H. W., Schreiber, S. J., Urban, M. C., Vasseur, D. A. 2011: Why

intraspecific trait variation matters in community ecology? Trends Ecol Evol.

26,183-192.

Both, C., Melo, A. S. 2015. Diversity of anuran communities facing bullfrog invasion in

Atlantic Forest ponds. Biol Inv 17, 1137-1147.

Page 48: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

48

Bozelli, R. L., Thomaz, S. M., Padial, A. A., Lopes P. M., Bini, L. M. 2015: Floods

decrease zooplankton beta diversity and environmental heterogeneity in an

Amazonian floodplain system. Hydrobiologia 753, 233-241.

Buisson L., Grenouillet, G. 2009: Contrasted impacts of climate change on stream fish

assemblages along an environmental gradient. Divers Distrib15, 613–626.

Burgmer, T., Hillebrand, H., Pfenninger, M. 2007: Effects of climate driven temperature

changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–

103.

Capinha, C., Essl, F., Seebens, H., Moser, D., Pereira, H. M. 2015: The dispersal of

alien species redefines biogeography in the Anthropocene. Science 348, 1248-

125.

Chase, J. M. 2007: Drought mediates the importance of stochastic community assembly.

Proc Natl Acad Sci USA 104, 17430–17434.

Chase, J. M. 2010: Stochastic Community Assembly Causes Higher Biodiversity in

More Productive Environments. Science 328, 1388:1391.

Clavero, M., Hermoso, V. 2011: Reservoirs promote the taxonomic homogenization of

fish communities within river basins. Biodivers Conserv. 20, 41–57.

Daga, V. S., Skora, F., Padial, A. A., Gubiani, E. A., Vitule, J. R. S. 2015:

Homogenization dynamics of the fish assemblages in Neotropical reservoirs:

comparing the roles of introduced species and their vectors. Hydrobiologia 746,

327–347.

Donohue, I., Jackson, A. L., Pusch, M. T., Irvine, K. 2009: Nutrient enrichment

homogenizes lake benthic assemblages at local and regional scales. Ecology 90,

3470–3477.

Page 49: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

49

Douda, K., Lopes-Lima, M., Hinzmann, M., Machado, J., Varandas, S., Teixeira, A.,

Sousa, R. 2013: Biotic homogenization as a threat to native affiliate species:

fish introductions dilute freshwater mussel’s host resources. Divers Distrib. 19,

933–942.

Elton, C. S. 1958: The ecology of invasions by animals and plants. London: Methuen.

Garcia, R. A., Cabeza, M., Rahbek, C., Araújo, M. B. 2014: Multiple dimensions of

climate change and their implications for biodiversity. Science 344, 486-498.

Głowacki, L. B., Penczak, T. 2013: Drivers of fish diversity,

homogenization/differentiation and species range expansions at the watershed

scale. Divers Distrib. 19, 907–918.

Graham, C. H., Fine, P. V. A. 2008: Phylogenetic beta diversity: linking ecological and

evolutionary processes across space in time. Ecol Lett. 11, 1265–1277.

Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., Briggs,

J. M. 2008. Global change and the ecology of cities. Science 319, 756 – 760.

Johnson, P. T. J., Olden, J. D., Zanden, M. J. V. 2008: Dam invaders: impoundments

facilitate biological invasions into freshwaters. Frontiers Ecol Environ. 6, 357–

363.

Johnson, S. E., Mudrak, E. L., Waller, D. M. 2014: Local increases in diversity

accompany community homogenization in floodplain forest understories. J.

Vegetation Science 25, 885–896.

Júlio Jr, H. F., Tós, C. D., Agostinho, A. A., Pavanelli, C. S. 2009: A massive invasion

of fish species after eliminating a natural barrier in the upper river Paraná basin.

Neotropical Ichthyol. 7, 709-718.

Page 50: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

50

Junk, W. J., Bayley, P. B., Sparks, R. E. 1989: The flood pulse concept in river

floodplain systems. In: Dodge, D.P. (Ed.). Proceedings of the International

Large River Symposium. Can J Fish Aquat Sci 106, 110-127.

Kornis, M. S., Weidel, B. C., Powers, S. M., Diebel, M. W., Cline, T. J., Fox J. M.,

Kitchell, J. F. 2005: Fish community dynamics following dam removal in a

fragmented agricultural stream. Aquat Sci 77, 465–480.

Kuussaari, M., Bommarco, R., Heikkinen, R. K., Helm, A., Krauss, J., Lindborg, R.,

Ockinger, E., Pärtel, M., Pino, J., Rodà, F., Stefanescu, C., Teder, T., Zobel, M.,

Steffan-Dewenter, I. 2009: Extinction debt: a challenge for biodiversity

conservation. Trends Ecol Evol 24, 564–571.

Lake, P.S., Thomson, J. R., Lada, H., Mac Nally, R., Reid, D., Stanaway, J., Taylor, A.

C. 2010: Diversity and distribution of macroinvertebrates in lentic habitats in

massively altered landscapes in south-eastern Australia. Divers Distrib. 16,

713–724.

Lougheed, V. L., Mcintosh, M. D., Parker, C. A., Stevenson, R. J. 2008: Wetland

degradation leads to homogenization of the biota at local and landscape scales.

Freshwater Biol 53, 2402–2413.

Magalhães, A. L. B, Jacobi, C. M. 2013: Asian aquarium fishes in a Neotropical

biodiversity hotspot: impeding establishment, spread and impacts. Biol

Invasions 15, 2157–2163.

Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J., McGill, B. 2015: Rapid biotic

homogenization of marine fish assemblages. Nature Commun 6, 1-5.

Marchetti, M. P., Lockwood, J. L., Light, T. 2006: Effects of urbanization on

California’s fish diversity: Differentiation, homogenization and the influence of

spatial scale. Biol Conserv 127, 2130–2318.

Page 51: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

51

Mattingly, W. B., Orrock, J. L., Collins, C. D., Brudvig, L. A., Damschen, E. I.,

Veldman, J. W., Walker, J. L. 2015: Historical agriculture alters the effects of

fire on understory plant beta diversity. Oecologia 177, 507-518.

McKinney, M. L. 2006: Urbanization as a major cause of biotic homogenization. Biol

Conserv. 127, 247–260.

McKinney, M. L., Lockwood, J. L. 1999: Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends Ecol Evol 14, 450-

453.

Menezes, R. F., Borchsenius, F., Svenning, J. C., Davidson, T. A., Søndergaard, M.,

Lauridsen, T. L., Landkildehus, F., Jeppesen, E. 2015: Homogenization of fish

assemblages in different lake depth strata at local and regional scales.

Freshwater Biol 60, 745–757.

Miyazono S., Patiño R., Taylor, C. M. 2015: Desertification, salinization, and biotic

homogenization in a dryland river ecosystem. Science Total Environ 511, 444–

453.

Moyle, P. B., Mount, J. F. 2007: Homogenous rivers, homogenous faunas. Proc Natl

Acad Sci USA 104, 5711–5712.

Nekola, J.C., White, P. S. 1999: The distance decay of similarity in biogeography and

ecology. J Biogeogr. 26, 867–878.

Olden, J. D., Poff, N. L. 2003: Toward a mechanistic understanding and prediction of

biotic homogenization. Am Nat 162, 442–460.

Olden, J. D., Poff, N. L. 2004: Ecological processes driving biotic homogenization:

testing a mechanistic model using fish faunas. Ecology 85, 1867–1875.

Page 52: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

52

Olden, J. D., Poff, N. R., Douglas, M. R., Douglas, M. E., Fausch, K. D. 2004:

Ecological and evolutionary consequences of biotic homogenization. Trends

Ecol Evol 19, 18-24.

Olden, J. D., Douglas, M. E., Douglas, M. R. 2005: The human dimensions of biotic

homogenization. Conserv Biol 19, 2036–2038.

Olden, J. D. 2006: Biotic homogenization: a new research agenda for conservation

biogeography. J Biogeogr. 33, 2027–2039.

Olden, J. D., Rooney, T. P. 2006: On defining and quantifying biotic homogenization.

Global Ecol Biogeogr 15, 113–120.

Olden, J. D., Lockwood, J. L., Parr, C. L. 2011: Biological invasions and the

homogenization of faunas and floras. Whittaker, R.J., Ladle, R. J (eds)

Conservation biogeography. pp. 224–243. Wiley-Blackwell, Oxford.

Petesse, M. L., Petrere, M. 2012: Tendency towards homogenization in fish

assemblages in the cascade reservoir system of the Tietê river basin, Brazil.

Ecol Eng 48, 109–116.

Poff, N. L., Olden, J. D., Merritt, D. M., Pepin, D. M. 2007: Homogenization of

regional river dynamics by dams and global biodiversity implications. Proc Natl

Acad Sci USA 104, 5732–5737.

Pool, T. K., Olden, J. D. 2012: Taxonomic and functional homogenization of an

endemic desert fish fauna. Divers Distrib 18, 366–376

Rahel, F. J. 2000: Homogenization of fish faunas across the United States. Science 288,

854–856.

Rahel, F. J. 2002: Homogenization of freshwater faunas. Annu Rev Ecol Evol Syst 33,

291–315.

Page 53: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

53

Rahel, F. J. 2007: Biogeographic barriers, connectivity and homogenization of

freshwater faunas: it’s a small world after all. Freshwater Biol 52, 696–710.

Rahel, F. J., Olden, J. D. 2008: Assessing the effects of climate change on aquatic

invasive species. Conserv Biol 22, 521–533.

Sala, O. E., Chapin, F. S., Armesto, J. J., Berlow, E., Bloomfield, J., Dirzo, R.,

HuberSanwald, E., Huenneke, L. F., Jackson, R. B., Kinzig, A., Leemans, R.,

Lodge, D. M., Mooney, H. A., Oesterheld, M., Poff, N., Sykes, M. T., Walker,

B. H., Walker, M., Wall, D. H. 2000: Global biodiversity scenarios for the year

2100. Science 287, 1770–1774.

Sardiña, P., Chaves, E., Marchese, M. R. 2011: J North Am Benthol Soc. 30, 1009-1023.

Scott, M.C., Helfman, G. S. 2001: Native invasions, homogenizations, and the

mismeasure of integrity of fish assemblages. Fisheries 26, 6-15.

Siqueira, T., Lacerda, C. G. T., Saito, V. S. 2015: How Does Landscape Modification

Induce Biological Homogenization in Tropical Stream Metacommunities?

Biotropica 47, 509–516.

Spasojevic, M. J., Turner, B. L., Myers, J. A. 2016: When does intraspecific trait

variation contribute to functional beta-diversity? J Ecol 104, 487–496.

Souza Filho, E. E. 2009: Evaluation of the Upper Paraná River discharge controlled by

reservoirs. Braz J Biol 69, 707-716.

Taylor, E. B. 2010: Changes in taxonomy and species distributions and their influence

on estimates of faunal homogenization and differentiation in freshwater fishes.

Diver Distrib. 16, 676–689.

Thomaz S. M., Pagioro, T. A., Bini, L. M , Roberto, M. C., Rocha, R. R. A. 2004:

Limnological characterization of the aquatic environments and the influence of

hydrometric levels. In: Thomaz, S. M., Agostinho, A. A., Hahn N. S. (eds). The

Page 54: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

54

upper Paraná river and its floodplain, physical aspects, ecology and

conservation. Leiden, Netherlands: Backhuys Publishers.

Thomaz, S. M., Bini, L. M., Bozelli, R. L. 2007: Floods increase similarity among

aquatic habitats in river-floodplain systems. Hydrobiologia 579, 1–13.

Toussaint, A., Beauchard, O., Oberdorff, T., Brosse, S., Villéger, S. 2014: Historical

assemblage distinctiveness and the introduction of widespread non-native

species explain worldwide changes in freshwater fish taxonomic dissimilarity.

Global Ecol Biogeogr. 23, 574–584.

Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T., Brosse, S. 2015: From current

distinctiveness to future homogenization of the world’s freshwater fish faunas.

Divers Distrib. 21, 223–235.

Vitule, J. R. S., Skóra, F., Abilhoa, V. 2012: Homogenization of freshwater fish faunas

after the elimination of a natural barrier by a dam in Neotropics. Divers Distrib.

18, 111–120.

Wiens, J. 1989: Spatial scaling in ecology. Funct Ecol 3, 385–397.

Page 55: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

55

C

SUBSTRATUM SIMPLIFICATION REDUCES

BETA DIVERSITY OF STREAM ALGAL

COMMUNITIES2

2 Petsch, D. K., Schneck, F., Melo, A. S. 2017. Substratum simplification reduces beta

diversity of stream algal communities. Freshwater Biology, 62: 205–213.

APÍTULO 2

22

Page 56: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

56

SUMMARY

1. Reduced species richness with increased habitat simplification is a well-known

relationship in community ecology. However, habitat simplification can also lead to a

reduction in beta diversity if the loss of species is not random. We tested the hypothesis

that beta diversity of periphytic algae is lower among simple than among complex

substrata.

2. We conducted a field experiment using simple (smooth) and complex (rough)

artificial substrata colonized by periphytic algae to calculate beta diversity among each

substratum type. We initially estimated beta diversity using the Jaccard dissimilarity

index and its turnover component. As species richness differed between substratum

types, we also employed the Raup-Crick dissimilarity index that estimates beta diversity

by resampling from the species pool. We also deconstructed the total dataset into three

functional groups based on the position occupied by each species within the periphytic

matrix (low profile, high profile and motile functional groups).

3. Beta diversity estimated using both Jaccard dissimilarity and its turnover component

was higher among simplified substrata for the all-species dataset and for high profile

and motile groups. However, after taking into account differences in species richness

between substratum types using the Raup-Crick index, beta diversity was higher among

complex substrata than among simple ones for the total dataset and for the low profile

group.

4. We emphasize that differences in species richness must be considered for the

quantification of beta diversity, because this might confound the dissimilarity identified

and, consequently, lead to erroneous conclusions.

5. The higher beta diversity among complex substrata might be the result of priority

effects, in which early colonists constrain the establishment of later arriving species,

Page 57: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

57

causing each patch to harbor a distinct species composition. Further, algae life strategies

may be an important driver of beta diversity among simple and among complex

substrata, as periphytic algae position in the biofilm may affect their susceptibility to

shear stress. On the one hand, stochasticity in colonization history on complex substrata

may have driven high beta diversity for the low profile group among this type of

substratum. On the other hand, the reduced set of high profile and motile species on

simple habitats may have driven these species to more occasional and rare occurrence,

increasing beta diversity among this type of substratum and resulting in similar beta

diversity among both types of substrata.

6. Priority effects should be most frequent on complex substrata. However, only a

reduced set of species might survive on simple substrata, occupying most of the

available patches and causing beta diversity reduction.

Page 58: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

58

Introduction

Increasing species richness with increasing habitat complexity is a well-known

relationship in community ecology (e.g. Schneck, Schwarzbold & Melo, 2011; Pierre &

Kovalenko, 2014; Stein, Gerstner & Kreft, 2014). In general, complex habitats contain a

higher number of species than simple habitats, as they provide a greater variety and

quantity of resources (Pierre & Kovalenko, 2014), different microhabitats, suitable

reproduction sites (Johnson, 2007) and physical refuges against predation (Palmer,

Menninger & Bernhardt, 2010; Kovalenko, Thomaz & Warfe, 2012). Habitat

complexity may also affect beta diversity, i.e. variability in the species composition

among the communities of a given area (Anderson, Ellingsen & McArdle, 2006),

although scarce empirical support exists for this relationship (Heino et al., 2015).

Beta diversity can arise from both deterministic and stochastic mechanisms

(Chase, 2010). Purely deterministic processes occur when resources or conditions create

distinct environments, which favor different species (Chase, 2010). In contrast, purely

stochastic processes include the extinction/colonization dynamic in ecological drift

(Chase, 2007; 2010). For instance, Chase (2010) found that an increased beta diversity

resulting from stochastic effects was more prevalent in productive ponds than in those

with low productivity (similar to found by Chase, 2007; Vannette & Fukami, 2014).

Only a reduced but widespread set of species was able to colonize the low productive

experimental ponds. In contrast, productive ponds were colonized not only by an

increased set of species, but by many infrequent species that persisted probably due to

priority effects. A possible generalization of the findings of Chase (2007, 2010) is that

beta diversity should be high in species-rich environments, such as in complex habitats

(or productive ponds in the study of Chase, 2010), where colonists are derived from a

Page 59: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

59

large set of species and where priority effects are more prevalent (Vannette & Fukami,

2014).

In lotic systems, reduction in beta diversity is generally studied as the result of

processes at broad spatial scales, such as damming (Petesse & Petrere, 2012; Daga et

al., 2015) and landscape modification (Siqueira, Lacerda & Saito, 2015). However, beta

diversity may also be affected at fine spatial scales as a result of the loss of habitat

complexity (Hewitt et al., 2010). For instance, the complexity provided by the surface

roughness of substrata, formed by crevices, pits and small projections, plays an

important role in structuring periphytic algal communities (i.e. algae adhering to or

associated with submerged substrata) in streams (Bergey, 2005; Schneck et al., 2011)

by providing refuges and supporting high biomass (Bergey, 2005). Habitat

simplification in lotic environments at the scale of substratum roughness may be caused,

for instance, by concreted and channelized streambeds (Ferreira et al., 1999) or by

siltation due to removal of riparian vegetation (Casatti, Ferreira & Carvalho, 2009),

reducing substratum roughness and, consequently, reducing the number of species

(Schneck et al., 2011). Additionally, these simplified substrata may restrict species

colonization to a reduced set of species, whereas a much wider species pool can

colonize and survive on complex substrata (Schneck et al., 2011) and lead to a distinct

species composition simply by stochastic colonization history and priority effects

(Chase, 2010; Vannette & Fukami, 2014).

The response of periphytic algae to substratum simplification may depend on

their ability to cope with disturbance and resource depletion (Passy, 2007; Lange,

Townsend & Matthaei, 2016) and may be summarized in algal life strategies according

to the position occupied by each species within the three-dimensional periphytic matrix

(Passy, 2007). For instance, species that live in the low layer of the periphytic biofilm

Page 60: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

60

(hereafter low profile group), such as prostrate and short-stature species, are

‘disturbance-free’ (Passy, 2007) and thus may be able to colonize and survive on both

simple and complex substrata (Schneck et al., 2011). Conversely, species that occupy

the high layer of the biofilm (hereafter high profile group), e.g. tall-stature erect,

stalked, and filamentous species (Passy, 2007), and motile species may be more

strongly affected by substratum complexity since both groups may benefit from the

protection provided by rough substrata (Schneck et al., 2011).

Beta diversity may be estimated in different ways and for many purposes (for a

review, see Tuomisto 2010a, 2010b). These different methods can produce contrasting

results. Moreover, beta diversity is quantified using observed alpha and gamma

diversity values, which are prone to sampling bias (Tuomisto, 2010b). In fact,

dissimilarity among communities can arise simply due to differences in local species

richness (Baselga, 2010; Chase et al., 2011). This effect can be minimized by the use of

dissimilarity indices that are intended to measure turnover, but which are unaffected by

differences in species richness among communities (Melo, Rangel & Diniz-Filho, 2009;

Baselga, 2010). However, a null model approach may be more effective than common

dissimilarity indexes (i.e. Jaccard and Sørensen dissimilarities) as the former quantifies

how much pairwise community dissimilarities differ from that which would be expected

by chance (Chase et al., 2011). This null model approach is used in the Raup-Crick

index, which estimates dissimilarity as a probability that a pair of samples is non-

identical in species composition (Chase et al., 2011; Oksanen et al., 2015).

We employed an experimental approach to test the hypothesis that small-scale

habitat simplification leads to reduction of beta diversity of periphytic algae. We

investigated beta diversity among simplified and among complex substrata separately

for three algal functional groups (low profile, high profile, and motile). Moreover, to

Page 61: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

61

address concerns about richness differences in beta diversity quantification, we tested

our hypothesis using a traditional dissimilarity index (i.e. Jaccard index), an index that

quantifies true turnover among sites (i.e. turnover component of Jaccard dissimilarity)

and then using an index that controls the influence of richness differences between

treatments (i.e. Raup-Crick index).

Methods

Study area

We performed the experiment in Marco stream (1,100 m a.s.l.; 28º36'S; 49º51'W), state

of Rio Grande do Sul, southern Brazil, which is a fourth-order stream located in a

plateau region composed predominantly of natural grassland vegetation with patches of

Mixed Ombrophilous Forest (Araucaria Forest) occurring scattered throughout the area.

The climate is high-altitude subtropical (Cfb), with uniform precipitation throughout the

year (Behling, 2002). Annual mean rainfall ranges from 1400 to 2200 mm and annual

mean temperature ranges from 12 to 18°C, with negative temperatures in winter

(Behling, 2002). The stream has a stony bottom with oligotrophic (Buckup et al., 2007),

clear, and fast-flowing waters characterized by low electrical conductivity (22 µS cm-1)

and mild acidity (pH 6.6). The mean current velocity in the reaches studied (runs and

riffles) was 26 cm s-1 ± 13 cm s-1 during the study period. Stream width varies from 2 to

5 m, and the depth varies from 0.2 to 0.4 m in the reaches studied. The stream has a

natural open canopy without woody riparian vegetation along most of its length, and all

studied reaches are unshaded. This characteristic makes this stream an excellent system

to study periphytic algae, which are often the most important primary producers in

streams, especially in unshaded systems (Biggs, 1996).

Page 62: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

62

Experimental design

We designed an experiment using smooth and rough artificial substrata as proxies for

simple and complex habitats, respectively. We left the substrata to be colonized for 45 d

before the first sampling (sampling occurred from May to July 2009). Then, we took

samples on six occasions (every 15 d) in 11 stream reaches (at least 100 m apart from

each other). At each stream reach, we sampled two substrata units of each type (smooth

and rough), which were then pooled and constituted one experimental unit (n = 132).

Acrylic substrata (5 × 5 cm) had either a smooth surface or one containing

parallel crevices for algal colonization (Figure S1A). Complexity is related to variation

in the abundance/density of physical elements (Tokeshi & Arakaki, 2012), i.e. crevices

in our study. Previous studies have shown that algal assemblages remain protected

within crevices that are less than 2 mm wide (Bergey & Weaver, 2004). Accordingly,

we created nine crevices 1 mm wide and 1 mm deep to create the rough surfaces. All

substrata were glued onto flat basaltic paving stones (50 × 50 × 8 cm) that we placed in

each of the 11 stream reaches (Figure S1B). We arranged the substrata on each paving

stone by alternating smooth and rough surfaces ~2.4 cm apart from each other within

six rows and six columns (only 24 substrata out of 36 were used in this study), such that

if the first substratum in a row had a smooth surface, the first substratum in the next row

had a rough surface. The complex substrata were positioned with crevices

perpendicularly aligned to stream flow. Each paving stone contained all substrata

necessary for the six samplings and, thus, we were able to reduce the influence of the

variation in physical variables between smooth and rough substrata within sites and

sampling occasions, since both substratum types were only dozens of centimeters apart

and thus under similar environmental conditions within each of the 11 stream reaches.

