Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma...

45

Transcript of Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma...

Page 1: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.
Page 2: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

1

Ficha de Identificação da Produção Didático-Pedagógica

Titulo: PRODUÇÃO DE MATERIAL DIDÁTICO EM FÍSICA, VISANDO A UMA MELHOR APREENSÃO DOS CONCEITOS.

Autor: Alois Fudal Disciplina/Área: Física Escola de Implementação do Projeto:

Colégio Estadual São Cristóvão

Município da Escola: União da Vitória Núcleo Regional de Educação:

União da Vitória

Professor Orientador: Antônio José Camargo Instituição de Ensino Superior:

Universidade Estadual de Ponta Grossa - UEPG

Relação Interdisciplinar: Matemática e Química

Resumo

O Ensino de Física, na maioria das escolas ainda acontece de maneira descontextualizada. Percebem-se professores mais preocupados em repassarem grandes quantidades de conteúdos que enfatizam a Resolução de Problemas em situações matemáticas. Esta Unidade Didática propõe desenvolver atividades experimentais de Física na 2ª Série do Ensino Médio do Colégio Estadual São Cristóvão, no município de União da Vitória no interior do estado do Paraná. Com a intenção de mudar as práticas pedagógicas desenvolvidas em sala de aula, e melhorar a aprendizagem dos conteúdos de termodinâmica, serão construídos experimentos com os discentes, utilizando materiais de baixo custo, que poderão ser confeccionados na sala de aula, em grupos de quatro estudantes e com o apoio do professor da disciplina de Física. Para tanto a produção de materiais didáticos, explorará ao máximo a física presente, que poderá proporcionar uma aprendizagem significativa do conhecimento e a visualização de um universo que até então era desconhecido. Ao final deste projeto espera-se que os alunos tenham aprendido a Física de uma maneira prática, fácil e aplicável ao cotidiano.

Palavras-chave: Ensino de Física; Atividade Experimental; Material Didático de Física; Aprendizagem

Formato do Material Didático:

Unidade Didática

Público-Alvo: Alunos da 2ª série do Ensino Médio

Page 3: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

2

SUMÁRIO

LISTA DE FIGURAS ................................................................................................... 3

1. DADOS DE IDENTIFICAÇÃO ................................................................................ 4

2. TEMA DE ESTUDO ................................................................................................ 4

3. TÍTULO ................................................................................................................... 4

4. APRESENTAÇÃO ................................................................................................... 5

5. HISTÓRICO ............................................................................................................ 7

6. ORIENTAÇÕES METODOLÓGICAS ................................................................... 13

7. MATERIAL DIDÁTICO .......................................................................................... 14

7.1 TERMODINÂMICA .......................................................................................................... 14

7.2 ESCALAS TERMOMÉTRICAS ..................................................................................... 18

7.3 TRANSMISSÕES DE CALOR..............................................................................21

7.3.1 CONDUÇÃO DO CALOR ........................................................................................... 21

7.3.2 CONVECÇÃO DO CALOR ........................................................................................ 24

7.3.3 IRRADIAÇÃO DO CALOR ......................................................................................... 26

7.4 TROCAS DE CALOR ................................................................................................... 29

7.5 PRINCÍPOS DA TERMODINÂMICA...................................................................35

8. TESTE....................................................................................................................41

9. REFERÊNCIAS ..................................................................................................... 43

Page 4: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

3

LISTA DE FIGURAS

Figura 1 - Termômetros ............................................................................................. 15

Figura 2 - Kit experimental 1 ..................................................................................... 15

Figura 3 - Experimento 1 ........................................................................................... 16

Figura 4 - Escalas termométricas .............................................................................. 19

Figura 5 - Relações entre escalas ............................................................................. 19

Figura 6 - Kit experimental 2 ..................................................................................... 22

Figura 7 - Kit experimental 2 ..................................................................................... 22

Figura 8 - Atividade experimental .............................................................................. 23

Figura 9 - Atividade experimental .............................................................................. 23

Figura 10 - Material do do kit experimental 3 ............................................................ 25

Figura 11 - Kit experimental 3 .................................................................................... 26

Figura 12 - Material do kit experimental 4 ................................................................. 27

Figura 13 - Kit experimental 4 ................................................................................... 27

Figura 14 - Atividade experimental ............................................................................ 28

Figura 15 - Material do kit experimental 5 ................................................................. 31