No large disturbance was recorded during the period of study.

Page 63: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

63

The same experimental data used in our study has been used in two other studies

but with different aims from ours: i) to investigate if richness, density, nestedness and

composition of periphytic algal communities differ between rough and simple substrata

(Schneck et al., 2011); and ii) to investigate if smooth substrata decrease the temporal

persistence of periphytic algal communities (Schneck & Melo, 2013). A third study

used part of the data we use here as well as additional data to investigate if algal

resistance and resilience to a high-flow disturbance are higher on rough than on smooth

substrata (Schneck & Melo, 2012). These aforementioned papers contain additional

details concerning the field experiment.

Biological analysis

We brushed the upper surface of the substrata with a toothbrush to remove the biofilm

and preserved the samples with 4% formaldehyde. We determined periphytic algal

composition by counting 500 cells or units (each unit corresponded to 10-µm-long fine-

celled cyanobacterial filaments) from each experimental unit with an inverted

microscope at 400× magnification. Algae were identified to the lowest practical

taxonomic level, mostly species. Some closely related species which are discernible

only by their reproductive structures (e.g. Oedogonium and Bulbochaete species) or

species that need to be cultivated in controlled cultures (e.g. Stigeoclonium) (John,

2003) were represented here by genus, but for simplicity we refer hereafter to species.

By counting a fixed number of cells/units, we minimized the possible effect of higher

surface area in the rough substrata. To identify diatom species, we examined acid-

cleaned subsamples mounted onto glass slides (using NaphraxTM as mounting medium)

at 1000× magnification through a light microscope (Lowe & LaLiberte, 2007).

Page 64: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

64

Information on species composition has been provided elsewhere (Schneck et

al., 2011). However, in order to provide a context for interpretation we provide the

following brief description. The dataset included 92 taxa of periphytic algae; 79 species

on simple substrata (mean richness = 18 species) and 86 species on complex substrata

(mean richness = 26 species). Diatoms were predominant and consisted of 56 species

and 85% of the total cell density in both treatments. The dominant species in both

treatments were the diatoms Achnanthidium minutissimum (Kützing) Czarnecki,

Cocconeis placentula Ehrenberg and Ulnaria ulna (Nitzsch) P. Compère. We also

classified algae in three functional groups: low profile = 43 species, high profile = 26

species, and motile = 23 species, based on information provided by Passy (2007), Lange

et al. (2011), Wagenhoff et al. (2013) and Law et al. (2014) (see Table S1 in Supporting

Information). For more details about species composition, please see Schneck et al.

(2011) and Table S1.

Data analysis

We calculated beta diversity of periphytic algae among simple and among complex

substrata at the 11 stream reaches. Analyses were repeated for the six sampling

occasions. We estimated the dissimilarity using three different metrics (i.e. Jaccard,

turnover component of Jaccard and Raup-Crick) and used the resulting matrix of each

metric to evaluate the multivariate homogeneity of group dispersions (PERMDISP;

Anderson et al., 2006). PERMDISP tests whether the mean within-group dispersion

(measured by the mean distance of samples to its group centroid/median in the full

dimensional space calculated in a Principal Coordinates Analysis (PCoA)) is similar

among the groups (Anderson & Walsh, 2013). We used a restricted permutation design

by strata (i.e., permControl=strata in permutest function), which took the sampling

Page 65: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

65

occasion into account, to test the difference in beta diversity among simple and among

complex substrata in the 11 stream reaches. The test was done using 999 permutations.

We used the default option in betadisper function in the vegan package (Oksanen et al.,

2015) for the R Environment (R Core Team, 2014) which uses medians instead of

centroids, but hereafter we termed it centroid as it is more familiar to ecologists. We

performed the analysis using all algal taxa and then separately for each functional group

(low profile, high profile and motile).

We used three different dissimilarity metrics to calculate beta diversity: Jaccard,

turnover component of Jaccard and Raup-Crick indices. Jaccard dissimilarity index is a

common and traditional metric to calculate beta diversity for presence/absence data.

This dissimilarity can be decomposed in two components: one related only to

replacement of species across sites (i.e. turnover component of dissimilarity) and

another related to differences in species richness across sites (i.e. nestedness component

of dissimilarity) (Baselga, 2010). We used both the Jaccard dissimilarity and its

turnover component of dissimilarity to measure beta diversity.

We also used the Raup-Crick dissimilarity index as it estimates beta diversity

after taking into account differences in species richness. This is of particular importance

in our study, because complex substrata had higher species richness than simple

substrata (see Schneck et al., 2011) and, thus could potentially affect estimates of beta

diversity (e.g. using the Jaccard dissimilarity index). For instance, in a species pool (e.g.

stream) containing 20 species, higher beta diversity (using presence/absence data)

should be found among substrata that harbor, on average, 5 species when compared to

those harboring 15 species. By chance, the proportion of shared species should be

higher in the species richest habitat and, thus, produce low beta diversity values. The

Raup-Crick index is obtained by 1) calculating the number of shared species between

Page 66: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

66

two samples and the species richness of each one; 2) tabulating all species present in

samples (the species pool) as well as their species occupancy in all samples; 3)

generating a distribution of the number of shared species according to a null model; and

finally, 4) comparing the observed shared species to the distribution of shared species

produced by a null model (Chase et al., 2011). The Raup-Crick index is obtained as a

probability, i.e. the proportion of shared species richness values produced by the null

model that was smaller or equal than the observed shared species richness. We used a

null model where the probability of selecting species is proportional to the species

frequencies. We used the functions betadisper and raupcrick in the vegan package

(Oksanen et al., 2015), and beta.pair in the betapart package (Baselga et al., 2013) in R

Environment (R Core Team, 2014).

Results

Contrary to our hypothesis, we found higher beta diversity among simple (mean

distance to centroid = 0.434) than among complex (mean distance to centroid = 0.391)

substrata using the traditional Jaccard index (F1,130 = 18.175; P = 0.001; Fig. 1). Using

the turnover component we observed a similar pattern as found when using Jaccard

dissimilarity, with higher beta diversity among simple substrata (mean distance to

centroid = 0.373) than among complex substrata (mean distance to centroid = 0.339),

although the magnitude of the difference between substratum types was lower (F1,130 =

8.715; P = 0.004).

Page 67: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

67

Fig. 1 Beta diversity among complex and among simple substrata using Jaccard

dissimilarity index. a) Principal Coordinates Analysis (PCoA) plots of periphytic algal

communities among simple (smooth) and among complex (rough) substrata. We

performed a single PCoA ordination, but plotted the six different sampling occasions

separately for clarity. Accordingly, centroids in each plot not necessarily will be in the

center of the polygon for each sampling occasion. Numbers 1 to 6 indicate the sequence

of each sampling occasion, used as strata in the analysis. Black squares with a

continuous line = complex substrata; gray squares with a dashed line = simple substrata.

b) Average distance to the centroid of periphytic algal communities among complex and

among simple substrata. Lines link the substrata on each sampling occasion. Part A is a

two-dimensional representation of a many-axes ordination. Accordingly, the part A

illustrates the main method but is not very good to represent the differences between

treatments as only two-axes are presented. Part B shows differences between simple and

complex substrata much more clearly as it composes the results of all ordination axes.

However, beta diversity among simple substrata was lower than among complex

substrata using the Raup-Crick index that controls the influence of species richness

differences between substratum types. Using this metric, the mean distance to the

centroid in the multivariate space among simple substrata (mean distance to centroid =

0.185) was lower than among complex substrata (mean distance to centroid = 0.278);

(F1,130 = 14.26; P = 0.001; Fig. 2).

Page 68: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

68

Fig. 2 Beta diversity among complex and among simple substrata using the Raup-Crick

metric. a) Principal Coordinates Analysis (PCoA) plots of periphytic algal communities

among simple (smooth) and among complex (rough) substrata. We performed a single

PCoA ordination, but plotted the six different sampling occasions separately for clarity.

Accordingly, centroids in each plot not necessarily will be in the center of the polygon

for each sampling occasion. Numbers 1 to 6 indicate the sequence of each sampling

occasion, used as strata in the analysis. Black squares with a continuous line = complex

substrata; gray squares with a dashed line = simple substrata. b) Average distance to the

centroid of periphytic algal communities among complex and among simple substrata.

We observed significantly higher beta diversity among simple substrata than

among complex substrata for the high profile and motile functional groups and similar

beta diversity between treatments for the low profile group using both the Jaccard

dissimilarity and its turnover component (Table 1). However, using the Raup-Crick

dissimilarity, we observed higher beta diversity among complex substrata for the low

profile group and no difference in beta diversity between treatments for the high profile

and motile groups (Table 1).

Table 1. Beta diversity among complex (rough) and among simple (smooth) substrata

using Jaccard, turnover and Raup-Crick dissimilarity indices for three algal functional

groups. Beta diversity was estimated as the average distance to median in an ordination

space.

Algal functional groups

Page 69: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

69

High profile Low profile Motile

JACCARD

Mean distance Complex 0.310 0.428 0.461

to centroid Simple 0.378 0.444 0.520

Statistic F(1,130)=23.49* F(1,130)=1.86 F(1,120)=8.36*

TURNOVER

Mean distance Complex 0.251 0.370 0.342

to centroid Simple 0.309 0.368 0.432

Statistic F(1,130)=13.19* F(1,130)=0.01 F(1,120)=9.37*

RAUP-CRICK

Mean distance Complex 0.347 0.349 0.402

to centroid Simple 0.307 0.265 0.423

Statistic F(1,130)=1.89 F(1,130)=10.41* F(1,120)=0.41

* indicates P < 0.01

Discussion

We corroborated our hypothesis that periphytic algal beta diversity is lower among

simple substrata than among complex substrata using Raup-Crick index that avoids the

influence of richness differences between treatments, but rejected our hypothesis using

Jaccard dissimilarity and its turnover component. Simple substrata had fewer species

and that may tend to increase beta diversity using the Jaccard and its turnover metric.

These results emphasize that differences in species richness should be considered in

studies of beta diversity.

The concern about the influence of species richness on beta diversity has only

recently received attention from ecologists (Baselga, 2010; Chase et al., 2011). Indeed,

Chase et al. (2011) demonstrated that higher dissimilarities among communities with

lower species richness (e.g. influenced by local disturbance, predators, productivity and,

in our case, substratum simplification) can be expected by chance only. Our results

corroborate the idea that the Raup-Crick is a suitable metric to compare beta diversity

values among treatments that differ in species richness (Chase et al., 2011).

Page 70: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

70

Beta diversity reduction can result from ecological filters, leading to the

dominance of a similar subset of species able to resist conditions that are unfavorable to

many community members (Chase, 2007). In this way, deterministic processes might be

responsible for decreased richness (see Chase et al. (2011)) and decreased beta diversity

of periphytic algae on simple substrata, allowing mainly the same reduced set of stress

tolerant species to occur on these substrata. Indeed, Schneck et al. (2011) using the

same dataset as ours found that the composition of periphytic algae on simple substrata

was a nested subset of species from complex substrata. Similarly, Chase (2010) found

that lower-productivity ponds were a nested subset of higher-productivity ponds, also

indicating a strong environmental filter on community assembly.

The roughness provided by the crevices on the surface of the substrata was,

therefore, responsible for the higher beta diversity among complex than among

simplified substrata when species richness was accounted for. Indeed, the streambed in

natural lotic systems is composed of various irregularities (Taniguchi & Tokeshi, 2004)

that provide refuges against grazing and physical disturbances such as high-discharge

and desiccation events for periphytic algae (DeNicola & McIntire, 1990; Taniguchi &

Tokeshi, 2004; Schneck, Schwarzbold & Melo, 2013; Tonetto et al., 2014; 2015).

Complex substrata provide suitable conditions to a large set of species and might favor

the occurrence of stochasticity in colonization/establishment history. Priority effects

occur when early colonists constrain the establishment of later arriving species.

Stochasticity in colonization history associated to priority effects on complex substrata

may cause each rough substratum to harbor a distinct species composition. This

interpretation is similar to that of Chase (2007, 2010) for higher beta diversity among

permanent and productive ponds and to that of Vannette & Fukami (2014) for suitable

microcosms when compared to microcosms with low resources.

Page 71: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

71

Regarding different algal functional groups, results for the Raup-Crick index

indicated higher beta diversity among complex substrata for the low profile group and

no differences for the high profile and motile groups. The low profile group comprises

species of short stature living in the innermost layer of the biofilm, features that provide

more resistance to physical disturbance (Passy, 2007). It could be expected that the

resistance to disturbance of low profile species would lead them to occur similarly on

both simple and complex substrata (e.g. adnately attached and prostrate species in

Schneck et al., 2011), resulting in similar beta diversity between the two types of

habitat. However, our results suggest that refuges on complex substrata may have

favored low profile early colonists (e.g. Miller, Lowe & Rotenberry, 1987) and, thus,

generated stochasticity in colonization history followed by priority effects in this more

benign habitat (Chase, 2007; 2010), driving high beta diversity. These low profile

colonists (e.g. Achnanthidium and Cocconeis) may reproduce fast enough to

monopolize the surface of substrata, inhibiting the colonization by other species

(Goldsborough & Robinson, 1986; see also Steinman & McIntire, 1990). The same

results could be expected especially for the high profile group, since this group may be

favored by crevices (Schneck et al., 2011) and is composed by some typically early

colonists, such as araphid diatoms (DeNicola & McIntire, 1990). However, the reduced

set of high profile and motile species on simple substrata (as shown in Schneck et al.,

2011 for filamentous, erect/stalked – mostly high profile species – and motile species)

may explain our results of similar beta diversity between both substratum types. That is,

a reduced number of species on simple substrata could drive these species to more

occasional and rare occurrence, increasing beta diversity also among this type of habitat

and resulting in similar beta diversity among both substratum types. These results

Page 72: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

72

demonstrate that it is interesting to take into account the different life strategies of algal

species when investigating beta diversity.

We were most interested in beta diversity reduction and in its quantification

using the Raup-Crick index. However, it is worth noting an interesting result apparent in

the ordination used to estimate beta diversity. The distance between centroids of the

simple and complex substrata were further apart using the Jaccard index than using the

Raup-Crick index. In other words, species dissimilarities between simple and complex

substrata were more distinct using the Jaccard index. This reduction in dissimilarity

between treatments using Raup-Crick compared to Jaccard index is also apparent in the

coral reefs example presented by Chase et al. (2011), although not in the example of

freshwater ponds used in the same study. It is possible that this effect of the Raup-Crick

index is due to the removal of the effects of differences in species richness on the

estimation of dissimilarity. If so, this would be a way to study turnover-only

dissimilarities among communities and, thus, be equivalent to the approach using

specific turnover indices in ecological studies (Legendre, 2014).

We concluded that (i) differences in species richness must be considered for the

quantification of beta diversity, because they might confound the dissimilarity patterns

identified. Moreover, (ii) beta diversity among simple and among complex substrata

may change among algal functional groups. We also highlight that (iii) habitat

simplification (at least as shown using substratum complexity in this study), which is

one of the main threats to biodiversity, might not only reduce species richness locally,

but homogenize communities across space.

Acknowledgments

Page 73: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

73

Luciano F. Sgarbi provided help with the figures. The Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided a student fellowship

to DKP. The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

provided research grants (476304/2007-5; 474560/2009-0) and research fellowships

(302482/2008-3, 307479/2011-0 and 309412/2014-5) to ASM and a research grant to

FS (474279/2013-8).

References

Anderson M.J., Ellingsen K.E. & McArdle B.H. (2006) Multivariate dispersion as a

measure of beta diversity. Ecology Letters, 9, 683–693.

Anderson M.J. & Walsh D.C.I. (2013) What null hypothesis are you testing?

PERMANOVA, ANOSIM and the Mantel test in the face of heterogeneous

dispersions. Ecological Monographs, 83, 557–574.

Baselga A. (2010) Partitioning the turnover and nestedness components of beta

diversity. Global Ecology and Biogeography, 19, 134–143.

Baselga A., Orme D., Villeger S., Bortoli J. & Leprieur F. (2013) betapart: Partitioning

beta diversity into turnover and nestedness components. R package version 1.3.

http://CRAN.R-project.org/package=betapart.

Behling H. (2002) South and southeast Brazilian grasslands during Late Quaternary

times: a synthesis. Palaeogeography, Palaeoclimatology and Palaeoecology,

177, 19–27.

Bergey E.A. & Weaver J.E. (2004) The influence of crevice size on the protection of

epilithic algae from grazers. Freshwater Biology, 49, 1014–1025.

Bergey E.A. (2005) How protective are refuges? Quantifying algal protection in rock

crevices. Freshwater Biology, 50, 1163–1177.

Page 74: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

74

Biggs B.J.F. (1996) Patterns in benthic algae of streams. In: Stevenson R.J., Bothwell

M.L. & Lowe R.L. (eds) Algal ecology: freshwater benthic ecosystems.

Academic Press, San Diego, pp 31–56.

Buckup L., Bueno A.A.P., Bond-Buckup G., Casagrande M. & Majolo F. (2007) The

benthic macroinvertebrate fauna of highland streams in southern Brazil:

composition, diversity and structure. Revista Brasileira de Zoologia, 24, 294–

301.

Casatti L., Ferreira C.P. & Carvalho F.R. (2009) Grass-dominated stream sites exhibit

low fish species diversity and dominance by guppies: an assessment of two

tropical pasture river basins. Hydrobiologia, 632, 273–283.

Chase J.M. (2007) Drought mediates the importance of stochastic community assembly.

Proceedings of the National Academy of Sciences USA, 104, 17430–17434.

Chase J.M. (2010) Stochastic community assembly causes higher biodiversity in more

productive environments. Science, 328, 1388–1391.

Chase J.M., Kraft N.J.B., Smith K.G., Vellend M. & Inouye B.D. (2011) Using null

models to disentangle variation in community dissimilarity from variation in α-

diversity. Ecosphere, 2, 1–11.

Daga V.S., Skora F., Padial A.A., Abilhoa V., Gubiani E.A. & Vitule J.R.S. (2015)

Homogenization dynamics of the fish assemblages in Neotropical reservoirs:

comparing the roles of introduced species and their vectors. Hydrobiologia, 746,

327–347.

DeNicola D.M. & McIntire D. (1990) Effects of substrate relief on the distribution of

periphyton in laboratory streams. 1. Hydrology. Journal of Phycology, 26, 624–

633.

Page 75: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

75

Ferreira M.T., Franco A., Catarino L., Moreira I. & Sousa P. (1999) Environmental

factors related to the establishment of algal mats in concrete irrigation channels.

Hydrobiologia, 415, 163–168.

Goldsborough L.G. & Robinson G.G.C. (1986) Changes in periphytic algal community

structure as a consequence of short herbicide exposures. Hydrobiologia, 139,

177–192.

Heino J., Melo A.S. & Bini L.M. (2015) Reconceptualising the beta diversity-

environmental heterogeneity relationship in running water systems. Freshwater

Biology, 60, 223–235.

Hewitt J., Thrush S., Lohrer A. & Townsend M. (2010) A latent threat to biodiversity:

consequences of small-scale heterogeneity loss. Biodiversity and Conservation,

19, 1315–1323.

John D. M. (2003) Filamentous and plantlike green algae. In: Wehr J.D. & Sheath R.G.

(eds) Freshwater algae of North America: ecology and classification. Elsevier, San

Diego, pp 311–352.

Johnson D.W. (2007) Habitat complexity modifies post–settlement mortality and

recruitment dynamics of a marine fish. Ecology, 88, 1716–1725.

Kovalenko K.E., Thomaz S.M. & Warfe D.M. (2012) Habitat complexity: approaches

and future directions. Hydrobiologia, 685, 1–17.

Lange K., Liess A., Piggott J.J., Townsend C.R. & Matthaei C.D. (2011) Light,

nutrients and grazing interact to determine stream diatom community

composition and functional group structure. Freshwater Biology, 56, 264–278.

Lange K., Townsend C.R. & Matthaei C.D. (2016) A trait-based framework for stream

algal communities. Ecology and Evolution, 6, 23–36.

Page 76: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

76

Legendre P. (2014) Interpreting the replacement and richness difference components of

beta diversity. Global Ecology and Biogeography, 23, 1324–1334.

Law R.J., Elliott J.A. & Thackeray S.J. (2014) Do functional or morphological

classifications explain stream phytobenthic community assemblages? Diatom

Research, 29, 309–324.

Lowe R.L. & LaLiberte G.D. (2007) Benthic stream algae: distribution and structure.

In: Hauer F.R., Lamberti G.A. (eds) Methods in Stream Ecology. Elsevier,

London, pp 327–356.

Melo A.S., Rangel T.F.L.V.B. & Diniz-Filho J.A.F. (2009) Environmental drivers of

beta-diversity patterns in New-World birds and mammals. Ecography, 32, 226–

236.

Miller A.R., Lowe R.L. & Rotenberry J.T. (1987) Succession of diatom communities on

sand grains. Journal of Ecology, 75, 693–709.

Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson

G.L., Solymos P., Henry M., Stevens H. & Wagner H. (2015) vegan:

Community Ecology Package. R package version 2.2-1. http://CRAN.R-

project.org/package=vegan.

Palmer A.M., Menninger H.L. & Bernhardt E. (2010) River restoration, habitat

heterogeneity and biodiversity: a failure of theory or practice? Freshwater

Biology, 55, 205–222.

Passy S.I. (2007) Diatom ecological guilds display distinct and predictable behavior

along nutrient and disturbance gradients in running waters. Aquatic Botany, 86,

171-178.

Page 77: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

77

Petesse M.L. & Petrere M. (2012) Tendency towards homogenization in fish

assemblages in the cascade reservoir system of the Tietê river basin, Brazil.

Ecological Engineering, 48, 109–116.

Pierre J.I.S. & Kovalenko K.E. (2014) Effect of habitat complexity attributes on species

richness. Ecosphere, 5, 1–10.

R Core Team (2014) R: A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/

Schneck F., Schwarzbold A. & Melo A.S. (2011) Substrate roughness affects stream

benthic algal diversity, assemblage composition, and nestedness. Journal of the

North American Benthological Society, 30, 1049–1056.

Schneck F. & Melo A.S. (2012) Hydrological disturbance overrides the effect of

substratum roughness on the resistance and resilience of stream benthic algae.

Freshwater Biology, 57, 1678–1688.