Figura 16 - Kit experimental 5 ................................................................................... 32

Figura 17 - Material da atividade experimental .......................................................... 33

Figura 18 - Ciclo de Carnot ....................................................................................... 37

Figura 19 - Material do kit experimental 6 ................................................................. 38

Figura 20 - Kit experimental 6 ................................................................................... 39

Page 5: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

4

1. DADOS DE IDENTIFICAÇÃO

Professor PDE: Alois Fudal

Área: Física

NRE: União da Vitória

Professor Orientador IES: Prof. Ms. Antônio José Camargo

IES vinculada: UEPG

Escola de Implementação: Colégio Estadual São Cristóvão

Público objeto da intervenção: 2ª Série do Ensino Médio

2. TEMA DE ESTUDO: Termodinâmica

3. TÍTULO: Produção de material didático em Física, visando a uma melhor apreensão dos conceitos

Page 6: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

5

4. APRESENTAÇÃO

O Ensino de Física na maioria das escolas brasileiras, do ponto de vista

histórico durante muitos anos acontece, sob a orientação de livros didáticos,

prevalecendo muito o formalismo científico, com ênfase em problemas e cálculos. A

Física, por natureza é uma Ciência experimental, onde o conhecimento científico

pode ser comprovado com experimentos.

Na maioria dos livros didáticos, as atividades práticas estão colocadas no final

dos capítulos de forma que não é dada muita importância a sua realização,

totalmente desvinculada do conteúdo. Também os laboratórios de Ciências das

escolas encontram-se abandonados, sem manutenção, devido a pouca vontade

política em nosso país, em fornecer para as escolas, materiais de laboratório de boa

qualidade e capacitação para os professores. Outro fator que contribui para a pouca

frequência de atividades experimentais é a falta de empenho dos docentes em

apoiar a aprendizagem de conceitos, na execução de atividades experimentais.

Desta forma, uma prática pedagógica com a utilização de experimentos dificilmente

acontece no decorrer das aulas.

Isto posto surge a seguinte questão: a confecção e utilização de

experimentos pelos discentes em sala de aula, melhora a compreensão dos

conceitos da Física?

Com o intuito de responder essa indagação, pretendemos com este material,

propiciar aos alunos da 2ª Série do Ensino Médio, atividades experimentais e

confecção de kits experimentais visando à melhoria do Ensino de Física. Os alunos

chegam à escola, trazendo conceitos e compreensões do ambiente em que vivem,

pois suas mentes já construíram conhecimentos sobre os diversos fenômenos

físicos, do meio em que está inserido, assim este conjunto de informações trazidas

por eles, devem ser trabalhadas, de forma que venham a ser organizadas para

tornar a aprendizagem significativa. Desta maneira todo o conhecimento construído

de forma intuitiva deve ser comprovado experimentalmente, visando uma

aproximação com o conhecimento produzido pela comunidade científica. Sabemos

de antemão que os aprendizes nutrem relevante interesse por atividades

experimentais, fator esse que colabora significativamente com nossa tarefa. Ao

enfatizar o tema calor, partimos do problema a ser estudado levantando hipóteses e

Page 7: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

6

testando-as com a construção de experimentos. Ao comprovarmos um conceito

contribuímos para a apreensão deste dentro do paradigma que abrange. A não

comprovação, ou seja, a contra prova, implica em explorarmos novos caminhos que

visem uma explicação galgada numa forma diferenciada de ver o mundo, um novo

paradigma.

Novas explicações, novos modelos enfim a substituição de teorias é um

acontecimento mais frequente do que imaginamos. A Ciência não esta pronta e sim

em permanente construção, abarcando novas interpretações.

Os experimentos realizados deverão normalmente comprovar uma teoria

científica aceita pela comunidade científica contemporânea, ou suscitar novos

questionamentos, atividade essencial para a construção do conhecimento.

Page 8: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

7

5. HISTÓRICO

Uma teoria sobre a origem da vida na Terra, afirma que a cerca de 4 bilhões

de anos, um relâmpago atingiu uma quantidade de água contendo uma rica mistura

de elementos químicos, formando aminoácidos, que são elementos formadores da

vida no planeta. Com essa quantidade de calor começou a vida e até hoje para o

nascimento e a permanência da vida precisamos um mínimo de calor.