Schneck F. & Melo A.S. (2013) High assemblage persistence in heterogeneous habitats:

an experimental test with stream benthic algae. Freshwater Biology, 58, 365–

371.

Schneck F., Schwarzbold A. & Melo A.S. (2013) Substrate roughness, fish grazers, and

mesohabitat type interact to determine algal biomass and sediment accrual in a

high-altitude subtropical stream. Hydrobiologia, 711, 165–173.

Siqueira T., Lacerda C.G. & Saito V.S. (2015) How does landscape modification induce

biological homogenization in tropical stream metacommunities? Biotropica, 47,

509–516.

Page 78: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

78

Stein A., Gerstner K. & Kreft H. (2014) Environmental heterogeneity as a universal

driver of species richness across taxa, biomes and spatial scales. Ecology

Letters, 17, 866–880.

Steinman A.D. & McIntire C.D. (1990) Recovery of lotic periphyton communities after

disturbance. Environmental Management, 14, 589–604.

Taniguchi H. & Tokeshi M. (2004) Effects of habitat complexity on benthic

assemblages in a variable environment. Freshwater Biology, 49, 1164–1178.

Tokeshi M. & Arakaki S. (2012) Habitat complexity in aquatic systems: fractals and

beyond. Hydrobiologia, 685, 27–47.

Tonetto A.F., Cardoso-Leite R., Peres C.K., Bispo P.C. & Branco C.C.Z. (2014) The

effects of habitat complexity and hydraulic conditions on the establishment of

benthic stream macroalgae. Freshwater Biology, 59, 1687–1694.

Tonetto A.F., Cardoso-Leite R., Novaes M.C. & Guillermo-Ferreira R. (2015) The

relationship between macroalgal morphological complexity and hydraulic

conditions in stream habitats. Hydrobiologia, 747, 33–41.

Tuomisto H. (2010a) A diversity of beta diversities: straightening up a concept gone

awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity.

Ecography, 33, 2–22.

Tuomisto H. (2010b) A diversity of beta diversities: straightening up a concept gone

awry. Part 2. Quantifying beta-diversity and related phenomena. Ecography, 33,

23–45.

Vannette R.L. & Fukami T. (2014) Historical contingency in species interactions:

towards niche-based predictions. Ecology Letters, 17, 115–124.

Page 79: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

79

Wagenhoff A., Lange K., Townsend C.R. & Matthaei C.D. (2013) Patterns of benthic

algae and cyanobacteria along twin-stressor gradients of nutrients and fine

sediment: a stream mesocosm experiment. Freshwater Biology, 58, 1849–1863.

Page 80: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

80

SUPLEMENTARY MATERIAL

Figure S1. Experimental design. Simple and complex substrata (A) were glued onto flat

basaltic paving stones (B).

Page 81: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

81

Table S1. List of taxa found in the study and assignation to one of the functional groups

(FG) defined by Passy (2007): L = low profile, H = high profile, M = motile.

Taxa FG

CYANOBACTERIA

Heteroleibleinia sp. H

Merismopedia sp. L

Spirulina sp. H

Synechocystis sp. L

Tolypothrix sp. H

Unidentified filamentous cyanobacteria H

CHLOROPHYCEAE

Aphanochaete sp. L

Chlorella vulgaris Beijerinck (1890) L

Chlorococcales sp. 1 L

Chlorococcales sp. 2 L

Desmodesmus armatus (Chodat) Hegewald (2000) L

Scenedesmus sp. 1 L

Scenedesmus sp. 2 L

Stigeoclonium sp. H

Unidentified filamentous green alga H

OEDOGONIOPHYCEAE

Bulbochaete sp. H

Oedogonium sp. H

ZYGNEMAPHYCEAE

Closterium incurvum Brébisson (1856) L

Closterium sp. 1 L

Closterium sp. 2 L

Cosmarium amoenum Brébisson in Ralfs (1848) L

Cosmarium angulosum Brébisson (1856) L

Cosmarium reniforme (Ralfs) W.Archer (1874) L

Cosmarium sp. 1 L

Cosmarium sp. 2 L

Cosmarium sp. 3 L

Cosmarium sp. 4 L

Cosmarium sp. 5 L

Cosmarium sp. 6 L

Euastrum sp. 1 L

Euastrum sp. 2 L

Page 82: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

82

Appendix S1. (continued)

Taxa FG

ZYGNEMAPHYCEAE

Pleurotaenium ehrenbergii (Brébisson) de Bary (1858) L

Staurastrum punctulatum Brébisson (1848) L

Staurastrum sp. L

Staurodesmus sp. L

Unidentified filamentous desmid H

BACILLARIOPHYCEAE

Achnanthes sp. L

Achnanthidium exiguum (Grunow) Czarnecki (1994) L

Achnanthidium minutissimum (Kützing) Czarnecki (1994) L

Achnanthidium sp. L

Cocconeis placentula Ehrenberg (1838) L

Cymbella tumida (Brébisson) van Heurck (1880) H

Cymbella sp. H

Encyonema minutum (Hilse) Mann (1990) H

Encyonema cf. silesiacum (Bleisch in Rabenhorst) Mann (1990) H

Epithemia sp. L

Eunotia bilunaris (Ehrenberg) Souza (1999) H

Eunotia faba (Ehrenberg) Grunow (1881) H

Eunotia incisa W. Smith ex Gregory (1854) H

Eunotia praerupta Ehrenberg (1843) H

Eunotia pseudosudetica Metzeltin, Lange-Bertalot & García-Rodríguez (2005) H

Fragilaria capucina Desmazière (1825) H

Fragilaria capucina Desmazière var. mesolepta Rabenhorst (1864) H

Frustulia crassinervia (Brèbisson) Lange-Bertalot & Krammer (1996) L

Frustulia sp. L

Gomphonema angustatum (Kützing) Rabenhorst (1864) H

Gomphonema parvulum (Kützing) Kützing (1849) L

Gomphonema sp. 1 H

Gomphonema sp. 2 H

Gomphonema sp. 3 H

Gomphonema sp. 4 L

Hantzschia sp. L

Lemnicola hungarica (Grunow) Round & Basson (1997) L

Luticola costei Metzeltin & Lange-Bertalot (1998) M

Meridion circulare (Greville) Agardh (1831) L

Navicula angusta Grunow (1860) M

Page 83: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

83

Appendix S1. (continued)

Taxa FG

BACILLARIOPHYCEAE

Navicula cryptocephala Kützing (1844) M

Navicula cryptotenella Lange-Bertalot (1985) M

Navicula sp. 1 M

Navicula sp. 2 M

Navicula sp. 3 M

Navicula sp. 4 M

Neidium sp. M

Nitzschia palea (Kützing) Smith (1856) M

Nitzschia sp. 1 M

Nitzschia sp. 2 M

Nitzschia sp. 3 M

Nitzschia sp. 4 M

Pinnularia cf. microstauron (Ehrenberg) Cleve (1891) M

Pinnularia subcapitata Gregory (1856) M

Pinnularia sp. 1 M

Pinnularia sp. 2 M

Psammothidium subatomoides (Hustedt) Bukhtiyarova & Round (1996) L

Psammothidium sp. L

Stauroneis sp. L

Surirella angusta Kützing (1844) M

Surirella tenera Gregory (1856) M

Surirella sp. 1 M

Surirella sp. 2 M

Synedra acus Kützing (1844) H

Tryblionella sp. M

Ulnaria ulna (Nitzsch) Compère (2001) H

Page 84: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

84

C

FLOODS HOMOGENIZE AQUATIC

COMMUNITIES ACROSS TIME BUT NOT

ACROSS SPACE IN A NEOTROPICAL

FLOODPLAIN3

3 Manuscrito a ser submetido para a revista Aquatic Sciences em colaboração com K.

Cottenie, J. D. Dias, C. C. Bonecker, A. A. Padial, S. M. Thomaz e A. S. Melo.

APÍTULO 3

22

Page 85: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

85

Abstract

Biotic homogenization is usually investigated as a consequence from anthropogenic

pressure. However, natural causes such as flood pulse also increase similarity among

communities. We assessed whether floods homogenize zooplankton and macrophytes

communities in space and time using a long-term data over 16 years in six lakes in the

Upper Paraná River floodplain. Regarding to spatial homogenization, we did not find

lower beta diversity among lakes during flood than during drought events, neither for

macrophytes nor zooplankton. In contrast, regarding the temporal biotic

homogenization of one lake, we found that aquatic macrophytes were more similar

among flood than among drought events. Littoral rotifers and littoral cladocerans had

lower beta diversity among floods than among droughts, while all pelagic groups had

higher beta diversity among floods. We may have not found spatial biotic

homogenization because only very large floods may homogenize communities and/or

because stochasticity on extinction and dispersal promoted by flood events may increase

beta diversity. Lower beta diversity among floods may be related to species bank able to

recolonize a similar set of species each flood event whereas communities follow a more

stochastic trajectory among droughts across time.

Keywords Beta diversity, Macrophytes, Zooplankton, Flood pulse

Page 86: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

86

Introduction

Floods are natural drivers of biotic homogenization (i.e., beta diversity decrease)

supposed to seasonally increase dispersal events (Nabout et al. 2009; Penha et al. 2017)

and decrease environmental variability among sites (Thomaz et al. 2007; Bozelli et al.

2015). Increased river level during flood events may connect floodplain lakes

previously isolated, mixing their water, sediment, nutrients and facilitating the passive

dispersal of organisms among them (Junk et al. 1989; Thomaz et al. 2007). Both

mechanisms, (i) high dispersal and (ii) environmental homogenization, may cause

communities to become less dissimilar to each other during floods. This occurs because

(i) high dispersal facilitates species to reach more sites and increase the number of

shared species among them, while (ii) environmental homogenization may filter similar

sets of species across sites (Chase 2007).

The responses of communities to flood pulses may, however, depend on the

system connectivity (e.g. Lopes et al. 2014). In dry periods, dissimilarity among lakes

more connected in a floodplain (e.g., lakes permanently connected to a main river)

should be lower than among those less connected (e.g., lakes only temporally connected

to a main river – hereafter called as isolated) due to higher dispersal possibilities among

the former (Thomaz et al. 2007; Lopes et al. 2014; Lansac-Tôha et al. 2016). During

floods, however, previously isolated lakes may also be connected and receive river

water and colonizing species (Penha et al. 2017). In this way, higher temporal

dissimilarity should be expected for isolated than for permanently connected lakes,

particularly during dry periods. Indeed, connectivity among sites in a system seems

crucial for beta diversity. Experimental using metacommunities of microorganisms

showed that high connectivity drove lower dissimilarity (Carrara et al. 2012; Seymour

et al. 2015). Observational studies of aquatic macrophytes also found lower

Page 87: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

87

dissimilarity among connected than among unconnected lakes in a spatial snapshot

(Akasaka and Takamura 2012) or across time (Thomaz et al. 2009).

In addition to system connectivity, the effects of flood pulses on similarity

among communities may also differ according to species traits (Padial et al. 2014; Dias

et al. 2016). Body size and dispersal mode of organisms are some of the main features

affecting dispersal and, consequently, similarity across freshwater sites (e.g., de Bie et

al. 2012; Padial et al. 2014; Petsch et al. 2017). Small organisms tend to be more

frequently carried out by water than large ones (de Bie et al. 2012; Padial et al. 2014;

Dias et al. 2016; but see Jenkins et al. 2007). Small zooplankton such as rotifers can be

more easily carried out than large ones such as cladocerans and copepods (Dias et al.

2016). Also, organisms not attached to substrates may be more susceptible to passive

dispersal during flood pulses than those associated to some substrate (Algarte et al.

2014). For example, free-floating macrophytes may be transported more frequently by

flood pulses than those rooted in the bottom of waterbodies.

Flood homogenization has usually been investigated concerning spatial

similarity, i.e., decrease of beta diversity among sites or habitats (e.g. Thomaz et al.

2007; Bozelli et al. 2015). However, effects of flood homogenization may also occur in

the temporal dimension. Indeed, natural communities are not constant but can change

over short- and long-time scales (Sarramejane et al. 2017; Van Allen et al. 2017). In this

way, it can be hypothesized, for a single site, that inter-annual community dissimilarity

is lower among flood periods than among drought periods. Similar mechanisms driving

low community dissimilarity among different sites due to flood may also drive

decreased dissimilarity across floods in a single site: lower dissimilarity in a site among

floods would be expected, for example, if floods increase environmental homogeneity

across time (Van Allen et al. 2017) or if the high connectivity during floods allows the

Page 88: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

88

occurrence of the same set species across time. Indeed, higher environmental similarity

drove higher similarity of phytoplankton community among summers (more

environmentally homogenous) than among winters (less environmentally homogenous)

in a subtropical reservoir (Schneck et al. 2011). In addition, as the high connectivity

during the flood create more opportunities to dispersal (Nabout et al. 2009), most of the

species from the species pool could reach a particular lake every flood event,

homogenizing it also across time.

We assessed whether floods homogenize aquatic communities in space and time

using a long-term data over 16 years. We hypothesized that aquatic macrophytes and

zooplankton communities are less dissimilar (i) among sites during floods than during

droughts (spatial beta diversity) and (ii) among floods than among droughts in a same

site (temporal beta diversity). However, as dissimilarity can change according to system

connectivity and species traits, we investigated whether (iii) dissimilarity is lower

during floods in isolated lakes (investigated only in the temporal approach); (iv)

dissimilarity of free macrophytes is lower among floods than rooted and emergent

macrophytes (investigated in both temporal as spatial approach); and (v) dissimilarity of

pelagic and small zooplankton species (i.e. rotifers) is lower among floods than littoral

and larger zooplankton species (i.e. cladocerans and copepods) (investigated only in the

temporal approach).

Materials and methods

Study area and sampling design

The Upper Paraná River floodplain includes high heterogeneity of habitats such as

rivers, channels, ponds, connected and isolated lakes as well as high biodiversity of

terrestrial and aquatic organisms (Agostinho et al. 2004). The Upper Paraná River

Page 89: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

89

floodplain is located between the mouths of Paranapanema and Ivinhema rivers,

between Paraná and Mato Grosso do Sul States in Brazil (Agostinho et al. 2008) (Fig.

1). The climate of the Upper Paraná River floodplain is tropical-subtropical with mean

annual temperature around 22ºC. The rainy period is usually from October to March,

and the dry period usually from June to September. Since 2000, many aquatic

communities, including zooplankton and aquatic macrophytes, have been monitored by

a long-term ecological research in many habitats of the Upper Paraná River floodplain.

Our study is part of this major project (Brazil LTER - site 6 [http://www.peld.uem.br]).

We selected six lakes associated to three different rivers of the Upper Paraná

River floodplain (Paraná, Baía and Ivinhema rivers). The Paraná River is the most

important to water level variation in the Upper Paraná River floodplain. However, the

Ivinhema and Baía rivers also contribute to the inundation of habitats adjacent to their

margins, making their associated lakes somehow functionally distinct. We used a paired

design consisting in two lakes by river, where one lake is permanently connected and

another is temporally isolated to a river. Garças and Osmar, respectively, are the

connected and the isolated lakes from Paraná River; Guaraná and Fechada, respectively,

are the connected and isolated lakes from Baía River; Patos and Ventura are

respectively the connected and the isolated lakes from Ivinhema River.

Page 90: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

90

Fig. 1 Map of the Upper Paraná River floodplain. Lakes Garças (1), Guaraná (3) and Patos (5)

are permanently connected to a river, whereas lakes Osmar (4), Fechada (2) and Ventura (6) are

connected to a river only during floods.

Data collection

Data on water level were measured daily in the left margin of the Paraná River using a

gauge at the field station of Nupelia/Universidade Estadual de Maringá in Porto Rico

city (Paraná, Brazil). We observed a high variation in water level of Paraná River across

the 16 years of study (Fig. 2). When the water level of Paraná River is higher than 400

cm, most of the waterbodies in the Upper Paraná River floodplain become connected

(Souza Filho 2009). We used this water level threshold as our flood definition.

Page 91: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

91

Fig. 2 Water level of the Paraná River (cm) during the 16 studied years (2000-2015).

The horizontal line represents the flood definition used in our study.

Limnological variables were obtained concomitant to aquatic macrophytes and

zooplankton sampling. In each lake, the following variables were measured: dissolved

oxygen (mg l-1, portable oximeter), water temperature (ºC, thermometer coupled to the

oximeter), electric conductivity (μScm-1, portable potentiometer), pH (portable

potentiometer), total alkalinity (μEql-1), turbidity (NTU, portable turbidimeter), total

chlorophyll-α (μg l-1, Golterman et al. 1978), depth (m), total suspended matter (μg l-

1), inorganic suspended matter (μg l-1), organic suspended matter (μg l-1), total nitrogen

(μg l-1, Mackereth et al. 1978) and total phosphorus (μg l-1, Golterman et al. 1978).

Aquatic macrophytes were recorded in the Upper Paraná River floodplain lakes

during 11 years of monitoring from March 2002 to December 2012, usually quarterly

sampled, except for 2003 (only two months sampled) and 2011 (only three months

sampled). We obtained a total of 246 samples (41 sampling occasions * 6 lakes

sampled). Presence and absence data of aquatic macrophytes were recorded visually

from a boat moving at a constant slow speed along the entire shoreline of each one of

Page 92: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

92

the six sampled lakes. For submerged plants sampling, a rake was used from a boat for

10 min. Macrophytes species were identified to the lowest taxonomic level possible

using specialized literature (Cook 1990; Velasquez 1994; Pott and Pott 2000; Lorenzi

2000).

Zooplankton community was recorded across 16 monitoring years from

February 2000 to December 2015 usually quarterly sampled (except for 2001 and 2003

when only two months were sampled), totalizing 360 samplings (60 sampling occasions

* 6 lakes sampled). Zooplankton was collected in the pelagic zone of each lake at a

depth of 0.5–1.5 m, at mornings. Using a motorized pump, 600 l of water per sample

were filtered through a 68-μm mesh plankton net. The samples were preserved in a

formalin solution (4%) buffered with calcium carbonate. Zooplankton species were

quantified (ind m-3) using subsampling with a Hensen-Stempell pipette and counting at

least 10% of the concentrated sample in Sedgewick-Rafter chambers (Bottrell et al.

1976). Rotifers, cladocerans and copepods were identified in species using an optical

microscope and specialized literature (see Lansac-Tôha et al. 2009).

Defining biological groups

Aquatic macrophytes consist of a very diverse group, including algae, mosses, ferns and

mainly, seed-bearing plants. These different species are usually classified into different

life forms, such as: rooted submerged (i.e., completely submerged plants rooted into the

sediment); free-floating (i.e., floating plants on or under the water surface); floating-

leaved (i.e., plants rooted in the sediment but with leaves floating on the water surface)

and emergent (i.e., plants rooted in the sediment with foliage extending into the air). We

classified our macrophytes data in three groups: (i) rooted macrophytes (including

floating-leaved and rooted submerged life forms), (ii) free macrophytes (free-floating on

Page 93: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

93

or under the water) and (iii) emergent. We separated emergent from rooted macrophytes

because we believe the last are more associated to water variables than the former, since

usually only a little portion of an emergent plant is underwater.

Regarding to zooplankton, one of the main ecological differences among species

is body size, which is strictly related to passive dispersal ability (i.e., smaller organisms

can be dispersed to larger distances). Accordingly, rotifers are supposed to be better

dispersers than cladocerans, which in turn are supposed to be better dispersers than

copepods (e.g., Dias et al. 2016). Moreover, some zooplankton species have

morphological adaptations (e.g. body shape and type of feed) which facilitate them to

live closer or adhered to aquatic macrophytes (i.e., littoral zooplankton) than others

species (i.e., pelagic zooplankton). Littoral and pelagic species can usually migrate

between both lakes regions (Meerhoff et al. 2007). Accordingly, we separated

zooplankton in six groups: (i) littoral copepods, (ii) pelagic copepods, (iii) littoral

cladocerans, (iv) pelagic cladocerans, (v) littoral rotifers and (vi) pelagic rotifers.

Macrophytes incidence and zooplankton abundance across space and time

We visually explored the species incidence for the three biological groups of

macrophytes and the species abundance for the six biological groups of zooplankton

across time (highlighting sampling occasions and floods events) and space (highlighting

difference among rivers and lake connectivity). As we recorded many species, we

selected only the five most abundant from each one of the biological groups for closer

examination. We added to the figures vertical lines indicating the flood events. This

visual inspection may help to understand how flood events act in species distribution

and, consequently, in beta diversity. We used ggplot2 (Wickham 2009) package in the

R program (R Core Team 2016) to construct these figures.

Page 94: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

94

Variance partitioning

We performed a variance partitioning separately for each biological group. Here, we

used as response variable the principal coordinates extracted from a Jaccard

dissimilarity matrix. We used four different explanatory matrices related to time,

environment, lake connectivity and associated river. We got 15 variance components;

four components representing the pure explanation of each explanatory matrix and 11

shared components resulting from the diverse combinations of explanatory matrices.

The first explanatory matrix, related to time, consisted of axes of a Principal

Coordinate Analysis of Neighbor Matrices (PCNM) built from the data samplings. Each

eigenvector generated by PCNM (axes usually called as PCNMs) represents a distinct

temporal pattern. We selected a subset of the axes using the forward selection procedure

of Blanchet et al. (2008). We also constructed another matrix representing flood and

drought events across time. We built it using four different ways: (i) the maximum

water level in the period comprehended by the sampling day and 15 days before; (ii) the

average of the water level between the sampling day and 5 days before; (iii)

categorizing the samplings in flood and drought, when the water level was higher or

lower than 400 cm, respectively; and finally (iv) counting the number of days from the

data sampling to the last flood event occurred (i.e., when the water level was higher than

400 cm). We obtained PCNMs for each of the four matrices above separately. As the

findings did not change across the different ways to represent the flood and drought

events (see Figure S1), we used only the PCNMs applied on the number of days from

the data sampling to the last flood event.

We used environmental variables to construct the second explanatory matrix.

For macrophytes, we used the following variables: dissolved oxygen, pH, conductivity,

Page 95: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

95

turbidity, total material in suspension, inorganic material in suspension, organic material

in suspension, chlorophyll-α, total nitrogen and total phosphorus. For zooplankton, we

used the same set of limnological variables used for macrophtyes as well as the matrix

of aquatic macrophytes composition. In order to add the aquatic macrophytes as

explanatory variables to zooplankton, we also selected the same sampling occasions of

macrophytes to perform the variance partitioning of zooplankton (i.e., 2002 to 2012).

We standardized the environmental variables to avoid a higher importance of only one

variable using decostand function with “standardize” method in R program. We also

selected the environmental variables using the method described in Blanchet et al.

(2008).

The third explanatory matrix was composed by a dummy variable built to

represent which river each lake was associated (i.e., Baia, Ivinhema or Paraná). Finally,

the fourth explanatory matrix indicated if the lake was permanently connected or not to

a main river (i.e., connected or isolated). We tested if the pure components of variance

were important using ANOVA constrained by each river (except when testing the

importance of the rivers). We used mainly the vegan package (Oksanen et al. 2015) in

the R Environment.

Beta diversity across space and time

We used three different dissimilarity indexes to estimate beta diversity: Raup-Crick,

Jaccard and its turnover component (Baselga 2010). Although Jaccard dissimilarity is

one of the most commonly used among ecologists, it is not supposed to minimize

richness differences as Raup-Crick and turnover component. In general, all the indexes

produced similar results (Table S2), so we opted to show only Raup-Crick index

Page 96: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

96

because it was designed to minimize richness difference and best attained normality and

homogeneity assumptions.

We built a schematic model to help to understand how we investigated if floods

homogenize communities across space and time (Figure 3). We measured spatial and

temporal beta diversity separately for each biological group (i.e., three biological groups

of macrophytes and six of zooplankton). First, we selected flood years when during the

first sampling occasion (usually February or March, end of the rainy season) the water

level was higher than 400 cm between the data of sampling and 15 days before (i.e.,

2002, 2003, 2007, 2009, 2010 and 2011). Then, we selected the third sampling occasion

(usually September, end of the dry season) from the same flood years described above.

When there was no species (or only one or two) recorded in some combinations of year

and lake we not included it in the analyses.

We estimated spatial beta diversity between the connected and the isolated lake

associated to a same river. We calculated beta diversity among lakes during the flood

and during the drought period of each selected year (Fig. 3). To investigate spatial

homogenization and if may depend on biological group, we used a linear mixed-effects

model (LMM) with beta diversity as response variable, hydroperiod, biological group

and river as the fixed effects and year as the random effects. We checked normality and

homogeneity assumptions and estimated LMM parameters using maximum likelihood

and Gaussian distribution. We reported the conditional coefficient of determination

(R2m; variability explained only by fixed effects) (Nakagawa and Schielzeth 2013).

We calculated the temporal beta diversity separately for each lake between each

pair of closest years (i.e., 2002x2003; 2003x2007; 2007x2009; 2009x2010; 2010x2011)

to minimize possible problems with temporal autocorrelation. We measured beta

diversity between floods and between droughts of each of these pairs of years (Fig. 3).

Page 97: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

97

We used a linear model to investigate temporal homogenization and if it may depend on

biological group and connectivity. For that, we used beta diversity as response variable,

the hydroperiod, biological group, connectivity and river as the predictors. We

estimated our models using Gaussian distribution, checked normality and homogeneity

assumptions and reported the R2adj. We used vegan and betapart packages (Baselga et

al. 2013) for beta diversity analysis and lme4 (Bates et al. 2015) and lmerTest

(Kuznetsova et al. 2016) packages for linear models.

Fig. 3 Steps to calculate spatial (a) and temporal beta diversity (b). Each grey circle

represents a sampling occasion. The arrows show how beta diversity is calculated in

each scenario. Black circles and squares represent different lakes.

Results

We found 47 aquatic macrophytes species and 374 zooplankton species. Regarding the

aquatic macrophytes, 20 species were emergent, 14 were of the rooted life form and 13

species presented free life form. Regarding to zooplankton community, we found 45

copepods (24 littoral and 21 pelagic species), 88 cladocerans (55 littoral and 33 pelagic

species) and 241 rotifers (152 littoral and 89 pelagic species). Including only the

samples used to calculate beta diversity (see Figure 3), we recorded 46 macrophytes

Page 98: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

98

species (37 species in floods and 40 species in droughts) and 281 zooplankton species

(206 species in floods and 187 species in droughts).

We did not find a clear relationship between the incidence of aquatic

macrophytes/abundance of zooplankton and flood events (Fig. 4). Although we found

some zooplankton species with their abundances peaks coincident with large floods

(e.g., sp5, sp9 and sp14), most of the species abundance peaks/fall or incidences seem

not related to flooding (e.g., Oxycarium cubense and Polygonum ferrugineum).

Page 99: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

99

Page 100: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

100

Fig. 4 Aquatic macrophytes incidence from 2002 to 2012 (A) and zooplankton

abundance (square-rooted transformed) from 2000 to 2015 (B and C) in six lakes of a

Neotropical floodplain. Baia, Ivinhema and Paraná correspond to the main rivers which

the lakes could be associated. Grey vertical lines indicate flood events (when the water

level was higher than 400 cm). Wider vertical lines indicate longer flood periods.

Dashed lines = isolated lakes; continuous lines = connected lakes.

We recorded higher total explanation in variance partitioning for aquatic

macrophytes (mean approximately 33%) than for zooplankton (mean approximately

11%) (Table 1; Fig. S1). As only the shared component between environment and river

for macrophytes had a high explanation (6% for emergent, 8 % for rooted and 10% for

free life forms; Fig. S1), we did not show others shared components. The pure

component of time was the most important for emergent macrophytes and for all

Page 101: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

101

biological groups of zooplankton. Environmental variables had low importance for both

aquatic macrophytes and zooplankton. Despite of this low explanation of environmental

variables for zooplankton, it is worth to note that many aquatic macrophytes species

were selected as important environmental variables to all zooplankton biological groups

(Table S1). The lake connectivity and the river associated to the lakes were more

important for aquatic macrophytes. Indeed, the three main rivers are quite different in

terms of concentration of nutrients, turbidity and damming upstream (Thomaz et al.

2004; Roberto et al. 2009). Based in our variance partitioning findings, we defined the

design of our study to measure spatial and temporal beta diversity, taking into account

rivers and years.

Table 1 Relative contribution (%) of pure components from variance partitioning for

each biological group. Bold values mean significant components. We showed in this

table only the pure components. Only the shared component between environment and

river for macrophytes had a high explanation (6% for emergent, 8% for rooted and 10%

for free life forms).

Time Environment Connectivity River Residual

Macrophytes Emergent 13 3 5 4 67

Rooted 2 4 3 11 65

Free 6 1 3 9 66

Zooplankton Copepoda 4 2 1 1 90

Littoral Cladocera 5 2 1 1 90

Rotifera 5 2 1 1 89

Zooplankton Copepoda 5 2 1 1 89

Pelagic Cladocera 5 2 1 0 90

Rotifera 6 2 0 1 89

We did not corroborate our predictions about spatial biotic homogenization

because we did not find lower beta diversity among lakes in flood events than in

drought events for aquatic macrophytes (R2m = 0.07) and zooplankton (R2

m = 0.12;

Table 2; Fig. 5). We only found importance of the river (Table 2), where Paraná River

was different from the others (t = 3.321; P = 0.005).

Page 102: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

102

Fig. 5 Spatial beta diversity (using Raup-Crick dissimilarity) of aquatic macrophytes

(a) and zooplankton (b) among connected and isolated lakes during flood and during

drought events.

In contrast, for the temporal biotic homogenization, we found that aquatic

macrophytes were more similar among flood than among drought events (R2adj = 0.146;

P = 0.001; Table 2; Fig. 6a). For zooplankton, differences in similarities between

drought and flood depend on biological groups (R2adj = 0.227; P < 0.001; Table 2).

Littoral rotifers and littoral cladocerans had lower beta diversity among floods than

Page 103: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

103

among droughts (Fig. 6b), whereas all pelagic groups had higher beta diversity among

floods (Fig. 6b). Temporal beta diversity was not different among connected and

isolated lakes neither for macrophytes nor zooplankton (Table 2).

Fig. 6 Temporal beta diversity (using Raup-Crick dissimilarity) of biological groups of

aquatic macrophytes (a) and zooplankton (b) among flood and among drought

hydroperiods.

Table 2 Results from linear models on spatial and temporal beta diversity using Raup-

Crick as dissimilarity metric. DF = degree of freedom regarding to used parameters

Variable

Spatial Temporal

DF F P DF F P

Page 104: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

104

Macrophytes Hydroperiod 1 0.52 0.473 1 5.27 0.025

Group 2 1.39 0.273 2 8.87 <0.001

Hydroperiod X Group 2 0.08 0.915 2 0.59 0.557

River 2 6.31 0.003 2 0.55 0.575

Connectivity - - - 1 2.81 0.096

Zooplankton Hydroperiod 1 0.08 0.776 1 5.23 0.02

Group 5 1.31 0.265 5 9.29 <0.001

Hydroperiod X Group 5 0.41 0.834 5 9.19 <0.001

River 2 1.28 0.281 2 1.04 0.354

Connectivity - - - 1 0.46 0.494

Discussion

We did not corroborate our hypothesis of spatial biotic homogenization between lakes

due floods. However, we corroborated our hypothesis of temporal biotic

homogenization among floods in a same site for most of the biological groups studied.

We found for temporal biotic homogenization that: (i) all the three groups of aquatic

macrophytes were more similar across floods; (ii) littoral rotifers and littoral

cladocerans tended to present higher similarity across floods while the others groups

(i.e., littoral copepods and pelagic rotifers, cladocerans and copepods) had the opposite

pattern (i.e., higher beta diversity across floods); (iii) we did not find support for the

hypothesis that connected and isolated lakes are different in terms of temporal similarity

neither for macrophytes nor zooplankton.

Our findings did not corroborate spatial flood homogenization hypothesis

supported in others studies (e.g. Thomaz et al. 2007; Bozelli et al. 2015 but see Lopes et

al. 2014). Differences in sampling design, spatial scale and taxa might explain such

conflicting results. Bozelli et al. (2015), for example, measured beta diversity across

many lakes and did not repeat it across years. We designed our study differently,

comparing three pairs of lakes, one connected and another isolated to a same river, and

then repeated it over time. Moreover, flood events are not equal but vary in amplitude

Page 105: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

105

and duration (Neiff 1990). It is possible that only the largest floods, which were rare in

the studied period due to the damming upstream the Upper Paraná River floodplain

(Souza Filho 2009), homogenize studied communities spatially, while moderate floods,

as the most of flood events recorded during ours 16 years of monitoring, are not enough

to homogenize them. Finally, another plausible possibility is that the water carrying of

floods may cause stochastic local colonization and extinction, both processes related to

ecological drift that may contribute to increase beta diversity among sites instead of

decrease (Myers et al. 2015; Catano et al. 2018).

Contrarily to spatial beta diversity, we found temporal biotic homogenization

across floods for many biological groups (i.e., all macrophytes life forms, littoral

rotifers and littoral cladocerans). On the one hand, lower temporal beta diversity among

floods hydroperiods could be related to repeated dispersal events across time driven by

inundation. As floods are supposed to create more opportunities to dispersal, most of the

species from the species pool could reach the same lake every flood event,

homogenizing it across time. For example, floods events may carry more zooplankton

organisms from littoral to pelagic zone (Lansac-Toha et al. 2009; Simões et al. 2013),

which if repeated across time may decrease beta diversity of littoral zooplankton among

floods. Moreover, resistance eggs produced by many zooplankton species (e.g., Lopes

et al. 2014) as well as seeds and fragments of macrophytes may create a species bank

able to colonize the same lake across time, and the colonization might be trigged by

inundation events. On the other hand, communities can follow a more stochastic

trajectory during each drought event (Thomaz et al. 2009), where priority effects can act

(i.e., effect of the first colonizers on the following species [e.g., Chase 2010]), making

drought periods more dissimilar across the years. In addition, mainly for aquatic

macrophytes, floods could act as a strong environmental filter where only the most

Page 106: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

106

resistant species to inundation remain in a same lake. If the same resistant species set

remain during each flood event, beta diversity can be decreased across time among

inundation periods compared to among drought periods. We could find temporal biotic

homogenization but not spatial biotic homogenization because the resistant species to

the flood and/or colonizers could be the same across time in a single lake but not the

same across lakes. These mechanisms should act in a similar way in connected and

isolated lakes, since we did not find differences among them. Indeed, we also found low

importance of connectivity in variance partitioning, mainly for zooplankton.

Differences in temporal beta diversity across biological groups may be found

because species vary in dispersal ability (de Bie et al. 2012). Rotifers and cladocerans

were the smallest biological groups of zooplankton and potentially with higher dispersal

ability (de Bie et al. 2012; Padial et al. 2014; Dias et al. 2016). In addition, copepods

reproduce only sexually, while rotifers and cladocerans may also reproduce by

parthenogenesis and produce resistance eggs, which may increase their colonization

opportunities across time (Gray and Arnott 2012; Lopes et al. 2014). Such features may

be related to lower beta diversity among floods for littoral rotifers and cladocerans.

However, we did not find higher similarity across floods for pelagic

zooplankton. The pelagic zone is supposed to have lower refuge availability than littoral

zone due to higher macrophytes abundance and diversity in the littoral (Meerhoff et al.

2007). In addition, fish predation could be higher during drought when zooplankton and

fishes are more concentrated in the lakes than during flood. Moreover, tropical pelagic

zooplankton may be larger than littoral zooplankton (Meerhoff et al. 2007). Therefore,

pelagic zooplankton, especially groups composed by largest species more easily

captured (i.e., copepods and cladocerans), could be more similar across droughts if

Page 107: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

107

predation is higher in this hydroperiod. Indeed, predators can capture the same set of

species across years homogenizing the community prey (Van Allen et al. 2017).

We concluded that floods did not homogenize macrophytes and zooplankton

communities across space but homogenized macrophytes and some zooplankton groups

across time. We suggested that time should be included in futures studies addressing

flood homogenization. Moreover, we found that temporal flood homogenization may

depend on species features. Finally, we highlight the importance of negative results (i.e.,

as ours that flood did not spatially homogenize communities) to question the generality

of ecological hypothesis and to motivate further studies.

Acknowledgments

DKP thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

(CAPES) and the Global Affairs Canada – Emerging Leaders in the Americas Program

(ELAP) for providing student fellowships. Our study was supported by the “Long-Term

Ecological Research” (PELD) from the Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq) in Brazil. We are grateful to all members of

Macrophytes, Zooplankton and Limnology Laboratories (Nupelia/ Universidade

Estadual de Maringá) for providing data. DKP thanks Jean Ortega for the help with

linear mixed-effect model. JDD thanks CNPq to provide post-doctoral scholarship.

ASM received a research fellowship from CNPq (proc. no. 309412/2014-5).

References

Agostinho AA, Thomaz SS, Gomes LC (2004) Threats for biodiversity in the floodplain

of the Upper Paraná River: effects of hydrological regulation by dams.

Ecohydrology & Hydrobiology 4: 267-289

Page 108: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

108

Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the

Neotropical region impacts and management related to diversity and fisheries.

Braz J Biol 68: 1119-1132

Akasaka M, Takamura N (2012) Hydrologic connection between ponds positively

affects macrophyte α and γ diversity but negatively affects β diversity. Ecology

93: 967–973

Algarte VM, Rodrigues L, Landeiro VL, Siqueira T, Bini LM (2014) Variance

partitioning of deconstructed periphyton communities: does the use of biological

traits matter? Hydrobiologia 722: 279–290

Baselga A (2010) Partitioning the turnover and nestedness components of beta

diversity. Glob Ecol Biogeogr 19: 134–143

Baselga A, Orme D, Villeger S, Bortoli J, Leprieur F (2013) betapart: partitioning beta

diversity into turnover and nestedness components. R package version

1.3.Available at: http://CRAN.R-project.org/package=betapart

Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory

variables. Ecology 89: 2623–2632

Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbricht-Ilkowska A,

Kurasawa H, Larsson P, Weglenska T (1976) A review of some problems in

zooplankton production studies. Norw J Zool 24: 419–456

Bozelli RL, Thomaz SM, Padial AA, Lopes PM, Bini LM (2015) Floods decrease

zooplankton beta diversity and environmental heterogeneity in an Amazonian

floodplain system. Hydrobiologia 753: 233-241

Carrara F, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2012) Dendritic connectivity

controls biodiversity patterns in experimental metacommunities. Proc Natl Acad

Sci USA 109: 5761–5766

Page 109: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

109

Catano PC, Dickson TL, Myers JA (2018) Dispersal and neutral sampling mediate

contingent effects of disturbance on plant beta-diversity: a meta-analysis. Ecol

Lett 20: 347–356

Chase JM (2007) Drought mediates the importance of stochastic community assembly.

Proc Natl Acad Sci USA 104: 17430–17434

Chase JM (2010) Stochastic community assembly causes higher biodiversity in more

productive environments. Science 328: 1388–1391

Cook CDK (1990) Origin, autecology, and spread of some of the world´s most

troublesome aquatic weeds. In Pieterse AH and Murphy KJ (Eds.). Aquatic

weeds: the ecology and management of nuisance aquatic vegetation. Oxford:

Oxford Science Publications. p. 31-38

de Bie T, de Meester L, Brendonck L, Martens K, Goddeeris B, et al. (2012) Body size

and dispersal mode as key traits determining metacommunity structure of

aquatic organisms. Ecol Lett 15: 740–747

Dias DJ, Simões NR, Meerhoff M, Lansac-Tôha FA, Velho LFM, Bonecker CC

(2016) Hydrological dynamics drives zooplankton metacommunity structure in

a Neotropical floodplain. Hydrobiologia 781: 109–125

Gray DK, Arnott SE (2012) The role of dispersal levels, Allee effects and community

resistance as zooplankton communities respond to environmental change. J

Appl Ecol 49: 1216–122

Golterman HL, Clymo RS, Ohstad MAM (1978) Methods for physical and chemical

analysis of freshwater. Blackwell, Oxford

Jenkins DG, Brescacin CR, Duxbury CV, Elliott JA, Evans JA, Grablow KR, Hillegass

M, Lyon BN, Metzger GA, Olandese ML, Pepe D, Silvers GA, Suresch HN,

Page 110: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

110

Thompson TN, Trexler CM, Williams GE, Williams NC, Williams SE (2007)

Does size matter for dispersal distance? Glob Ecol Biogeogr 16: 415–425

Junk WJ, Bayley PB, Sparks RE (1989) The flood pulse concept in river floodplain

systems. In: Dodge DP (Ed.). Proceedings of the International Large River

Symposium. Can J Fish Aquat Sci 106: 110-127

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest Package: Tests in

Linear Mixed Effects Models. J Stat Softw 82: 1–26

Lansac-Tôha FA, Bonecker CC, Velho LFM, Simões NR, Dias JD, Alves GM,

Takahashi EM (2009) Biodiversity of zooplankton communities in the Upper

Parana´ River floodplain: interannual variation from long-term studies. Braz J

Biol 69: 539–549

Lansac-Tôha FM, Meira BR, Segovia BT, Lansac-Tôha FA, Velho LFM (2016)

Hydrological connectivity determining metacommunity structure of planktonic

heterotrophic flagellates. Hydrobiologia 781:81–94

Lopes PM, Bini LM, Declerck SAJ,, Farjalla VF, Vieira LCG, Bonecker CC, Lansac-

Toha FA, Esteves FA, Bozelli RF (2014) Correlates of zooplankton beta

diversity in tropical lake systems. Plos One 9: 1-8

Lorenzi H (2000) Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. 3

ed. Nova Odessa: Instituto Plantarum de Estudos da Flora. 608p

Mackereth FYH, Heron JG, Talling JJ (1978) Freshwater Biological Association

Scientific Publication 36: 1-120

Meerhoff M, Iglesias C, De Mello FT, Clemente JM, Jensen E, Lauridsen TL, Jeppesen

E (2007) Effects of habitat complexity on community structure and predator

avoidance behaviour of littoral zooplankton in temperate versus subtropical

shallow lakes. Freshw Biol 52: 1009–1021

Page 111: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

111

Myers JA, Chase JM, Crandall RM, Jiménez I (2015) Disturbance alters beta-diversity

but not the relative importance of community assembly mechanisms. J Ecol 103:

1291–1299

Nabout JC, Siqueira T, Bini LM, Nogueira IS (2009) No evidence for environmental

and spatial processes in structuring phytoplankton communities. Acta Oecol 35:

720-726

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from

generalized linear mixed-effects models. Methods Ecol Evol 4:133-142

Neiff JJ (1990) Ideas para la interpretacion ecológica del Paraná. Interciencia 15: 424–

41

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL,

Solymos P, Stevens MHH, Szoecs E, Wagner H (2015) vegan: Community

Ecology Package. R package version 2.2-1. Available at: http://CRAN.R-

project.org/package=vegan

Padial AA, Ceschin F, Declerck SA, De Meester L, Bonecker CC, Lansac-Tôha FA,

Bini LM (2014) Dispersal ability determines the role of environmental, spatial

and temporal drivers of metacommunity structure. PloS One 9: e111227

Penha J, Landeiro VL, Ortega JCG, Mateus L (2017) Interchange between flooding and

drying, and spatial connectivity control the fish metacommunity structure in

lakes of the Pantanal wetland. Hydrobiologia, 797:115-126

Petsch DK, Pinha GD, Takeda AM (2017) Dispersal mode and flooding regime as

drivers of benthic metacommunity structure in a Neotropical floodplain.

Hydrobiologia 788:131–141

Pott VJ, Pott A (2000) Plantas aquáticas do Pantanal. Brasília: Embrapa. 404p.

Page 112: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

112

R Core Team (2016) R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna. Available at: http://www.R-

project.org/

Roberto MC, Santana NF, Thomaz SM (2009) Limnology in the Upper Paraná River

floodplain: large-scale spatial and temporal patterns, and the influence of

reservoirs. Braz J Biol 69:717–725

Sarremejane R, Cañedo-Arguëles M,Prat N, Mykrä H, Muotka T, Bonada N (2017) Do

metacommunities vary through time? Intermittent rivers as model systems J

Biogeogr 44: 2752–2763

Schneck F, Schwarzbold A, Rodrigues SC, Melo AS (2011) Environmental variability

drives phytoplankton assemblage persistence in a subtropical reservoir. Austral

Ecol 36: 839–848

Seymour M, Fronhofer EA, Altermatt FA (2015) Dendritic network structure and

dispersal affect temporal dynamics of diversity and species persistence. Oikos

124: 908–916

Simões NR, Dias JD, Leal CM, Braghin LSM, Lansac-Tôha FA, Bonecker CC (2013)

Floods control the influence of environmental gradients on the diversity of

zooplankton communities in a Neotropical floodplain. Aquat Sci 75: 607–617

Souza Filho EE (2009) Evaluation of the Upper Paraná River discharge controlled by

reservoirs. Braz J Biol 69: 707-716

Thomaz SM, Pagioro TA, Bini LM, Roberto MC, Rocha RRA (2004) Limnological

characterization of the aquatic environments and the influence of hydrometric

levels. In: Thomaz SM, Agostinho AA, Hahn NS (Ed.) The upper Paraná River

and its floodplain, physical aspects, ecology and conservation. Backhuys

Publishers, Leiden

Page 113: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

113

Thomaz SM, Bini LM, Bozelli RL (2007) Floods increase similarity among aquatic

habitats in river floodplain systems. Hydrobiologia 579: 1-13

Thomaz SM, Carvalho P, Padial AA, Kobayashi JT (2009) Temporal and spatial

patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain.