Com a descoberta do fogo pelo homem das cavernas, a utilização do calor

serviu, para mantê-lo aquecido nos períodos frios do ano. A mulher pré-histórica,

talvez fosse quem fez as primeiras aplicações do calor, ao aquecer alimentos

tornando-os mais fáceis de ingestão. As sensações de quente e frio são inatas do

homem, bem como de outros seres vivos e muitas vezes são enganosas aos nossos

sentidos, pois podemos ser queimados por um ferro em brasa ou por um pedaço de

gelo seco, sendo as sensações fisiológicas as mesmas, reportando-se a Baeyer:

Seja lá como for, o aquecimento é exigido não apenas pelo embrião desde o momento da concepção, mas, em uma escala mais ampla, pela própria vida. Todos os animais necessitam de calor para sobreviver, embora em alguns casos não precisem de muito. (BAEYER,1994, p.163)

Em nível microscópico, a matéria é constituída por átomos e moléculas que

são partículas que estão em movimento constante, dependendo do estado de

agregação. O movimento das partículas é devido à energia cinética, e a soma da

energia de uma porção dessas partículas da matéria é denominada energia térmica.

Toda a matéria é constituída de moléculas que representam a menor parte da

matéria, capazes de manter características dessa substância, diferenciando assim

uma substância de outra substância. Essas moléculas possuem determinada

energia cinética, que produzem nelas um movimento contínuo. A distância entre

essas moléculas é na ordem de 10-6 cm, e estão sob a ação de forças

intermoleculares (forças elétricas), que variam de substância para substância e até

na mesma substância, de acordo com estado físico (sólido, líquido, gasoso,...). O

número de moléculas de uma substância é muito grande e as velocidades dessas

moléculas são diferentes entre si, então para determinar a energia interna de um

corpo fazemos uma média da energia cinética de todas as moléculas.

O calor e a temperatura são denominações que damos em nosso cotidiano,

Page 9: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

8

quando sentimos essas variações em relação à sensação térmica do nosso tato com

o ambiente em que nos encontramos. A época do ano, determinado período do dia,

quando bebemos um copo de água, percebemos muitos acontecimentos que

provocam essas sensações, e são controladas pelo próprio homem, como o

aquecimento ou resfriamento de alimentos, o funcionamento de máquinas, o atrito

entre as mãos, o movimento do próprio homem. Fenômenos naturais como as

tempestades, o granizo, a geada, a chuva, a temperatura do nosso corpo, o calor do

Sol, são manifestações de processos térmicos.

A compreensão de conceitos de calor e temperatura são fundamentais e

necessários para o entendimento dos processos térmicos que sentimos em nosso

cotidiano, através do sentido do tato. Assim sendo, a nível macroscópico a

temperatura indica o estado de quente ou de frio de um sistema.

Quando verificamos a temperatura de um corpo, a nível estrutural da matéria,

ela está associada à sua energia interna, conforme Delizoicow e Angoti (1992, p.

108) “do resultado do trabalho caótico das partículas, e a sua propagação depende

de um desnível térmico”. A temperatura não depende do número de moléculas em

movimento, mas da velocidade média destas que com essa observação permitem

definir também o caráter macroscópico dessa grandeza.

O primeiro dispositivo para verificar a temperaturas dos corpos foi inventado

por Galileu Galilei em 1592, denominado termoscópio. Ele usou um frasco de vidro

com um bulbo e um gargalo estreito. Este frasco era preenchido com água colorida

até a metade e colocado de boca para baixo em uma bacia contendo água colorida.

No bulbo desse frasco formava um espaço com ar, que em contato com outro corpo

pode sofrer variação da temperatura, e o ar pode expandir ou contrair, e a coluna de

água colorida no tubo também se movimentava para baixo ou para cima. As medidas

de temperaturas feitas com termoscópios eram por comparar a temperatura de dois

objetos, por meio da dilatação do ar contido no bulbo. A marcação da temperatura

entre os corpos e a falta de uma graduação padrão ficava confusa na comparação

de resultados. Mais tarde em 1635, o Duque Fernando de Toscana, construiu um

dispositivo que era feito de um tubo de vidro, preenchido com álcool e fechado para

não ocorrer evaporação, chamando o dispositivo de termômetro, mais tarde ainda

sendo aperfeiçoado com o uso do mercúrio, sendo o termômetro moderno que

conhecemos hoje. Para fazer a medida da temperatura de um corpo usamos

aparelhos denominados termômetros. O conjunto de números que o termômetro é

Page 10: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

9

graduado dá-se o nome de escala termométrica e as escalas mais utilizadas são a

escala Celsius, a escala Fahrenheit e a escala Kelvin.

Para criar uma escala termométrica, é necessário escolher temperaturas de

referência, e fixas, que sempre se repetem, permitam intervalos de temperaturas

entre fenômenos e que sempre se reproduzam em mesmas condições. Muitas

temperaturas de referência foram testadas, como a temperatura do inverno, do

verão, da neve e do corpo de vários animais. Mas foi no séc. XVIII que o francês

René de Réaumur (1683 – 1757) ao utilizar várias substâncias diferentes como o

álcool, água e mercúrio, propôs a utilização de pontos fixos, a fusão do gelo e a

ebulição da água, permanecendo estes pontos até hoje.

No ano de 1730 René de Réaumur propôs para o seu termômetro, 80 ºR para

a fusão do gelo e 0 ºR para a ebulição da água. O astrônomo e físico sueco Anders

Celsius em 1742 em seu termômetro, usou os mesmos fenômenos para os pontos

fixos e adotou 0 ºC para a ebulição da água e 100 ºC para a fusão do gelo,

chamando a escala de centígrada. A escala criada por Celsius foi aperfeiçoada oito

anos mais tarde por Märten Strömer, que inverteu os valores dos pontos fixos e

sendo assim conhecida até os dias atuais.

O estudioso de Química e Física Daniel Gabriel Fahrenheit (1686–1736),

nasceu em Danzig, hoje Gdansk, na Polônia. Na escala criada por ele era adotado

para ponto de referência inferior uma mistura de sal, amônia e gelo. Para ponto

superior a temperatura do corpo humano, ficando o intervalo entre 0 ºF e 100 ºF.

Mais tarde fixou valores de 32 ºF para o gelo e 212 ºF para a ebulição da água.

O cientista inglês Willian Thompson (1824 – 1907), mais conhecido por seu

título de nobreza Lord Kelvin foi o primeiro cientista a afirmar teoricamente a

existência de uma temperatura mínima, em que as partículas elementares cessariam

todo o movimento, e não teriam energia cinética. Então a escala proposta por Kelvin

foi chamada de escala absoluta, ele atribuiu a esse estado da matéria o zero Kelvins

(0 K), conhecido por zero absoluto e por convenção não se usa a denominação

grau, pronunciando quelvins. A escala Kelvin e centesimal e nela atribui-se o valor

de 273 K para a fusão gelo e 373 K para o ponto de ebulição da água.

O calor é como a água da chuva que observamos em um dia chuvoso. Se

houver um desnível no terreno a água fluirá espontaneamente do nível mais alto

para o nível mais baixo até ocorrer o equilíbrio, isto é, até toda a água ficar no

mesmo nível. Como a água da chuva sempre flui para o menor nível, o calor fluirá

Page 11: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

10

espontaneamente do corpo de maior temperatura para o corpo de menor

temperatura, até ocorrer o equilíbrio térmico.

Uma pequena parte da radiação emitida pelo Sol atinge a Terra. Essa forma

de propagação do calor é denominada irradiação, que ao interagir com os gases da

atmosfera provoca o aquecimento da massa de ar, da parte líquida e da parte sólida

do planeta, provocando os movimentos das massas de ar e também ocorrendo o

ciclo da água, como cita Delizoicow e Angotti (1992, p. 102) ”O Sol emite uma

variedade de frequências, sendo só uma pequena faixa visível, com a composição

branca devido à mistura das cores. Uma faixa importante, responsável pela

transmissão do calor, é a do infravermelho (frequências variam de 1010 a 1014 Hz).”

Na atmosfera terrestre também ocorre o efeito estufa, que cria uma barreira natural

aos raios infravermelhos e impede que a radiação solar após incidir na Terra retorne

ao espaço. É devido a esse efeito que a temperatura em torno da Terra se mantém,

possibilitando a existência da grande quantidade de espécies vivas.