Braz J Biol 69: 617-625

Van Allen BJ, Rasmussen NL, Dibble CJ, Clay PA, Rudolf VHW (2017) Top predators

determine how biodiversity is partitioned across time and space. Ecol Lett 20:

1004–1013

Velasquez J (1994) Plantas acuaticas vasculares de Venezuela. Caracas: Universidade

Central de Venezuela, Consejo de Desarrollo Cientifico y Humanistico. 992p

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York

Page 114: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

114

SUPLEMENTARY MATERIAL

Figure S1. Results from variance partitioning for each biological group. Relative

contributions (%) of time (T), environment (E), connectivity (C) and the river associated

(R). U= unexplained component. Values lower than 1% are not shown for better

visualization (except for the pure components). In the time component, flood was

represented in four different ways: (a) counting the number of days from the data

sampling to the last flood event occurred; (b) the average of the water level between the

sampling day and 5 days before; (c) categorizing the samplings in flood and drought,

when the water level was higher or lower than 400 centimeters, respectively; and finally

(d) the maximum water level in the period comprehended by the sampling day and 15

days before

Page 115: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

115

Page 116: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

116

Page 117: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

117

Table S1. Selected time and environmental variables in pRDA for each biological

group. Cond= conductivity, tur= turbidity, pho= total phosphorus, oxy= dissolved

oxygen, oms= organic material in suspension, ims= inorganic material in suspension,

tms= total material in suspension, chloro= α-chlorophyll, Ed= Egeria densa, Ps= Pistia

stratiotes, P= Panicum, E= Echinodorus, Pa= Polygonum acuminatum, Pf= Polygonum

ferrugineum, Cf= Cabomba furcata, Pc= Pontederia cordata, En= Egeria najas, W=

Wolfiella, Tg= Thalia geniculata, Hv= Hydrilla verticillata, Ld= Lindernia, Ha=

Hymenachne amplexicatus, Mb= Myriophyllum brasiliensis, Hr= Hydrocotyle

ranunculoides, Lm= Limnocharis, Oc= Oxycarium cubensis.

Time variables (PCNMs) Environmental variables

Macrophytes Emergent 1,2,6,27,3,4,8,25,9,5,36,30 cond, tur, pho, oxy, oms

Rooted 36,38,27,24,2 tur, cond, oxy, chloro

Free 2,36,1,28,22,5,9,30 cond, tur, pho, pH, chloro

Zooplankton Copepoda 1,2,9,4,8,11,7,32,13,5,15 cond, Ed, tur, pho, Ps, P, E, Pa, Cf, Pc

littoral Cladocera 2,1,3,34,16,7,15,6,12,20,26 En, tur, Ed, cond, pH, E, ims, Pf, Cf

Rotifera 1,3,5,2,4,6,8,27,20,10,12,14,35 En, tur, Ed, Pa, oxy, cond, Mb, Hr, Tg, E, W

Zooplankton Copepoda 2,1,3,4,5,6,8,12,14,10,7,20,31

En, tur, Ed, cond, pH, W, E, oxy, Pc, Tg, Ld, Lm,

Ha

pelagic Cladocera 1,4,6,2,3,10,5,32,3,8,15,12,11,27,7

En, Ed, tur, tms, cond, pH, Mb, Oc, Tg, Ld, Lm,

pho

Rotifera 1,3,5,2,4,6,8,27,12,10,35,20,18,14, cond, pH, W, E, oxy, Pc, Tg, Hv, Ha, pho

13,15,26,33

Page 118: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

118

Table S2. Results of generalized linear mixed-effects models on spatial and temporal

beta diversity using Jaccard and turnover as dissimilarity metrics. Df= degree freedom.

Period corresponds to flood or drought; group corresponds to biological group (e.g.

littoral rotifers); connectivity corresponds to connected or isolated lakes.

Spatial Temporal

Variable df F P df F P

Macrophytes Period 1 0.12 0.721 1 3.83 0.052

Jaccard Group 2 4.22 0.019 2 0.65 0.521

Period X Group 2 2.31 0.107 2 0.14 0.868

Connectivity - - - 1 2.22 0.138

Zooplankton Period 1 0.16 0.689 1 0.08 0.766

Jaccard Group 5 2.01 0.081 5 4.04 0.001

Period X Group 5 0.74 0.591 5 3.63 0.003

Connectivity - - - 1 2.02 0.155

Macrophytes Period 1 1.82 0.181 1 3.89 0.051

Turnover Group 2 1.29 0.281 2 0.84 0.433

Period X Group 2 0.08 0.919 2 0.18 0.829

Connectivity - - - 1 1.14 0.287

Zooplankton Period 1 0.01 0.924 1 1.11 0.293

Turnover Group 5 6.31 <0.001 5 14.69 <0.001

Period X Group 5 0.23 0.944 2 7.69 <0.001

Connectivity - - - 1 0.01 0.904

Page 119: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

119

C

HUMAN LAND-USE DOES NOT HOMOGENIZE

AQUATIC INSECT COMMUNITIES IN BOREAL

AND TROPICAL STREAMS4

4 Manuscrito a ser submetido para a revista Ecological Indicators em colaboração com

T. Siqueira, J. Heino, V. S. Saito, J. Jyrkänkallio-Mikkola, K. T. Tolonen, L. M. Bini,

V. L. Landeiro, T. S. F. Silva, V. Pajunen, J. Soininen e A. S. Melo.

APÍTULO 4

22

Page 120: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

120

ABSTRACT

Biological diversity is not uniformly distributed across the globe, and it can be lost

through land-use intensification. Land-use intensification may decrease habitat

heterogeneity as well as increases environmental harshness and may decrease not only

the number of species but also the taxonomic and functional variability among

communities in space causing biotic homogenization, that is, lowering beta diversity.

We sampled aquatic insects from 100 boreal and 100 tropical streams covering a wide

gradient of land use to address two main questions: (1) Is taxonomic and functional beta

diversity higher in tropical than in boreal streams? (2) Does land use decrease

taxonomic and functional beta diversity in both regions (i.e. through environmental

harshness and/or environmental homogeneity)? We found higher taxonomic beta

diversity but lower functional beta diversity among tropical than boreal streams. Our

results did not corroborate the expectation of taxonomic or functional biotic

homogenization due to environmental harshness nor due to lower variability in local

environmental variables mediated by intensive land-use. However, different land-use

effects may increase among-stream habitat heterogeneity generating distinct species

composition among streams. Forested streams may be more benign and similar to each

other, allowing high stochasticity in the colonization/extinction dynamics, which in turn

could generate comparable levels of beta diversity among modified streams. We

highlighted that different mechanisms acting simultaneously in modified and conserved

habitats may cause similar beta diversity along a disturbance gradient.

Keywords: deforestation, freshwater, latitudinal gradient of beta diversity, Brazil,

Finland

Page 121: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

121

1. Introduction

One of the most widely documented patterns in ecology is the latitudinal diversity

gradient, that is, regions closer to the equator often harbor higher species richness than

those closer to the poles (Gaston, 2000; Brown, 2014). Many evolutionary (e.g. higher

diversification and lower extinction rates of taxa in tropics), historic (e.g. lower

influence of glaciation events in tropics), area (i.e. larger surface area of the tropics) and

ecological (e.g. higher environmental heterogeneity in tropics) hypotheses were

formulated to explain it (Hillebrand, 2004; Mittelbach et al., 2007; Cilleros et al., 2016;

Rodrigues et al., 2017). Whereas higher species richness in tropics is a well-known

pattern, it is still controversial if beta diversity (i.e. variability of community

composition among sites) is also higher in low latitudes (see Qian and Ricklefs, 2007;

Kraft et al., 2011; Qian and Song, 2013). For example, Qian and Ricklefs (2007) found

lower beta diversity of plants in higher latitudes due historical and climatic variables,

while Kraft et al. (2011) found no differences in plant beta diversity across latitude after

taking into account gamma diversity. A higher beta diversity in the tropics is expected,

for example, due to faster decline of regional richness than local richness with latitude

(Soininen, 2010) and because according to Rapoport’s rule, species ranges tend to be

larger closer to the poles than closer to the tropics due to higher environmental tolerance

of the species (Stevens, 1989), which may decrease beta diversity at high latitudes

(Soininen et al., 2007). However, most of the evidence comes from terrestrial and

marine systems (e.g. Qian and Ricklefs, 2007; Kraft et al., 2011; Qian and Song, 2013),

whereas less is known about freshwater systems in this regard.

Although biological diversity is not uniformly distributed across the globe, it can

be decreased by some general factors acting widely across continents. Land-use change

is a worldwide phenomenon driving species loss across multiple taxa and ecosystems

Page 122: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

122

(Sala et al., 2000; Millennium Ecosystem Assessment, 2005). Land-use change does not

only reduce the numbers of native species, but drives biotic homogenization across

biological communities (i.e. decrease in beta diversity) by promoting the expansion of

tolerant species (“winners”) and/or the range reduction or extinction of sensitive species

(“losers”) to such environmental modifications (McKinney and Lockwood, 1999;

Castro et al., 2018). However, the effect of land-use changes on beta diversity is still

poorly studied across different ecosystems (Rodrigues et al., 2013; Siqueira et al., 2015;

Solar et al., 2015; Gossner et al., 2016), and its effects are more difficult to predict than

land-use effects on species richness (Fugère et al., 2016; Sfair et al., 2016).

The outcome of “losers” and “winners” as a consequence of land-use changes

suggests that species respond differently to environmental changes. This happens in part

because species have different traits (Gossner et al., 2016; Jonason et al., 2017); i.e.,

features related to life-history, morphology, physiology or phenology determining

species performance (Diaz and Cabido, 2001; Violle et al., 2007). If land-use

intensification decreases the variability of species traits composition across

communities in space, communities become functionally homogeneous (Olden and

Rooney, 2006). The incorporation of organisms’ sensitivity in terms of both taxonomic

and functional diversity could thus improve our understanding of the response of

communities to land-use changes (Castro et al., 2018). For example, land-use

intensification can decrease more severely the taxonomic than functional beta diversity

if communities are composed of many functionally redundant species (i.e., species with

similar traits) (Sfair et al., 2016). In addition, functional homogenization is alarming

because it may limit the functions and services provided by the biological communities

as well as their response to anthropogenic impacts (Cardinale et al., 2012; Gámez-

Virués et al., 2015).

Page 123: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

123

Land-use change is a particularly strong driver of biodiversity loss in streams

(e.g., Marchetti et al., 2006; Siqueira et al., 2015). Two main mechanisms driven by

land use may reduce stream biodiversity: (i) increase of environmental harshness and

(ii) reduction of environmental heterogeneity among stream sites. On one hand,

environmental harshness may decrease species richness and homogenize communities

by selectively filtering the same set of resistant species across local communities

(Chase, 2007; Catano et al., 2017). Streams surrounded by intensive land use may

become a harsh habitat for most species because of increased input of terrestrial

sediments that can cover the streambed, input of nutrients and contaminants, alteration

of flow regimes, decrease of long-term coarse organic material input and change of

channel structure (Allan, 2004; Leal et al., 2016; Castro et al., 2018). However, the

effects of increased nutrient input are contradictory: it may generate high beta diversity

due to increase of stochasticity with the higher productivity (e.g. Chase, 2010) or

decrease beta diversity if only a few species are able to tolerate eutrophic conditions

(e.g. Donohue et al., 2009).

Likewise, reduction of environmental heterogeneity (i.e. difference in

environmental conditions among streams) may decrease beta diversity if species

occurrences are driven by environment (Costa and Melo, 2008). Land-use

intensification may decrease among-stream variability of local conditions (e.g. by

homogenizing substrate cover and water velocity) and, consequently, reduce beta

diversity. Alternatively, heterogeneity of land use among streams (e.g. rural, urban and

forestry streams in a same watershed) may increase beta diversity if different species are

selected by environmental conditions associated with each land use type. Therefore,

land use may drive beta diversity through different pathways depending on specific

features of the landscape (Figure 1).

Page 124: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

124

Fig. 1. A graphical framework on how land-use could change taxonomic and functional

beta diversity in streams. Positive and negative signals represent, respectivaly, positive

and negative relationships between variables.

We conducted intensive surveys of aquatic insects in boreal and tropical streams

covering a wide gradient of land use in each region. Aquatic insects are functionally

important in freshwater food webs, are specious and abundant in streams worldwide and

respond quickly to changes in stream conditions, such as water quality, substratum type

and flow regimes (Jacobsen et al., 2008; Kennedy et al., 2016). We addressed two main

questions related to land use effects on beta diversity of tropical and boreal aquatic

insects: (1) Is taxonomic and functional beta diversity higher in tropical than in boreal

streams? (2) Does land use decrease taxonomic and functional beta diversity in both

regions (i.e. through environmental harshness and/or environmental homogeneity)? We

expect to find overall higher taxonomic and functional beta diversity among tropical

than among boreal streams, but decreased beta diversity along a gradient of intensive

land-use in both regions. We expect to find lower taxonomic and functional beta

diversity of aquatic insects in both regions among harsher (e.g. low native forest cover

or high proportion of sand substrates) and among environmentally similar streams (e.g.

Page 125: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

125

low heterogeneity in land use or low heterogeneity in local environmental variables) due

to land-use intensification.

2. Methods

2.1. Study design

We sampled 20 Finnish (boreal region) and 20 Brazilian (tropical region) watersheds in

years 2014 and 2015, respectively. In each watershed, we sampled five 2nd to 3rd order

streams, totalizing 200 streams (20 watersheds * 5 streams * 2 regions = 200 streams).

In Brazil, we sampled streams located in southeastern parts of the country between

latitudes 23°49S and 24°20S (approximately 120 km in north-south direction and 70 km

in east-west direction). In Finland, we surveyed streams located in western between

latitudes 60°27N and 65°01N (approximately 500 km in north-south direction and 300

km in east-west direction). Streams in Brazil and Finland covered a wide variation in

land use from catchments dominated by agriculture to catchments covered almost

entirely by pristine forests (Atlantic rain forests and boreal forests, respectively) (Figure

2).

Page 126: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

126

Fig. 2. Maps of the study regions: sampled streams in Finland (a), location of the São

Paulo State in Brazil (b) and sampled streams in Brazil (c). Map from Heino et al. (in

review).

2.2. Biological data

We sampled one riffle site at each stream using a kick-net (net mesh size = 0.5 mm) for

two minutes (consisted of four 30-seconds sampling units). We identified aquatic

insects to genus level and included genera from the following orders: Ephemeroptera,

Plecoptera, Trichoptera, Coleoptera, Odonata and Megaloptera.

We selected six traits that may be affected by human land-use (i.e., response

traits): refuge building, body shape, locomotion, functional feeding group, respiration

and body size (Table 1). For example, the canopy removal could decrease the number of

a)

b)

c)

Page 127: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

127

shredders while the bottom siltation promoted by land use intensification could increase

burrowers (functional feeding guild trait) (Castro et al., 2018). Brazilian and Finnish

trait information was gathered mainly from specialized literature and consult to

specialists (see Acknowledgments).

Table 1. Functional traits analyzed for aquatic insects (adapted from Colzani et al.,

2013).

Traits Categories

Refuge building No refuge

Fixed nets and retreats

Portable shelters of sand, debris and/or wood

Portable shelters of leaf parts

Body shape Hydrodynamic

Not hydrodynamic

Locomotion groups Burrowers

Climbers/crawlers

Sprawlers

Clingers

Swimmers

Functional feeding guild Collector-gatheres

Collector-filterers

Herbivores

Predators

Respiration

Shredders

Tegumental respiration

Gill respiration

Body size

Air

Small-sized (<9 mm)

Medium-sized (9-16 mm)

Large-sized (>16 mm)

2.3. Local environmental data

Page 128: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

128

After taking biological samples, we measured current velocity (m/s), depth (cm), mean

stream width of the sampling site and shading (i.e. canopy cover) by riparian vegetation

percentage at each sampling site. We also measured pH and conductivity at each site in

the field using YSI device model 556 MPS (YSI Inc., Ohio, USA). We took water

samples to analyze total nitrogen and total phosphorus following protocols for Finland

(Finnish Board of Waters and the Environment, 1981) and Brazil (Golterman et al.,

1978; Mackereth et al., 1978). We visually estimated particle size classes (%) in 0.25

m2 squares at random locations in a riffle site. We used a modified Wenthworth’s

(1922) scale of particle size classes: sand (0.25-2 mm), gravel (2-16 mm), pebble (16-64

mm), cobble (64-256 mm) and boulder (256-1024 mm). We calculated the Shannon

diversity of substratum particle sizes based on mean estimates for each stream.

2.4. Land use data

We obtained land use variables in a similar way in Brazil and Finland. First, we

delimited 500 m stream segments and then generated a 200 m buffer along each stream

segment. For each buffer, we extracted the proportion of land cover classes (i.e., native

forest, secondary forest, exotic planted forests, pasture, agriculture, urban, mining,

wetland, bare soil, water and mixed). We used Google Earth™ high resolution imagery

to extract land cover classes.

2.5. Taxonomic and functional beta diversity

We calculated beta diversity of aquatic insects for each watershed (i.e., among five

streams by watershed), separately for Brazil and Finland (20 Brazilian watersheds + 20

Finnish watersheds = 40 beta diversity values). We used four different dissimilarity

metrics in order to calculate taxonomic beta diversity: Sorensen, Bray-Curtis, turnover

Page 129: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

129

component of Sorensen and turnover component of Bray-Curtis. Sorensen and Bray-

Curtis dissimilarities are simple and common metrics for presence/absence and

abundance data, respectively. Both dissimilarity metrics are affected by species richness

differences, which may be estimated by decomposing them in one component related to

replacement of species across sites (i.e. turnover component of dissimilarity) and

another component related to differences in species richness across sites (i.e. nestedness

component of dissimilarity) (Baselga, 2010). We only used turnover component (and

excluded nestedness) because we were interested in species replacement and not species

loss among streams. We log-transformed abundance data before the computation of beta

diversity. We used beta.pair function in the betapart package (Baselga et al., 2013) in R

environment (R Core Team, 2017) to obtain the turnover component of both Sorensen

and Bray-Curtis indices.

In order to calculate functional beta diversity, we first used the Gower distance

on the species-traits matrix (separately for Brazil and Finland) (Podani and Schmera,

2006). To do that, we used gowdis function in FD (Laliberté et al., 2014) package.

Then, we calculated the MPD (mean pairwise distance) using comdist function of

picante (Kembel et al., 2010) package. This function calculates the expected functional

distance separating two individuals or taxa drawn randomly from different

communities. We used this function with and without weights of log-transformed

abundance data.

Finally, we obtained a single beta diversity value for each watershed and for

each dissimilarity metrics using the multivariate homogeneity of group dispersions

(PERMDISP; Anderson et al., 2006). We used separately all dissimilarity matrices

produced by different metrics (i.e. Sorensen, Bray-Curtis, turnover component of

Sorensen and turnover component of Bray-Curtis, functional beta diversity based on

Page 130: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

130

abundance and incidence data). However, as all taxonomic indices were similar to each

other as well as the functional dissimilarities (Figure S1), we show only Sorensen and

functional dissimilarity based on incidence in the main text. To analyze the data with

PERMDISP, we used betadisper function in the vegan package (Oksanen et al., 2015).

2.6. Modeling beta diversity along gradients in environmental harshness and

heterogeneity

We obtained explanatory variables regarding environmental harshness and

heterogeneity at watershed scale. We selected the mean of sand, nitrogen, phosphorus

and deforestation as variables supposed to be related to environmental harshness.

Excess of bottom siltation (here measured mixed with sand) and decrease of water

quality in eutrophic conditions by increased nutrient concentration (here nitrogen and

phosphorus) usually result from land-use intensification, affecting species composition

and species traits selected by the environment (Fugère et al., 2016; Leitão et al., 2018;

Castro et al., 2018). Regarding environmental heterogeneity, we measured the

dissimilarity of land-use and dissimilarity of local environmental variables using

PERMDISP. We obtained the latter using a matrix of Euclidean distance of the

following standardized abiotic variables (using decostand function and standardize

method where each value in a column is standardized to a mean of 0 and standard

deviation of 1): stream width, shading, sand, gravel, pebble, cobble, boulders, water

velocity, depth, pH, conductivity, nitrogen and phosphorus. We also calculated the

Euclidean distance of all land use variables together (i.e., proportions of native forest,

secondary forest, exotic planted forests, pasture, agriculture, urban, mining, wetland,

bare soil, water and mixed) to obtain the land use dissimilarity at watershed. We

Page 131: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

131

summarized these predictor variables as well as their possible mechanisms of influence

on beta diversity in Fig. 1.

We investigated if land use affects beta diversity of aquatic insect communities

through increase of environmental harshness and/or modifications on environmental

heterogeneity using a Structural Equation Modeling (SEM). SEM is based on regression

analyses and allows testing multivariate and hierarchical relationships as well as

investigating causality between many variables simultaneously (Shipley, 2004).

Furthermore, SEM allows the investigation of latent variables, which are variables that

are difficult or impossible to obtain directly but can be defined using several measurable

variables (Shipley, 2004; Grace, 2006). In our study, environmental harshness (built

using nitrogen, phosphorus, deforestation and sand) and environmental variability (built

using land-use dissimilarity and local environmental variables dissimilarity) were

included as latent variables. We built four different SEMs to evaluate separately the

effects of land-use on each beta diversity metric (i.e. taxonomic/functional) and country

(Brazil/Finland). In order to check if the model as a whole is adequate to represent our

data, we used a goodness-of-fit chi-square (χ2) statistic. An adequate model should have

a low χ2 statistic and a nonsignificant p-value since it tests the difference between the

observed data and the hypothesized model. We showed only SEMs based on incidence

data (except for functional beta diversity because it did not run), but included SEMs for

abundance data in Table S1 and Figure S2. We used sem function in the lavaan package

(Rosseel, 2012) in R.

In addition, we built a linear regression model using beta diversity within a

watershed as the response variable (one model for each beta diversity metric) and the

following predictors: mean of sand, mean of nitrogen, mean of phosphor, log of total

dissimilarity of local environmental variables, log of deforestation, log of total

Page 132: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

132

dissimilarity of land (all numeric variables) and country (categorical variable). We log-

transformed some predictors to better reach normality and homoscedasticity

assumptions. We did not select models (e.g. using AIC) because we already chose the

abovementioned variables based on the existing literature information. We checked for

multicollinearity using vif function. We fit the model using the lm function in R.