O nível macroscópico pode definir calor, como sendo a energia térmica em

movimento, que se transfere espontaneamente do corpo de maior temperatura para

o corpo de menor temperatura. O primeiro estudo sobre o calor, como uma entidade

física definida, e que pode ser medida foi feita pelo médico escocês chamado James

Black (1728 – 1799). Ele misturou um galão de água em ebulição, com um galão de

água gelada e observou que a temperatura resultante da mistura estabilizou entre as

temperaturas inicias das duas quantidades de água. Ele definiu a unidade de calor

como a quantidade de energia necessária para elevar a temperatura de uma libra-

peso de água em 1 °F. No sistema atual falamos de caloria, que é a quantidade de

calor necessária para elevar em 1 °C a temperatura de um grama de água.

Black denominou o calor como sendo um fluido capaz de interpenetrar todos

os corpos materiais, fazendo aumentar sua temperatura. Este modelo propunha que

todos os corpos possuíam, em seu interior uma substância invisível com massa

desprezível denominada calórico. Esta teoria foi válida por muitos anos, mas foi

Benjamim Thompson conhecido como conde Rumford que trabalhando em uma

fábrica de armas, em Munique observou que as peças metálicas ao serem

perfuradas ficavam mais aquecidas quando a broca estava cega. O aquecimento da

broca cega era devido ao atrito entre as peças, isto fez a teoria do calórico tornar-se

inconsistente, surgindo a ideia que o calor é energia e não substância.

Anos mais tarde James P. Joule (1818 – 1880) usando o equipamento

Page 12: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

11

equivalente mecânico do calor, estabeleceu definitivamente que o calor é uma forma

de energia ao demonstrar a relação entre caloria (unidade de calórico) e Joule

(unidade de energia: 1 cal – 4,18 J).

Em nosso cotidiano, deparamo-nos com situações, nas quais podemos

perceber que o aquecimento de objetos é devido ao atrito entre as superfícies de

contato. A energia mecânica é convertida integralmente em energia interna e, em

seguida, em calor. Também podemos observar que o calor produz movimento, que

são aplicados em sistemas que estão a serviço do homem, como nas termoelétricas,

nos motores de explosão dos automóveis, nas turbinas a vapor, etc.

A humanidade no séc. XVII fez a revolução industrial, com a descoberta da

máquina a vapor, ao ser empregada na geração de energia mecânica, para o

movimento de máquinas.

Com a equivalência entre calor e energia mecânica estabelecida por Sadi

Carnot, foi determinada a primeira lei da termodinâmica. Sabendo que o calor flui do

corpo mais quente para o mais frio, e nunca em direção oposta, assim a primeira Lei

da Termodinâmica mostra que a quantidade de energia(Q) recebida por um sistema

pode realizar um trabalho (Ƭ), expandindo-se ou contraindo-se, e provocando uma

variação (ΔU) da energia do sistema.

Q = Ƭ +ΔU

A eficiência de uma máquina térmica sempre gerou preocupação e foi objeto

de pesquisa, pois sempre se procura produzir mais trabalho com menos consumo de

energia, buscando ter 100 % de rendimento, como cita GAMOW:

A declaração de que é impossível transformar calor em energia mecânica sem que mais calor “dessa” de um lugar mais frio é conhecida como “segunda lei da termodinâmica”. É equivalente à declaração de que calor não fluiria por si de um lugar mais frio para um mais quente. Na verdade, se pudéssemos persuadir o calor a fluir por si do resfriador para a caldeira, teríamos um círculo calórico vicioso e as máquinas a vapor operariam sem combustível. Um dispositivo semelhante seria o da água escoando por si

morro acima e depois caindo sobre a roda do moinho. (GAMOW, 1963, p.111)

O calor é uma forma de energia, sendo possível transformá-la em energia

mecânica. As máquinas térmicas são dispositivos que através da realização de

trabalho a partir do calor, podem transforma-lo em movimento.

Foi o grego Heron no séc. 1 d.C., na cidade de Alexandria, que inventou a

Page 13: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

12

máquina térmica sem fins práticos. No séc. XVIII foram construídos os primeiros

modelos de máquinas térmicas, mas com baixo rendimento. O escocês James Watt

desenvolveu um modelo de máquina térmica com melhor desempenho, sendo usada

nas minas de carvão, para acionar bombas de água, locomotivas e na indústria. Já

no séc. XX surgiram outros modelos de máquinas térmicas, como os motores de

explosão usados nos automóveis.