3. Results

We recorded 16,133 aquatic insects identified in 83 genera across tropical streams and

86,048 aquatic insects identified in 77 genera across boreal streams. Species richness at

the levels of stream sites and watersheds were higher in Brazil than in Finland, while

abundance showed the opposite pattern (more details in Heino et al. in review).

Our SEM models built to test the hypothesis on how land-use would influence

beta diversity through environmental harshness and environmental variability were not

adequate to our data (i.e. our data was different from hypothesized model), neither for

taxonomic (Brazil: χ2 = 44.71; P < 0.001; Finland: χ2 = 36.61; P < 0.001) nor for

functional beta diversity (Brazil: χ2 =42.04 ; P < 0.001; Finland: χ2 = 28.39; P = 0.008)

using incidence data (except for functional beta diversity in Brazil which was weighed

by abundance). We also did not find adequate models using abundance information

(Table S1). SEMs models failure to fit data may have been due to inadequate model

specification, the small number of watersheds or a genuine lack of relationship between

biotic homogenization and land-use intensification meadiated by environmental

harshness or habitat homogeneity (Fig. 3, Fig. S2 and Table S1).

Page 133: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

133

Fig. 3. Structural models showing the relationships of the latent variables environmental

harshness (i.e. deforestation, sand, nitrogen and phosphorus) and environmental

heterogeneity (i.e. local dissimilarity and land-use dissimilarity) to taxonomic (A, B)

and functional beta diversity (C, D) in Brazil (A, C) and in Finland (B, D). Solid lines

indicate significant relationships (P < 0.05). Dotted lines indicate nonsignificant

relationships (P > 0.05). Values next to arrows indicate path coefficients. N = nitrogen,

P = phosphorus.

The linear regression model indicated that taxonomic beta diversity was higher

in Brazil than in Finland but were not influenced by variables related to land use

(F(7,32)= 3.246; R2adj = 0.287; P = 0.010; Table 2, Figure 4, Table S2 and Figure S1). We

found higher functional dissimilarity in Finland than in Brazil and also did not find

evidence for the effects of land-use intensification (F(6,33)= 5.284 R2adj = 0.434; P <

0.001; Table 2, Table S2 and Figure S1).

Page 134: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

134

Fig. 4. Beta diversity among Brazilian and among Finnish streams within basins using

Sorensen dissimilarity (A) and functional dissimilarity using incidence data (B).

Table 2. Results from linear regression models for taxonomic (using Sorensen

dissimilarity) and functional (using incidence data) beta diversity. Std error = standard

error.

Estimate Std error t value P

Taxonomic dissimilarity

Intercept 0.361 0.065 5.503 <0.001

Country -0.073 0.026 -2.742 <0.001

Dissimilarity of land use 0.035 0.027 1.284 0.208

Deforestation -0.003 0.022 -0.154 0.878

Dissimilarity of local variables 0.047 0.063 0.747 0.460

Mean of sand 0.013 0.025 0.538 0.594

Mean of nitrogen -0.039 0.026 -1.522 0.137

Mean of phosphor 0.038 0.027 1.388 0.174

Functional dissimilarity

Intercept 0.139 0.008 16.915 <0.001

Country 0.015 0.003 4.668 <0.001

Dissimilarity of land use -0.002 0.003 -0.866 0.393

Deforestation 0.002 0.003 0.977 0.336

Dissimilarity of local variables 0.007 0.008 0.958 0.345

Mean of sand -0.004 0.003 -1.515 0.140

Mean of nitrogen -0.003 0.003 -1.097 0.281

Mean of phosphor -0.0003 0.003 -0.090 0.928

Page 135: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

135

4. Discussion

Taxonomic and functional beta diversity were not congruent between tropical and

boreal regions: we found higher taxonomic but lower functional beta diversity among

tropical than among boreal streams. In addition, contrary to our expectation, we did not

find taxonomic or functional biotic homogenization neither due environmental

harshness (i.e. higher sand, nitrogen, phosphor or lower native vegetation cover) nor

due reduction of environmental heterogeneity (i.e. lower land-use heterogeneity and

lower local habitat variability) promoted by intensive land-use using SEMs and linear

regression models. Althought we discussed below possible reasons for why beta

diversity did not decrease with land-use intensity, we could not discard that the gradient

in land use, especially in Finland, may be not strong enough to cause biotic

homogenization or that 20 watersheds sampled in each country could be a low number

of replicates. However, we highlighted that 20 watersheds sampled in each country

represents a huge sampling effort (100 streams in each country), and that we sampled in

order to maximize the disturbance gradient existing in each sampled region.

One of the possible explanations for lower taxonomic beta diversity among

boreal streams is the increase of environmental harshness with latitude (e.g. climate)

because beta diversity is supposed to be lower among harsh habitats (e.g. Chase, 2007;

Chase, 2010). The higher taxonomic but lower functional beta diversity among tropical

streams suggest that, although species composition is more variable among tropical

streams, communities are functionally more redundant than among boreal streams.

Higher taxonomic but lower functional beta diversity in tropics is not an unprecedented

finding. For instance, despite of the high taxonomic beta diversity, functional beta

diversity was very low in tropical estuarine fish communities due dominant functional

groups (Villéger et al., 2012). In addition, regions closer to the poles are supposed to

Page 136: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

136

contain a large range and high turnover of viable functional strategies of trees due to

climatic seasonality, which may increase functional beta diversity (Lamanna et al.,

2014). However, the causes of such finding (i.e. higher taxonomic but lower functional

beta diversity in tropics) in streams are poorly known. Indeed, the existence of

latitudinal gradients of taxonomic and functional beta diversities is under ongoing

discussion in the literature (e.g. Qian and Ricklefs, 2007; Kraft et al., 2011; Qian and

Song, 2013).

We found that neither taxonomic nor functional biotic homogenization was

promoted by land-use intensity. The lack of effects of land-use intensity may be even

more surprising regarding functional beta diversity because trait composition is

supposed to respond better to environmental changes than only species composition

(Castro et al., 2018). Nonetheless, it is important to point out that our findings may be

limited by the availability and quality of trait data, mainly in tropical streams, where the

information on the natural history and morphology of aquatic insects is still scarce

(Castro et al., 2018). In addition, the non-inclusion of some possible important variables

such as land use history, disturbance time lag and streams connectivity may also affect

our findings. Indeed, beta diversity patterns may be rather poorly predictable in such

highly dynamic systems as headwater streams (Heino et al., 2015).

While negative effects of intensive land use on stream species richness seem to

be more common (e.g. Corbi et al., 2013; Martins et al., 2017), the effects of land use

on streams beta diversity are still contradictory. Some studies found negative effects

(e.g. Passy and Blanchet, 2007; Maloney et al., 2011), some positive effects (e.g.

Hawkins et al., 2015; Fugère et al., 2016), whereas some studies like ours found no

effects of land use on stream beta diversity (e.g. Larsen and Omerod, 2014). One

possible explanation for such controversial results about land-use effects on stream beta

Page 137: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

137

diversity is that land use may increase environmental harshness and decrease habitat

heterogeneity within streams (Allan, 1997), but increase habitat heterogeneity among

streams. For example, land-use changes may decrease habitat heterogeneity within

streams due to bottom siltation and deforestation (Castro et al., 2018), but may increase

heterogeneity among streams if they differ in disturbance intensity or land use types

(Barboza et al., 2015; Fugère et al., 2016). The different land-use types or intensities

may be somehow related to high physical and chemical differentiation among streams

and, consequently, causing distinct species and traits composition adapted to such

environmental conditions and increasing beta diversity. For example, Hawkins et al.

(2015) and Fugère et al. (2016) found higher beta diversity of macroinvertebrate

communities among disturbed streams, suggesting among-taxa differences in stress

tolerance as the underlying mechanism. More benign habitats, such as forested streams

with high within-stream heterogeneity, may increase the importance of priority effects

(i.e. the effects of the early colonizers on the following ones) which may increase

stochasticity in species establishment causing distinct species composition, and

consequently, high beta diversity (e.g. Chase, 2010; Petsch et al. 2017) (see Fig. 4).

Such mechanisms, i.e. high habitat heterogeneity among modified streams and high

stochasticity among forested streams, are not mutually exclusive along a land-use

gradient but may act simultaneously resulting in no difference between beta diversity

among forested and among modified streams.

Page 138: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

138

Fig. 5. Habitat heterogeneity within and among forested (A, B, C) and modified (D, E,

F) streams. Habitat heterogeneity within forested streams may be higher than within

modified streams, but habitat heterogeneity among-streams may be higher among

modified streams. Modified streams may differ a lot from each other related to different

land-use types or intensity: the streambed in rural streams may be completed silted as

well as covered marginally by few trees (D); streams surrounded by exotic trees

plantation may have high vegetation cover but composed by only one tree species which

may contaminate the water with allelopathic substances (E); streams surrounded by

pasture may also be silted but with less runoff of contaminants than streams surrounded

by agriculture. Grey symbols and figures inside the streams indicate the substrata; N=

nitrogen.

In conclusion, we found high taxonomic and low functional beta diversity

among tropical streams, but the mechanisms driving such patterns are still unclear. We

did not find evidence that land-use intensification drives taxonomic or functional biotic

homogenization, probably due to stochastic and deterministic processes acting

simultaneusly to cause similar beta diversity among modified and among forested

streams. Our findings suggest the effects of different climatic regions as well as the

effect of environmental harshness and habitat heterogeneity mediated by land-use on

stream beta diversity remain to be completely understood.

Page 139: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

139

Acknowledgments

We would like to thank Amarilis Brandão, Carlos F. Sanches and Neliton Lara for

Brazilian field assistance. We are also thankful to Frederico Salles, Pitágoras Bispo,

Lucas Lecci, Allan Santos, Rafael Braga, Bruno Sampaio, Rhainer Ferreira, Claudio

Froehlich and Jorge Nessimian for help on species traits of brazilian insects. The

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) provided a

student fellowship to DKP. This study was funded by the FAPESP-AKA Joint Call on

Biodiversity and Sustainable Use of Natural Resources (grant 2013/50424-1) from São

Paulo Research Foundation (FAPESP) to TS, and grants from the Academy of Finland

(AKA) to JH (no. 273557) and JS (273560). ASM received a research fellowship from

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq no.

309412/2014-5).

References

Allan, J.D., Erickson, D.L., Fay J., 1997. The influence of catchment land use on stream

integrity across multiple spatial scales. Freshw. Biol. 37, 149–161.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream

ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284.

Anderson, M.J., Ellingsen, K.E., McArdle, B.H., 2006. Multivariate dispersion as a

measure of beta diversity. Ecol. Lett. 9, 683–693.

Barboza, L.G.A., Mormul, R.P., Higuti, J., 2015. Beta diversity as a tool for

determining priority streams for management actions. Water Sci. Technol . 71,

429-1435.

Baselga, A., 2010. Partitioning the turnover and nestednesscomponents of beta

diversity. Glob. Ecol. Biogeogr. 19, 134–143.

Page 140: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

140

Baselga, A., Orme, D., Villeger, S., Bortoli, J., Leprieur, F., 2013. betapart: Partitioning

Beta Diversity into Turnoverand Nestedness Components. R package version

1.3. Available at: http://CRAN.R-project.org/package=betapar.

Brown, J.H., 2014. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22.

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P.,

Narwani, A., Mace, G.M., Tilman, D., Wardle, D., Kinzig, A.P., Daily, G.C.,

Loreau, M., Grace, J.B., Larigauderie, A., Srivastava, D.S., Naeem, S., 2012.

Biodiversity loss and its impact on humanity. Nature 486, 59–67.

Castro, D.M.P., Dolédec, S., Callisto, M., 2018. Land cover disturbance homogenizes

aquatic insect functional structure in neotropical savanna streams. Ecol. Ind. 84,

573–582.

Catano, C.P., Dickson, T.L., Myers, J.A., 2017. Dispersal and neutral sampling mediate

contingent effects of disturbance on plant beta-diversity: a meta-analysis. Ecol.

Lett. 20, 347–356.

Chase, J.M., 2007. Drought mediates the importance of stochastic community assembly.

Proc. Natl. Acad. Sci. U.S.A. 104, 17430–17434.

Chase, J.M., 2010. Stochastic Community Assembly Causes Higher Biodiversity in

More Productive Environments. Science 328, 1388-1391.

Cilleros, K., Allard, L., Grenouillet, G., Brosse S., 2016. Taxonomic and functional

diversity patterns reveal different processes shaping European and Amazonian

stream fish assemblages. J. Biogeogr. 43, 1832–1843.

Colzani, E., Siqueira, T., Suriano, M.T., Roque, F.O., 2013. Responses of aquatic insect

functional diversity to landscapechanges in Atlantic forest. Biotropica 45, 343–

350.

Page 141: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

141

Corbi, J.J., Kleine, P., Trivinho-Strixino, S., 2013. Are aquatic insect species sensitive

to banana plant cultivation? Ecol. Ind. 25, 156–161.

Costa, S.S., Melo, A.S., 2008. Beta diversity in stream macroinvertebrate assemblages:

among-site and amongmicrohabitat components. Hydrobiologia 598, 131–138.

Díaz, S., Cabido, M., 2001. Vive la difference: plant functional diversity matters to

ecosystem processes. Trends Ecol. Evol. 16, 646–655.

Donohue, I., Jackson, A.L., Pusch, M.T., Irvine, K., 2009. Nutrient enrichment

homogenizes lake benthic assemblages at local and regional scales. Ecology 90,

3470–3477.

Fugère, V., Kasangaki, A., Chapma, L.J., 2016. Land use changes in an afrotropical

biodiversity hotspot affect stream alpha and beta diversity. Ecosphere 7, e01355-

10.1002/ecs2.1355.

Gámez-Virués, S., Perović, D.J., Gossner, M.M., Börschig, C., Blüthgen, N., de Jong,

H., Simons, N.K., Klein, A.M., Krauss, J., Maier, G., Scherber, C., Steckel, J.,

Rothenwöhrer, C., Steffan-Dewenter, I., Weiner, C.N., Weisser, W., Werner, M.,

Tscharntke, T., Westphal, C., 2015. Landscape simplification filters species

traits and drives biotic homogenization. Nat. Commun. 6, 8568.

Gaston, K.J., 2000. Global patterns in biodiversity. Nature 405, 220–227.

Golterman, H.L., Climo, R.S., Ohnstad, M.A.M., 1978. Methods for Physical and

Chemical Analysis of Freshwaters. IBP, Oxford.

Gossner, M.M., Lewinsohn, T.M., Kahl, T., Grassein, F., Boch, S., Prati, D., Birkhofer,

K., Renner, S.C., Sikorski, J., Wubet, T., Arndt, H., Baumgartner, V., Blaser, S.,

Blüthgen, N., Börschig, C., Buscot, F., Diekötter, T., Jorge, L.R., Jung, K.,

Keyel, A.C., Klein, A., Klemmer, S., Krauss, J., Langel, M., Müller, J.,

Overmann, J., Pašalić, E., Penone, C., Perović, D.J., Purschke, O., Schall, P.,

Page 142: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

142

Socher, S.A., Sonnemann, I., Tschapka, M., Tscharntke, T., Türke, M., Venter,

P.C., Weiner, C.N., Werner, M., Wolters, V., Wurst, S., Westphal, C., Fischer,

M., Weisser, W.W., Allan, E., 2016. Land-use intensification causes

multitrophic homogenization of grassland communities. Nature 540, 266-269.

Grace, J.B., 2006. Structural equation modeling and natural systems. Cambridge

University Press

Hawkins, C.P., Mykrä, H., Oksanen, J., Vander Laan, J.J., 2015. Environmental

disturbance can increase beta diversity of stream macroinvertebrate assemblages.

Global Ecol. Biogeogr. 24, 483–494.

Heino, J., Melo, A.S., Bini, L.M., Altermatt, F., Al-Shami, S.A., Angeler, D.G.,

Bonada, N., Brand, C., Callisto, M., Cottenie, K., Dangles, O., Dudgeon, D.,

Encalada, A., Göthe, E., Grönroos, M., Hamada, N., Jacobsen, D., Landeiro,

V.L., Ligeiro, R., Martins, R.T., Miserendino, M.L., Rawi, C.S.M., Rodrigues,

M.E., Roque, F.O., Sandin, L., Schmera, D., Sgarbi, L.F., Simaika, J.P.,

Siqueira, T., Thompson, R.M., Townsend, C.R., 2015. A comparative analysis

reveals weak relationships between ecological factors and beta diversity of

stream insect metacommunities at two spatial levels. Ecol. Evol. 6, 1235–1248.

Hillebrand, H., 2004. On the Generality of the Latitudinal Diversity Gradient. Am. Nat.

163, 192-211.

Jacobsen, D., Cressa, C., Mathooko, J.M., Dudgeon, D., 2008. Macroinvertebrates:

composition, life histories and production. In: Tropical stream ecology (D.

Dudgeon, ed.). Elsevier, San Diego, p.65-105.

Jonason, D., Ekroos, J., Öckinger, E., Helenius J., Kuusaari, M., Tiainen, J., Smith,

H.G., Lindorg, R., 2017. Weak functional response to agricultural landscape

homogenisation among plants, butterflies and birds. Ecography 40, 1221–1230.

Page 143: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

143

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly,

D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating

phylogenies and ecology. Bioinformatics 26, 1463-1464.

Kennedy, T.A., Muehlbauer, J.B., Yackulic, C.B., Lytle, D.A., Miller, S.A., Dibble,

K.L., Kortenhoeven, E.W., Metcalfe, A.N., Baxter, C.V., 2016. Flow

management for hydropower extirpates aquatic insects, undermining river food

webs. BioScience 66, 561–575.

Kraft, N.J.B., Comita, L.S., Chase, J.M., Sanders, N.J., Swenson, N.G., Crist, T.O.,

Stegen, J.C., Vellend, M., Boyle, B., Anderson, M.J., Cornell, H.V., Davies,

K.F., Freestone, A.L., Inouye, B.D, Harrison, S.P., Myers, J.A., 2011.

Disentangling the drivers of β diversity along latitudinal and elevational

gradients. Science 333, 1755–8.

Lamanna, C., Blonder, B., Violle, C., Kraft, N.J.B., Sandel, B., Šímová, I., Donoghue,

J.C., Svenning, J., McGill, B.J., Boyle, B., Buzzard, V., Dolins, S., Jørgensen,

P.M., Marcuse-Kubitza, A., Morueta-Holme, N., Peet, R.K., Piel, W.H., Regetz,

J., Schildhauer, M., Spencer, N., Thiers, B., Wiser, S.K., Enquist, B.L., 2014.

Functional trait space and the latitudinal diversity gradient. Proc. Natl. Acad.

Sci. U.S.A. 111, 13745–13750.

Laliberté, E., Legendre, P., Shipley, B., 2014. FD: measuring functional diversity from

multiple traits, and other tools for functional ecology. R package version 1, 0–

12.

Larsen, S., Ormerod, S.J., 2014. Anthropogenic modification disrupts species co-

occurrence in stream invertebrates. Global Change Biol. 20, 51–60.

Leal, C.G., Pompeu, P.S., Gardner, T.A., Leitão, R.P., Hughes, R.M., Kaufmann, P.R.,

Zuanon, J., Paula, F.R., Ferraz, S.F.B., Thomson, J.R., Nally, R.M., Ferreira, J.,

Page 144: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

144

Barlow, J., 2016. Multi-scale assessment of human-induced changes to

Amazonian instream habitats. Lands. Ecol. 31, 1725–1745.

Leitão, R.P., Zuanon, J., Mouillot, D., Leal, C.G., Hughes, R.M., Kaufmann, P.R.,

Villéger, S., Pompeu, P.S., Kasper, D., de Paula, F.R., Ferraz, S.F.B., Gardner,

T.A., 2018. Disentangling the pathways of land use impacts on the functional

structure of fish assemblages in Amazon streams. Ecography 41, 219–232.

Mackereth, F.J., Heron, H.J., Talling, J.F., 1978. Water Analysis: Some Revised

Methods for Limnologists. Freshwater Biological Association, London.

Maloney, K., Munguia, P., Mitchell, R., 2011. Anthropogenic disturbance and

landscape patterns affect diversity patterns of aquatic benthic

macroinvertebrates. J. North Am. Benthol. Soc. 30, 284–295.

Marchetti, M.P., Lockwood, J.L., Light, T., 2006. Effects of urbanization on

California’s fish diversity: Differentiation, homogenization and the influence of

spatial scale. Biol. Conserv. 127, 2130–2318.

Martins, R.T., Couceiro, S.R.M., Melo, A.S., Moreira, M.P., Hamada, N., 2017. Effects

of urbanization on stream benthic invertebrate communities in Central Amazon.

Ecol. Ind. 73, 480–491.

McKinney, M.L., Lockwood, J.L., 1999. Biotic homogenization: a few winners

replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450-

453.

Millenium Ecosystem Assessment, 2005. Ecosystems and Human Well Being. Island

Press, Washington DC.

Mittelbach, G.G., Schemske, D.W., Cornell, H.V., Allen, A.P., Brown, J.M., Bush,

M.B., Harrison, S.P., Hurlbert, A.H., Knowlton, N., Lessios, H.A., McCain,

C.M., McCune, A.R., McDade, L.A., McPeek, M.A., Near, T.J., Price, T.D.,

Page 145: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

145

Ricklefs, R.E., Roy, K., Sax, D.F., Schluter, D., Sobel, J.M., Turelli, M., 2007.

Evolution and the latitudinal diversity gradient: speciation, extinction and

biogeography. Ecol. Lett. 10, 315–331.

Olden, J.D., Rooney, T.P., 2006. On defining and quantifying biotic homogenization.

Global Ecol. Biogeogr. 15, 113–120.

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B.,

Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H., 2015. vegan:

Community Ecology Package. R package version 2.2-1. Available at:

http://CRAN.R-project.org/package=vegan.

Passy, S.I., Blanchet, F.G., 2007. Algal communities in human-impacted stream

ecosystems suffer beta-diversity decline. Divers. Distrib. 13, 670–679.

Petsch, D.K., Schneck, F., Melo, A.S., 2017. Substratum simplification reduces beta

diversity of stream algal communities. Freshw. Biol. 62, 205-213.

Podani, J., Schmera, D., 2006. On dendrogram-based measures of functional diversity.

Oikos 115, 179–185.

Qian, H., Ricklefs, R.E., 2007. A latitudinal gradient in large-scale beta diversity for

vascular plants in North America. Ecol. Lett. 10, 737–744.

Qian, H., Song, J.S., 2013. Latitudinal gradients of associations between beta and

gamma diversity of trees in forest communities in the New World. J. Plant Ecol.

6, 12–18.

R Core Team, 2017. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna. Available at: http://www.R-

project.org/.

Rodrigues, J.L.M., Pellizari, V.H., Mueller, R., Baek, K., Jesus, E.C., Paula, F.S.,

Mirza, B., Hamaoui, G.S., Tsai, S.M., Feigl, B., Tiedje, J.M., Bohannan, B.J.M.,

Page 146: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

146

Nüsslein, K., 2013. Conversion of the Amazon rainforest to agriculture results in

biotic homogenization of soil bacterial communities. Proc. Natl. Acad. Sci.

U.S.A. 110, 988–993.

Rodrigues, J.F.M., Olalla-Tárraga, M.A., Iverson, J.B., Akre, T.S.B., Diniz-Filho,

J.A.F., 2017. Time and environment explain the current richness distribution of

non-marine turtles worldwide. Ecography 40, 1-10.

Rosseel, Y., 2012. lavaan: An R package for structural equation modeling. J. Statistical

Software 48, 1–36.

Sala, O. E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-

Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge,

D.M., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, N.T., Walker, B.H.,

Walker, M., Wall, D.H., 2000. Global biodiversity scenarios for the year 2100.

Science 287, 1770–1774.

Sfair, J.C., Arroyo-Rodriguez, V., Santos, B.A., Tabarelli, M., 2016. Taxonomic and

functional divergence of tree assemblages in a fragmented tropical forest. Ecol.

Appl. 26, 1816–1826.

Shipley, B., 2004. Cause and correlation in biology: a user’s guide to path analysis,

structural equations and causal inference. Cambridge University Press,New

York.

Siqueira, T., Lacerda, C.G.T., Saito, V.S., 2015. How does landscape modification

induce biological homogenization in tropical stream metacommunities?

Biotropica 47, 509–516.

Soininen, J., Lennon, J.J., Hillebrand, H., 2007. A multivariate analysis of beta diversity

across organisms and environments. Ecology 88, 2830–2838.

Page 147: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

147

Soininen, J., 2010. Species turnover along abiotic and biotic gradients: patterns in space

equal patterns in time? BioScience 60, 433–439.

Solar, R.R.d.C., Barlow, J., Ferreira, J., Berenguer, E., Lees, A.C., Thomson, J.R.,

Louzada, J., Maués, M., Moura, N.G., Oliveira, V.H.F., Chaul, J.C. M.,

Schoereder, J.H., Vieira, I.C.G., Mac Nally, R., Gardner, T.A., 2015. How

pervasive is biotic homogenization in human-modified tropical forest

landscapes? Ecol. Lett. 18, 1108–1118.

Stevens, G.C., 1989. The latitudinal gradient in geographical range: how so many

species coexist in the tropics. Am. Nat. 133, 240–256.

Villéger, S., Miranda, J.R., Hernandez, D.F., Mouillot, D., 2012. Low functional β-

diversity despite high taxonomic β-diversity among tropical estuarine fish

communities. PLoS One 7, e40679.

Violle, C., Navas, M.L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E.,

2007. Let the concept of trait be functional! Oikos 116, 882–892.

Page 148: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

148

SUPPLEMENTARY MATERIAL

Figure S1. Beta diversity among Brazilian and among Finnish streams within basins

using Sorensen dissimilarity (a), turnover component of Sorensen dissimilarity (b),

functional dissimilarity using incidence data (c), Bray-Curtis dissimilarity (d), turnover

component of Bray-Curtis dissimilarity (e) and functional dissimilarity with abundance

weight (f).

Page 149: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

149

Fig. S2 Structural model showing the relationships of the latent variables environmental

harshness (i.e. deforestation, sand, nitrogen and phosphor) and environmental

heterogeneity (i.e. local dissimilarity and land-use dissimilarity) to taxonomic (A, B)

and functional beta diversity (C) in Brazil (A) an Finland (B, C). Solid lines indicate

significant relationships (P < 0.05). Dotted lines indicate nonsignificant relationships (p

> 0.05). Values next to arrows indicate path coefficients. N = nitrogen, P = phosphor.

Page 150: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

150

Table S1. Results from the structural equation model to taxonomic and functional beta

diversity in Brazil and Finland using abundance information.

χ2 P

Brazil Taxonomic 44.4 <0.001

Finland Taxonomic 32.3 0.020

Finland Functional 27.2 0.012

Page 151: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

151

Table S2. Results from linear model for taxonomic (using Bray-Curtis, turnover

component of Bray-Curtis and turnover component of Sorensen) and functional (using

abundance data) beta diversity.

Estimate Std error t value P

Bray-Curtis

Intercept 0.369 0.065 5.67 <0.01

Country -0.067 0.026 -2.538 0.016

Dissimilarity of land use 0.024 0.027 0.884 0.383

Native deforestation 0.003 0.022 0.129 0.897

Dissimilarity of local variables 0.067 0.063 1.065 0.291

Mean of sand 0.015 0.025 0.609 0.546

Mean of nitrogen -0.035 0.026 -1.369 0.180

Mean of phosphor 0.025 0.027 0.924 0.362

R2adj 0.227 0.028

Turnover component of Bray-Curtis

Intercept 0.231 0.057 4.020 <0.01

Country -0.080 0.023 -3.444 <0.01

Dissimilarity of land use -0.008 0.023 -0.349 0.729

Native deforestation 0.024 0.021 1.209 0.235

Dissimilarity of local variables 0.085 0.055 1.534 0.134

Mean of sand 0.012 0.022 0.538 0.594

Mean of nitrogen -0.030 0.022 0.538 0.594

Mean of phosphor 0.002 0.024 0.114 0.909

R2adj 0.246 0.020

Turnover componente of Sorensen

Intercept 0.239 0.060 3.971 <0.01

Country -0.078 0.024 -3.183 <0.01

Dissimilarity of land use 0.002 0.024 0.086 0.932

Native deforestation 0.019 0.021 0.925 0.361

Dissimilarity of local variables 0.057 0.058 0.982 0.333

Mean of sand 0.026 0.023 1.146 0.260

Mean of nitrogen -0.010 0.025 0.406 0.687

Mean of phosphor -0.030 0.024 -1.290 0.206

R2adj 0.279 0.011

Functional (abundance weighed)

Intercept 0.128 0.011 11.480 <0.01

Country 0.013 0.004 2.916 <0.01

Dissimilarity of land use -0.007 0.004 -1.610 0.117

Native deforestation 0.007 0.003 1.844 0.074

Dissimilarity of local variables 0.006 0.010 0.596 0.555

Mean of sand -0.004 0.004 -0.970 0.339

Mean of nitrogen -0.003 0.004 -0.739 0.465

Mean of phosphor <0.001 0.004 -0.138 0.890

R2adj 0.284 0.010

Page 152: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

152

C

LAND-USE EFFECTS ON STREAMS

BIODIVERSITY: A META-ANALYSIS5

5 Manuscrito a ser submetido para a seção Reports da revista Ecology em colaboração

com A. S. Melo, L. Korell e J. M. Chase.

APÍTULO 5

22

Page 153: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

153

Abstract

It is well-known that land-use intensification is a major driver of biodiversity loss in

streams, but the main mechanisms underlying this pattern are not yet completely

understood. We conducted a meta-analysis using 39 studies to address how land use

affects alpha and beta diversities as well as relative and total abundance in streams. We

found that species composition of modified streams is different, not only a subset from

the species composition of reference streams. Indeed, many biological monitoring

studies found that some species are indicators of good water quality while others species

are indicators of poor water quality. Land-use changes did not cause biotic

homogenization, maybe because modified streams may differ a lot in terms of type and

intensity of disturbance. We also found lower species richness related to changes in

relative abundance probably due increase of dominance of tolerante species and not just

simply caused by a lower number of individuals due land-use alterations. We

highlighted that the sole use of species richness may not be adequate to disentangle the

main mechanisms underlying biodiversity loss due to land-use intensification.

Keywords: Biotic homogenization, deforestation, ENSPIE, beta diversity, lotic

ecosystems

Page 154: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

154

INTRODUCTION

Land-use intensification is a major driver of species loss worldwide (Sala et al.

2000, Newbold et al. 2015), but the main mechanisms underlying this decline in

biodiversity are not yet completely understood. One reason behind this is that the sole

quantification of species richness may not be enough to capture all changes in

biodiversity (Chase and Knight 2013, Hillebrand et al. 2017). For example, (1) land-use

intensification could decrease the number of species and change their relative

abundances, yet the total number of individuals in the community may remain constant.

In this scenario, some species would become dominant and other species would become

extinct or rarer according to their tolerance to land use (e.g. Lougheed et al. 2008,

Castro et al. 2018). Alternatively, (2) land-use intensification could decrease the number

of species and total number of individuals, but change proportionally the relative

abundances of the remaining species. In this scenario, the species richness reduction due

to land-use would not be related to increased species dominance but a consequence

from a sampling artifact since the number of observed species is supposed to decrease

with reduced number of sampled individuals (“more individual hypothesis”; Srivastava

and Lawton 1998, Schuler et al. 2014). Although both scenarios result in lower species

richness with changing land-use intensity, they are caused by different mechanisms.

One way to assess which components of biodiversity (i.e. relative abundance

and/or species numbers) are changed by land-use intensity is to use the probability of

interspecific encounter (PIE) (complement version of Simpson’s index; Hurlbert 1971).

PIE corresponds to the probability that two individuals randomly sampled from a

community belong to different species (Blowes et al. 2017). It is the difference of

rarefied richness for two and one individuals. Because PIE describes the slope of the

individual-based rarefaction curve at its origin, this measure can estimate the richness

Page 155: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

155

and evenness of the relative abundance distribution (Chase and Knight 2013).

Converting PIE into an ‘effective number of species’ (ENSPIE = 1/∑ 𝑝𝑖2𝑆𝑖=1 , where 𝑆

represents the number of species and 𝑝𝑖 is the proportion of species 𝑖 in the community)

gives the number of relatively common species (Blowes et al. 2017). Thus, the

comparison of ENSPIE goes beyond the simple report of differences in species numbers

between two communities and may be helpful to understand the mechanisms

underlying, e.g., the effects of land use modification on streams biodiversity (e.g.

changes in total and/or relative abundance). Moreover, ENSPIE is independent of

sample-size and scale (Chase and Knight 2013) while species richness is scale-sensitive

and increases with the sampling area or number of sampled individuals (Colwell et al.

2004). Understanding and taking into account the limitation of diversity measures is

important because drivers of biodiversity change, such as land-use or disturbance, may

be for instance stronger at smaller scale (e.g. community or alpha scale) than larger

scale (e.g. communities combined in one region or gamma scale) (e.g. Chase and

Knight 2013, Powell et al. 2013).

In addition to changes in abundance and species richness, land-use can affect

species composition of communities (e.g. Solar et al. 2015, Gossner et al. 2016). The

variation of species composition from site to site, i.e. beta diversity (Whittaker 1960) is

composed by two components: turnover (i.e. species replacement among communities)

and nestedness (i.e. species richness difference among communities) (Baselga 2012).

The partition of beta diversity into its two components allows the assessment of the

main mechanisms generating variation in species composition (e.g. between pristine and

modified communities). On the one hand, species composition between pristine and

modified communities could be different, with some species adapted to local pristine

conditions while other species could be adapted to or tolerate modified conditions

Page 156: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

156

(Gutiérrez-Canova 2013). In this scenario, we would expect a higher contribution of

turnover to total beta diversity. On the other hand, the species composition of modified

communities could not be different of pristine communities, but only a nested subset of

the total species composition from pristine communities. In this scenario, land-use may

drive a non-random extinction of sensitive species allowing only the tolerant species to

survive in modified streams (Gutiérrez-Canova 2013). In this case, we would expect an

increased contribution of the nestedness component to beta diversity.

Besides using beta diversity to verify whether species composition is different

between reference and modified streams, we may use beta diversity estimated among

modified and among reference streams to verify if land-use intensification decrease

communities variability causing biotic homogenization (e.g. Siqueira et al. 2015, Castro

et al. 2018). This biotic homogenization (McKinney and Lockwood 1999) might occur

because of a loss of rare and sensitive species and/or a gain of the same tolerant

widespread species across intensively modified communities (McKinney and

Lockwood 1999, Gossner et al. 2016).

Previous studies on land-use change are primarily conducted in terrestrial

ecosystems (Menge et al. 2009, Gerstner et al. 2014). However, freshwater streams are

megadiverse ecosystems also severely threatened by land-use changes related to

agriculture (e.g. Corbi et al. 2013), forestry (e.g. Konopik et al. 2015) and urbanization

(e.g. Martins et al. 2017). Besides the vegetation cover reduction, land-use

intensification may change the streambed, the inputs of organic material, the

concentration of dissolved oxygen, and the channel structure, and, consequently, affect

negatively diverse stream communities (Allan et al. 1997, Leal et al. 2016).

Our main question is how land-use may change stream biodiversity. Indeed, the

effects of different land-use types on stream species richness, abundance and species

Page 157: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

157

composition are not yet completely understood and had not been quantitatively

summarized. We conducted a meta-analysis to address this topic of wide interest for

ecologists, conservationists and decision makers. We investigated if land-use changes

decreases number of observed species richness, extrapolated species richness, ENSPIE

and total abundance at local (alpha) and regional (gamma) scales. We verified if land-

use modification cause biotic homogenization in streams. We also investigated whether

land-use modifies the relative contributions of components of beta diversity (i.e.

nestedness and turnover) between modified and pristine streams.

METHODS

Data collection

We systematically searched studies contrasting biodiversity in modified and

reference (or less modified) streams. First, we used the topic search in ISI Web of

Science with the following terms combinations: (("stream" OR "streams") AND ("land

use" OR "logging" OR "agriculture" OR "plantation" OR "crops" OR "forestry" OR

"urban*" OR "rural" OR "farm" OR "silviculture") AND ("biodiversity" OR "richness"

OR "diversity" OR "beta diversit*" OR "ß diversit*")). We did not apply filters and

selected studies from 1990 to 2017. We searched on July 2017 and found 2102 studies.

We also selected 15 studies from other sources (i.e. Google Scholar).

Second, we reviewed titles and abstracts of all articles to select potentially

relevant studies for our meta-analysis. We excluded 1934 studies because they were not

related to our aim, were theoretical-reviews, were duplicated, quantified incidence or

cover data, identification at only family level or represented design problems (e.g. land-

use type was not defined, no reference streams were included or there was no

replication). After these exclusion criteria, we retained 189 studies to analyze their full

Page 158: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

158

text. Of these 189 studies we searched for data of species/genus abundance in the full

text or supplementary material and requested data from authors when not provided. 150

studies had to be excluded from the meta-analysis because the authors did not provide

data or because we detected the problems aforementioned, resulting in 39 studies

included in our meta-analysis (see Fig. S1).

From the remaining studies, we extracted information about taxa, sample size,

sites locations and land-use type. We categorized the streams into three main land-use

types: agriculture (e.g. pasture, sugarcane, banana and coffee plantations), forestry (e.g.

exotic trees plantation and logging) and urbanization (e.g. residential and industrial

areas). We used land-use types as moderators as they are suggested to alter stream

communities differently (e.g. Gimenez et al. 2015, Siqueira et al. 2015). We also

considered season, watersheds and substrata of studied streams as covariates in our

analysis (see metadata information in Table S1).

Data analysis

From each study, we recorded the number of observed species and the number

of individuals in each stream (i.e. alpha scale) as well as calculated Chao’s (1984) non-

parametric method for extrapolating the number of species. Finally, we estimated

ENSPIE for each stream. We repeated these analyses performed at alpha scale to gamma

scale. While alpha scale corresponds to samples taken in one stream, we defined gamma

scale by merging samples from streams in each land use type, also taking into account

possible covariates such as season and substrata. For instance, if the study sampled in

dry and rainy seasons, we categorized the same land-use streams into these seasons. We

calculated multiplicative beta diversity (Whittaker 1960) as the ratio between gamma

and mean alpha diversities of each measure (ENSPIE, observed and extrapolated species

Page 159: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

159

richness) separately. We resampled to obtain the same number of streams for each land-

use type at gamma scale and obtained similar results to data without resampling that we

are using in the main text (Fig. S2). Calculations of extrapolated species richness and

ENSPIE were performed using the estimateR and the diversity function (index =

"invsimpson") in the vegan package (Oksanen et al. 2010) of the R environment (R

Core Team 2017).

We also calculated beta diversity to investigate whether there was any turnover

or loss of species between reference and modified streams (i.e. agriculture, forestry or

urban land-uses) (among land-use beta diversiry). For this purpose, we merged stream

data of each study according to the land-use type. We then estimated turnover and

nestedness contribution of beta diversity between reference and modified streams using

different dissimilarity indices for incidence (i.e. Sorensen dissimilarity) and abundance

(i.e. Bray-Curtis dissimilarity) data (see Fig. S3) (Baselga 2012). We divided each

component value (i.e. turnover or nestedness) by total beta diversity to obtain their

percentage of contribution. Finally, we estimated the difference between turnover and

nestedness. We also calculated within land-use beta diversity to estimate biotic

homogenization. To do so, we estimated turnover component of beta diversity measured

among streams of each land-use type separately using Sorensen and Bray-Curtis

dissimilarities and then applied PERMDISP (multivariate homogeneity of groups

dispersions). We used beta.pair and beta.pair.abund functions from the betapart

package (Baselga et al. 2015) and betadisper function of vegan package in R.

To determine the magnitude and direction of how land-use intensification

changes biodiversity at alpha scale, we first calculated mean and standard deviation of

abundance, observed species richness, extrapolated species richness and ENSPIE across

streams of each study. From these values, we then quantified effect sizes and variance

Page 160: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

160

using log response ratio measure (i.e., log-proportional change between the means of a

land-use and reference group, Lajeunesse 2011). We expect that land-use types would

decrease abundance, observed species richness, extrapolated species richness and

ENSPIE (i.e., negative effect sizes). Because some studies used common reference

streams for different land use types, we need to take into account the non-independence

among these observations. To reduce such bias we estimated the variance of effect size

as suggested by Lajeunesse (2011), i.e. we classified the observations with common-

control as independent. Finally, we fitted a meta-analytic multilevel mixed-effects

model using study as random effect and land use as moderators. We used rma.mv

function in metafor package (Viechtbauer 2010) to fit our model.

We estimated I2, the proportion of the variance that can potentially be explained

by moderators (Borenstein et al. 2009). We checked publication bias by inspection of

funnel plots and by the Orwin Fail-Safe Number (OFSN; Orwin 1983) using,

respectively, funnel and fsn functions in metafor package. We used the OFSN to

estimate the number of studies required to decrease the observed mean effect size 1/2 of

the cumulative effect that we estimated. We did not detect publication bias (see Fig. S4

and Table S2).

At gamma and beta scale we also quantified effect sizes using log-response ratio

between modified and reference streams for total abundance, observed species richness,

extrapolated species richness and ENSPIE (except total abundance in beta scale). We

calculated the difference between the relative contribution of turnover and nestedness to

beta diversity among land-use types. In this case, values lower than zero correspond to a

higher contribution of nestedness while values higher than zero correspond to higher

contribution of turnover to beta diversity. We also estimated turnover component

within-land use types to verify biotic homogenization. Because we could not estimate

Page 161: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

161

variance associate to effect sizes for these aforementioned measures, we fitted an

unweighted linear mixed effects model using study as random effect and land-use types

as fixed effects. We used a Gaussian error distribution and the lmer function in lme4

(Bates et al. 2014) package to fit these models. We did all the figures using ggplot2

(Wickham 2009) and maps (Becker et al. 2017) packages.

RESULTS

The 39 included studies originated from all continents, except Antarctica, but

with a strong bias to South America (Fig. 1). Included studies investigated different

organisms: frogs (n = 2), fishes (n = 5), fungi (n = 1), macrophytes (n = 1), algae (n = 1)

and invertebrates (n = 28).

FIG. 1. Locations of studies included in our meta-analysis. Circle size represents the

sample size of each study.

Across organism types, land-use decreased total abundance at the alpha (mean

effect size ± 95% CI = -0.278 ± 0.225; I2= 99.761) and gamma scale (mean effect size ±

95% CI = -0.311 ± 0.228). However, disentangling land-use types, we found that only

Page 162: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

162

urbanization indeed decreased total abundance both at alpha (Fig. 2A) and gamma scale

(Fig. 2B).

FIG. 2. Effect sizes (log-response ratio) and 95% confidence interval (vertical bars)

estimated separately for agriculture, forestry and urbanization land-use types using total

abundance at alpha (A) and gamma (B) scale. Note that alpha was weighted by variance

within studies while gamma was not (see methods).

Overall, land-use decreased ENSPIE (mean effect size ± 95% CI = - 0.324 ±

0.141; I2 = 97.852), observed species richness (mean effect size ± 95% CI = - 0.403 ±

0.147; I2 = 94.811) and extrapolated species richness (mean effect size ± 95% CI = -

0.393 ± 0.156; I2 = 94.643) at alpha scale. However, the subgroups analysis indicated

that effect size of extrapolated species richness was not different from zero in

agriculture land-use (mean effect size ± 95% CI = - 0.129 ± 0.164), and urbanization

seems to have a stronger effect (Fig. 3a).

At gamma scale, land-use also decreased ENSPIE (mean effect size ± 95% CI = -

0.364 ± 0.209) and observed species richness (mean effect size ± 95% CI = - 0.288 ±

0.171), but we did not detect changes in extrapolated species richness (mean effect size

± 95% CI = - 0.162 ± 0.228). However, neither were the effect sizes of all biodiversity

measures different from zero in agriculture land-use nor did the effect size of

extrapolated species richness decline in urban streams (Fig. 3b).

Page 163: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

163

At the beta scale, there was no effect of land-use on ENSPIE (mean effect size ±

95% CI = - 0.012 ± 0.139) and observed species richness (mean effect size ± 95% CI =

0.082 ± 0.097). However, effect size was higher than zero for extrapolated species

richness (mean effect size ± 95% CI = 0.133 ± 0.122) although not for forestry land-use

(mean effect size ± 95% CI = - 0.173 ± 0.202) (Fig. 3c). We also detected higher effect

size of observed species richness in urbanization land use (mean effect size ± 95% CI =

0.283 ± 0.157).

FIG. 3. Effect sizes (log-response ratio) and 95% confidence interval (vertical bars)

estimated separately for agriculture, forestry and urbanization land-use types using

ENSPIE, extrapolated and observed species richness at alpha (A), gamma (B) and beta

scales (C). Note that alpha was weighted by variance inside studies while gamma and

beta were not (see methods).

We found a higher relative contribution of turnover rather than nestedness

component to total beta diversity measured between reference and land use streams

using Sorensen (mean difference between turnover and nestedness ± 95% CI = 0.208 ±

0.142) and Bray-Curtis dissimilarities (mean difference between turnover and

nestedness ± 95% CI = 0.401 ± 0.153) (Fig. 4A). The only exception was the contrast

between reference and urban streams using Sorensen dissimilarity, when both turnover

and nestedness components contributed equally to total beta diversity (Fig. 4A). We did

Page 164: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

164

not find evidence for biotic homogenization drive by land-use intensification since we

did not find difference between reference and land-use beta diversities neither using

Sorensen nor using Bray-Curtis dissimilarity (Fig. 4B).

FIG. 4. (A) Among land-use beta diversity: difference between turnover and nestedness

components of beta diversity measured between reference and land use streams using

Values higher than zero indicate higher contribution of turnover while values lower than

zero indicate higher contribution of nestedness to beta diversity. (B) Within land-use

beta diversity: turnover component of beta diversity measured among streams within the

same land-use type. Dashed line refers to reference beta-diversity of Sorensen and

twodash line refers of Bray-Curtis. We used incidence (Sorensen dissimilarity in blue)

and abundance data (Bray-Curtis dissimilarity in pink).

DISCUSSION

Our meta-analysis clearly demonstrates that land-use decreases stream

biodiversity across different spatial scales. Despite the many observational studies (e.g.

Konopik et al. 2015, Martins et al. 2017, Prudente et al. 2017), to our knowledge our

study is the first quantitative synthetic study about land-use effects on stream

biodiversity so far. Our synthetic approach allows us to identify the mechanisms

underlying the biodiversity decline though land-use, i.e. whether this decline is driven

by a loss of total individuals or changes in their abundance distribution. We found that

land-use not only affected biodiversity in stream communities by decreasing species

Page 165: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

165

richness and their relative abundances, but also by changing species composition (i.e.

higher contribution of turnover than nestedness to total beta diversity). However, we did

not find biotic homogenization caused by land-use intensification. Specifically,

urbanization had the strongest negative effect on stream biodiversity compared to

agriculture and forestry.

The lower species richness in conjunction with lower evenness (i.e. S and

ENSPIE) observed in modified streams might be related to species tolerance to land-use

intensity. One of the most consistent patterns in ecology is that communities are not

composed by species with equal relative abundance but by a few common and many

rare species (Preston 1948, Siqueira et al. 2012). However, the lower evenness in a

community may suggest the influence of some ecological driver such as land-use

modification (Chase and Knight 2013). Few species are ecologically adapted to tolerate

stress caused by land-use such as increased input of sediments covering the streambed,

reduced inputs of allochtonous organic material, input of fertilizers, lower concentration

of dissolved oxygen, and the alteration of flow regime or channel structure (Allan et al.

1997, Leal et al. 2016). Species intolerant to such stress may decrease in abundance or

become extinct while tolerant species may increase in abundance and become dominant

(e.g. Gimenez et al. 2015), resulting in decreasing community evenness as observed

here.

We found higher contribution of the turnover than nestedness component to total

beta diversity, i.e. the species composition in modified streams differed from reference

streams and was not just a subset of the former. Indeed, it is well known since a long

time by biologists and environmental managers that the community structure in more

pristine streams is different from the community structure in human-modified streams

(e.g., Lenat and Crawford 1994). One classic example are specific groups of

Page 166: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

166

invertebrates such as EPT (Ephemeroptera, Plecoptera and Trichoptera insect orders)

and CO (Chironomidae insect family and Oligochaeta class) which are used as

biological indicators of streams water quality. Pristine streams are supposed to be

composed mainly by these pollution-sensitive taxa (EPT) while human-impacted

streams are mainly composed by the more pollution-tolerant taxa (CO) (Ruaro and

Gubiani 2013).

Despite some observational studies (e.g., Siqueira et al. 2015, Castro et al.

2018), we did not find support in our meta-analysis for biotic homogenization caused by

land-use modification in streams. One possibility for this finding is that modified

streams may differ a lot from each other even in a same study. For instance, an urban

stream may be channeled, but not others. Some may receive treated water while other

sewage. Some may run through parks and others through industrial areas. These factors

may promote high physical and chemical differentiation and reflect in different species

composition causing higher beta diversity among them (Barboza et al. 2015).

Within the land-use types, urbanization had the strongest negative impact on

stream communities: they had lower observed and extrapolated species richness, as well

as lower total abundance than in streams modified by forestry and agriculture.

Furthermore, we observed a comparable contribution of nestedness and turnover

components to beta diversity in pristine vs. urban streams, suggesting a process that

severely decreases species richness and at the same time changes their identities – but

the identity change is higher in forestry and agriculture land-use since their turnover

component is higher. Urban areas discharge high quantities of solid and liquid waste

into the water (Meyer et al. 2005) and large areas are devegetated and paved because of

urbanization (Marzluff and Ewing 2001). In this way, such modifications may drive

Page 167: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

167

urban streams to be even harsher habitats than streams modified by agriculture and

forestry land use, where fewer species and individuals can survive (McKinney 2006).

We found land-use modifications decreased species richness in streams.

However, using measures incorporating changes in species abundance as well as the

beta diversity partition, we could infer that land-use decreased species richness by

increasing the dominance of tolerant species and changing the species composition. We

also did not find support to hypothesis of biotic homogenization caused by land-use

alteration in streams. We demonstrated that only using species richness may not be

enough to understanding the main mechanisms underlying biodiversity loss in streams

due land-use intensification and further studies should include additional components of

biodiversity change.

ACKNOWLEDGMENTS

We are thankful to all authors that kindly provided their data to conduct our

meta-analysis (see metadata in Table S1). We also thank F. May and D. Craven for help

with data analysis, and J. D. G. Trujillo for his helpful comments. DKP acknowledges

the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the

Programa de Doutorado Sanduíche no Exterior (PDSE) by the scholarships provided in

Brazil and in Germany. ASM received a research scholarship from Conselho Nacional

de Desenvolvimento Científico e Tecnológico (CNPq, no. 309412/2014-5).

LITERATURE CITED

Allan, D., D. Erickson, and J. Fay. 1997. The influence of catchment land use on stream

integrity across multiple spatial scales. Freshwater Biology 37: 149-161.

Page 168: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

168

Barboza, L. G. A., R. P. Mormul, and J. Higuti. 2015. Beta diversity as a tool for

determining priority streams for management actions. Water Science & Technology

71: 1429-1435.

Baselga, A. 2012. The relationship between species replacement, dissimilarity derived

from nestedness, and nestedness. Global Ecology and Biogeography 21:1223–1232.

Baselga, A., and C. D. L. Orme. 2015. betapart: an R package for the study of beta

diversity. Methods in Ecology and Evolution 3: 808–812.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2014. lme4: Linear mixed-effects

models using Eigen and S4. R package version 1.0-6. http://CRAN.R-

project.org/package=lme4

Becker, R. A., and A. R. R. Wilks version by Ray Brownrigg. Enhancements by T. P

Minka and A. Deckmyn. 2017. maps: Draw Geographical Maps. R package version

3.2.0. https://CRAN.R-project.org/package=maps

Blowes, S. A., J. Belmaker, and J. M. Chase. 2017. Global reef fish richness gradients

emerge from divergent and scale-dependent component changes. Proceeding of the

Royal Society B Biological Sciences 284: 1-9.

Borenstein, M., L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein. 2009. Introduction

to meta-analysis, 1st ed. Wiley, Chichester.

Castro, D. M. P., S. Dolédec, and M. Callisto. 2018. Land cover disturbance

homogenizes aquatic insect functional structure in neotropical savanna streams.

Ecological Indicators 84: 573–582.

Chase, J. M., and T. M. Knight. 2013. Scale-dependent effect sizes of ecological drivers

on biodiversity: why standardised sampling is not enough. Ecology Letters 16: 17–

26.

Page 169: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

169

Chao, A. 1984. Nonparametric estimation of the number of classes in a population.

Scandinavian Journal of Statistics 11: 265–270.

Colwell, R. K., C. X. Mao, and J. Chang. 2004. Interpolating, extrapolating, and

comparing incidence-based species accumulation curves. Ecology 85:2717-2727.

Corbi, J. J., P. Kleine, and S. Trivinho-Strixino. 2013. Are aquatic insect species

sensitive to banana plant cultivation? Ecological Indicators 25: 156–161.

Gerstner, K., C. F Dormann, A. Stein, A. M. Manceur, and R. Seppelt. 2014. Effects of

land use on plant diversity – A global meta-analysis. Journal of Applied Ecology

51: 1690–1700.

Gimenez, B. C. G., F. A. Lansac-Tôha, and J. Higuti. 2015. Effect of land use on the

composition, diversity and abundance of insects drifting in neotropical streams.

Brazilian Journal of Biology 75: 52-59.

Gossner, M. M., et al. 2016. Land-use intensification causes multitrophic

homogenization of grassland communities. Nature 540: 266-269.

Gutiérrez-Cánovas, C., A. Millán, J. Velasco, I. P. Vaughan, and S. J. Ormerod. 2013.

Contrasting effects of natural and anthropogenic stressors on beta diversity in river

organisms. Global Ecology and Biogeography 22: 796–805.

Hillebrand, H., et al. 2017. Biodiversity change is uncoupled from species richness

trends: Consequences for conservation and monitoring. Journal of Applied Ecology

55: 169–184.

Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative

parameters. Ecology 52: 577–586.

Konopik, O., I. Steffan-Dewenter, and U. Grafe. 2015. Effects of logging and oil palm

expansion on stream frog communities on Borneo, Southeast Asia. Biotropica 47:

636–643

Page 170: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

170

Lajeunesse, M. J. 2011. On the meta-analysis of response ratios for studies with

correlated and multi-group designs. Ecology 92: 2049-55.

Leal, C.G., et al. 2016. Multi-scale assessment of human-induced changes toAmazonian

instream habitats. Landscape Ecology 31: 1725–1745.

Lenat, D. R., and J. K. Crawford. 1994. Effects of land use on water quality and aquatic

biota of three North Carolina Piedmont streams. Hydrobiologia 294: 185–199.

Lougheed, V. L., M. D. Mcintosh, C. A. Parker, and R. J. Stevenson. 2008. Wetland

degradation leads to homogenization of the biota at local and landscape scales.

Freshwater Biology 53: 2402–2413.

Martins, R. T., S. R. M. Couceiro, A. S. Melo, M. P. Moreira, and N. Hamada 2017.

Effects of urbanization on stream benthic invertebrate communities in Central

Amazon. Ecological Indicators 73: 480–491.

Marzluff, J. M., and K. Ewing 2001. Restoration of fragmented landscapes for the

conservation of birds: a general framework and specific recommendations for

urbanizing landscapes. Restoration Ecology 9: 280–292.

McKinney, M. L., and J. L. Lockwood. 1999. Biotic homogenization: A few winners

replacing many losers in the next mass extinction. Trends in Ecology and Evolution

14: 450–453.

McKinney, M. L. 2006. Urbanization as a major cause of biotic homogenization.

Biological Conservation, 127: 247–260.

Menge, B.A., et al. 2009. Terrestrial ecologists ignore aquatic literature: Asymmetry in

citation breadth in ecological publications and implications for generality and

progress in ecology. Journal of Experimental Marine Biology and Ecology 377: 93-

100.

Page 171: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

171

Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. Stream ecosystem function in

urbanizing landscapes. Journal of the North American Benthological Society 24:

602-612.

Newbold, T., et al. 2015. Global effects of land use on local terrestrial biodiversity.

Nature 520: 45–50.

Orwin, R. G. 1983. A fail-safe N for effect size in meta-analysis. Journal of Educational

Statistics 8:157-159.

Oksanen, J., et al. 2013. vegan: community ecology package. https://cran.r-

project.org/web/packages/vegan.

Powell, K. I., J. M. Chase, and T. M. Knight. 2013. Invasive plants have scale-

dependent effects on diversity by altering species-area relationships. Science 339:

316-318.

Preston, F. W. 1948. The Commonness, And Rarity, of Species. Ecology 29: 254–283.

Prudente, B. S., P. S. Pompeu, L. Juen, and L. F. A. Montag. 2017. Effects of reduced-

impact logging on physical habitat and fish assemblages in streams of Eastern

Amazonia. Freshwater Biology 62: 303–316.

R Core Team. 2017. R: a language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria. www.r-project.org

Ruaro, R., and E. A. Gubiani. 2013. A scientometric assessment of 30 years of the

index of biotic integrity in aquatic. Ecological Indicators 29: 105–110.

Sala, O. E., et al. 2000. Global Biodiversity Scenarios for the Year 2100. Science 287:

1770-1774.

Schuler, M. S., J. M. Chase, and T. M. Knight. 2014. More individuals drive the species

energy–area relationship in an experimental zooplankton community. Oikos 124:

1065–107.

Page 172: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

172

Siqueira, T., C. G. T. Lacerda, and V. S. Saito. 2015. How does landscape modification

induce biological homogenization in tropical stream metacommunities? Biotropica

47: 509–516.

Solar, R. B. C., et al. 2015. How pervasive is biotic homogenization in human-modified

tropical forest landscapes? Ecology Letters 18: 1108–1118.

Srivastava, D. S., and J. H. Lawton. 1998. Why more productive sites have more

species: an experimental test of theory using tree-hole communities. American

Naturalist 152: 510–529.

Viechtbauer, W. 2010. Conducting meta-analyses in R with the metafor package.

Journal of Statistic Software 36:1-48.

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New

York.

Whittaker, R. H. 1960. Vegetation of the Siskiyou mountains, Oregon and California.

Ecological Monographs 30: 279–338.

Page 173: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

173

SUPPLEMENTARY MATERIAL

TABLE S1. Metadata of 39 studies included in our meta-analysis. Agr= Agriculture,

Urb= Urbanization; For= Forestry.

First author Year Journal Land use type Taxa Country

Astudillo 2016 Hydrobiologia Agr Invertebrates Mexico

Baldi 2015 S Am J Herpetol Agr Frogs Brazil

Baumgartner 2017 Aquatic Sciences Agr e Urb Invertebrates Switzerland

Benstead 2003 Ecol Appl Agr Invertebrates Madagascar

Bere 2011 Water SA Urb Algae Brazil

Bertaso 2015 Revista Bra Ent Agr Invertebrates Brazil

Chakona 2009 Hydrobiologia Agr e For Invertebrates Zimbabwe

Corbi 2013 Ecol Ind Agr Invertebrates Brazil

Corbi 2017 Hydrobiologia Agr Invertebrates Brazil

Dias 2010 Neotropical Ichtyology Agr Fishes Brazil

Dias-Silva 2010 Zoologia Agr Invertebrates Brazil

Ejsmont-Karabin 1998 Hydrobiologia Agr Invertebrates Poland

Fraser

Thesis For Invertebrates New Zealand

Garcia 2017 Hydrobiologia Agr Invertebrates Mexico

Goldschmidt 2016 Limnologica Agr e Urb Invertebrates Panama

Hall 2001 New Zeal J Mar Fresh Agr, Urb e For Invertebrates New Zealand

Iniguez-Armijos 2016 Ecol Evol Agr e Urb Invertebrates Equador

Jingutt 2012 Sci Total Environ Agr e For Invertebrates Borneo

Konopik 2015 Biotropica For Frogs Borneo

Lenat 1994 Hydrobiologia Agr e Urb Fishes USA

Lorion 2009 Freshw Biol Agr Invertebrates Costa Rica

Martins 2017 Ecol Ind Urb Invertebrates Brazil

Mesa 2010 Hydrobiologia Agr Invertebrates Argentina

Morgan 2005 J N Am Benthol Soc Urb Fishes USA

Muehlbauer 2012 Freshw Science Urb Invertebrates USA

Mykra 2016 Ecosphere Agr e For Fungi Finland

Nogueira 2016 Environ Monit Assess For Invertebrates Brazil

Rawi 2013 Aquatic Ecology For Invertebrates Malaysia

Rodriguez 2017 Acta Biol Colombiana Agr e For Macrophytes Colombia

Roque 2015 Neotropical Ent For Invertebrates Brazil

Shearer 2011 New Zeal J Mar Fresh For e Agr Invertebrates New Zealand

Siegloch 2014 Na Acad Bra Cienc For e Agr Invertebrates Brazil

Silva 1995 Amazoniana Urb Fishes Brazil

Siqueira 2015 Biotropica Agr e For Invertebrates Brazil

Song 2009 Aquatic Ecology Agr Invertebrates France

Teresa 2017 Ecol Ind Agr Fishes Brazil

Vandermyde 2015 Freshw Science For Invertebrates USA

Yule 2015 Freshw Science Urb Invertebrates Malaysia

Page 174: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

174

TABLE S2. Fail-safe number (Orwin 1983) quantified using observed species richness,

ENSPIE, extrapolated species richness and total abundance at alpha scale.

Fail-safe number

Observed species richness

ENSPIE

Extrapolated species richness

Total abundance

77

76

77

77

Page 175: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

175

FIG. S1. Summary of the systematic review steps. (a) PRISMA flowchart (Moher et al.

2009) summarizing study inclusion and exclusion. (b) Study exclusion criteria after full-

text and data screening.

Page 176: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

176

FIG. S2. Effect sizes (log-response ratio) and 95% confidence interval (vertical bars)

estimated separately for agriculture, forestry and urbanization land-use types using

ENSPIE, extrapolated and observed species richness and total abundance at gamma

scale. We resampled the streams to obtain the same number of streams across land-use

types within-studies.

Page 177: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

177

FIG. S3. Total beta diversity measured between reference and land use streams using

incidence (Sorensen dissimilarity in blue) and abundance data (Bray-Curtis dissimilarity

in pink).

Page 178: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

178

FIG. S4. Funnel plot of observed species richness (a), ENSPIE (b), extrapolated species

richness (c) and total abundance (d) at alpha scale.

Page 179: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

179

CONSIDERAÇÕES FINAIS

A homogeneização biótica em comunidades aquáticas é um processo que pode ocorrer

em diferentes ecossistemas e ser promovido por diferentes mecanismos. No primeiro

capítulo, por meio de uma revisão teórica, encontrei que são diversas as causas de

homogeneização biótica em ambientes aquáticos continentais (e.g. introdução de

espécies não-nativas, barragem, uso do solo, produtividade, mudanças climáticas,

inundações e também secas). Também encontrei que, embora a homogeneização

taxonômica medida entre comunidades seja a forma mais comum de homogeneização

biótica, as comunidades também podem se tornar mais similares filogeneticamente ou

funcionalmente e as populações também podem se tornar geneticamente mais similares.

Ainda, encontrei que o aumento da similaridade em ecossistemas aquáticos continentais

pode gerar consequências ecológicas (e.g. afetar comunidades de presas e parasitas

associadas), evolutivas (e.g. homogeneização genética pode prejudicar possível

especiação) e até mesmo sociais (e.g. prejuízo na pesca).

No segundo capítulo, encontrei que a simplificação de hábitats pode causar

homogeneização biótica da comunidade de algas perifíticas, embora o resultado

dependa do índice empregado. Sugiro que a maior diversidade beta entre habitats

complexos possa ser devida a maior estocasticidade na história de colonização das algas

em conjunto com efeitos prioritários. Já a menor diversidade beta entre habitats simples

pode estar relacionada a processos determinísticos, em que o mesmo conjunto reduzido

de espécies tolerantes a velocidade de fluxo ocorre entre os habitats, reduzindo a

dissimilaridade. Ainda, encontrei que levar em consideração as diferentes estratégias de

vida das algas é importante, pois podem evidenciar diferentes mecanismos.

No terceiro capítulo, encontrei que cheias não homogeneizaram as comunidades

de macrófitas ou de zooplâncton no espaço. No entanto, mostrei que uma mesma lagoa

Page 180: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

180

foi mais parecida ao longo do tempo entre períodos de cheia do que entre períodos de

seca para a maioria dos grupos. No quarto capítulo, encontrei maior diversidade beta

taxonômica entre riachos tropicais, mas maior diversidade beta funcional entre os

riachos boreais. No entanto, não encontrei homogeneização biótica promovida pelo uso

do solo em decorrência do aumento da degradação ambiental ou redução da

heterogeneidade. Sugeri que esse resultado pode ser devido a dois mecanismos atuando

simultaneamente e que podem gerar similar diversidade beta: processos estocásticos

entre os riachos florestados com condições favoráveis a maioria das espécies e

heterogeneidade entre os riachos modificados pelo uso do solo.

Finalmente, no quinto e último capítulo, encontrei menor riqueza e maior

dominância de espécies em riachos modificados pelo uso do solo. Também constatei

que a composição de espécies é diferente entre riachos florestados e modificados,

provavelmente devido à tolerância das espécies ao uso do solo. No entanto, não

encontrei homogeneização biótica causada por mudanças no uso do solo, e especulo que

seja porque os riachos modificados podem diferir muito em termos de tipo e intensidade

de distúrbio, o que pode refletir em distinta composição de espécies entre eles.

Em relação à tese como um todo, uma importante constatação é que o uso de

múltiplos índices de dissimilaridade se faz necessário para descrevermos

adequadamente os padrões de diversidade beta. Embora seja uma questão mais

metodológica, isso pode afetar grandemente as conclusões dos trabalhos ecológicos. Em

especial, incorporar índices que levem em consideração as possíveis diferenças em

riqueza de espécies entre as comunidades é primordial para evitar a confusão entre os

mecanismos que promovem de fato a substituição de espécies dos que promovem

apenas a perda de espécies entre as comunidades sem alterar a composição de espécies.

Page 181: Homogeneização biótica em ambientes aquáticos continentais · russas do mundo! Obrigada pelo apoio em todos os momentos em todos esses dias que estive no Canadá – e mesmo fora

181

Embora processos estocásticos e determinísticos possam ser difíceis de serem

mensurados, especulei ao longo dos capítulos que eles podem atuar simultaneamente na

estruturação das comunidades aquáticas sujeitas ou não a possíveis causas de

homogeneização biótica e que ambos podem gerar similar diversidade beta. Uma outra

recomendação provinda de alguns capítulos é que levar em consideração as

características das espécies aquáticas, como as estratégias de vida e tamanho, pode

auxiliar no melhor entendimento da estruturação das comunidades.

Por fim, concluo que mesmo que o processo de homogeneização biótica não seja

detectado, a sua investigação é ainda assim válida pois pode resultar no reconhecimento

de outros processos que alteram a biodiversidade (e.g. diferentes tipos ou intensidade de

distúrbios). Tal investigação pode ser experimental, com dados observacionais ou por

meio de uma revisão. Enfim, homogeneização biótica em ecossistemas aquáticos

continentais, sendo um processo natural ou de perda da biodiversidade mediada pela

pressão antrópica, merece atenção em um mundo em mudança que vivenciamos hoje.