Page 14: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

13

6. ORIENTAÇÕES METODOLÓGICAS

Para auxiliar na coleta de informações, iniciaremos aplicando um teste com

questões de múltipla escolha e descritivas, relacionadas ao cotidiano das pessoas e

com conteúdos de Termodinâmica. Ao finalizar o projeto, o mesmo teste será

aplicado, com o objetivo de ao analisar os resultados dos dois testes auxiliarem na

elaboração do artigo final, da Implementação desta produção didático-pedagógica.

Esta produção reúne algumas experiências que podem ser confeccionadas

em sala de aula, em grupos de quatro alunos, com material de baixo custo que

podem ser encontrados no comércio de qualquer cidade. É necessário que o

professor oriente os grupos de alunos na confecção dos kits experimentais, sempre

partindo de um problema, lançando questões para serem discutidas nos grupos,

testadas com a atividade experimental e retomadas numa discussão com todo o

grupo para a formação dos conceitos a partir do problema estudado.

Durante o período da aplicação da produção, serão feitas avaliações

qualitativas incorporadas às avaliações formais da escola, permitindo a promoção do

aluno.

Page 15: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

14

7. MATERIAL DIDÁTICO

7.1 TERMODINÂMICA

As sensações de quente ou de frio são percebidas pelo ser humano e a

maioria dos animais através do tato. As variações da temperatura que nós sentimos,

ocorre devido ao calor, que é uma forma de energia, que se transfere do corpo com

maior temperatura para o corpo com menor temperatura, geralmente ocorrendo o

equilíbrio térmico. Para melhorarmos ou diminuirmos essa troca de energia térmica

em trânsito, é necessário utilizar mecanismos de controle e de avaliação de

temperatura. Na natureza, os animais e os vegetais fazem o controle natural de

temperatura com mecanismos reguladores, pois uma leve variação da temperatura

do nosso corpo já é um alerta de que a nossa saúde não está boa.

No decorrer de sua evolução o homem desenvolveu formas de controle de

temperatura. Algumas formas empíricas e eficientes outras mais técnicas e

eficientes comtemplando a utilização de termômetros.

O controle natural de temperatura, só ocorre em organismos vivos. Já nos

sistemas construídos pelo homem são utilizados reguladores de temperatura.

- Todos nós percebemos que em dias muito quentes, nós produzimos suor

que ao evaporar, resfria o nosso corpo. Por que isso ocorre?

- Você já pensou qual a função térmica dos pelos em muitos animais, das

penas nas aves e do vestuário em nosso corpo?

- Qual o valor da temperatura de ebulição da água em nossa cidade?

- Qual é a temperatura, que nos não sentimos o calor e nem o frio?

- Em dias frios o nosso organismo acelera a queima de energia disponível em

nosso corpo, se comparada com a mesma atividade realizada em um dia quente.

Por quê?

- Por que a água cozinha o pastel e o óleo frita o pastel?

- Como os nossos antepassados avaliavam a temperatura de um doente e

como é feita a essa avaliação hoje?

- Explique por que os alimentos são cozidos antes em uma panela de pressão

do que numa panela comum?

- Qual é a temperatura normal do nosso corpo?

Page 16: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

15

A avaliação da temperatura de um sistema feito através do nosso tato nos dá

apenas uma ideia aproximada da temperatura, um valor qualitativo. Para fazermos

uma avaliação quantitativa da temperatura de um sistema a nível microscópico

precisamos utilizar um aparelho chamado termômetro.

No mercado encontramos uma vasta quantidade de tipos de termômetros,

desde o mais rudimentar, como o termômetro clínico aos mais modernos a lazer,

como podemos ver na figura 1.

Figura 1 - Termômetros Fonte: Fudal, 2012

A seguir com alguns materiais, vamos confeccionar um termômetro

rudimentar, que ajudará você a compreender o funcionamento de um termômetro

clínico como mostra a figura 2.

KIT EXPERIMENTAL 1

Objetivo

Confeccionar um termômetro rudimentar.

Materiais

1 tubo de pequeno diâmetro

1 vidro de remédio com tampa de borracha

Figura 2 - Material do kit experimental 1

Fonte: Fudal, 2012

Page 17: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

16

Procedimento

Faça um pequeno furo na tampa de borracha do vidro, com diâmetro igual ao

do tubo. Coloque o tubo de pequeno diâmetro no orifício da tampa e feche o vidro.

Está pronto o seu kit experimental 1, para ser utilizado na atividade a seguir.

ATIVIDADE EXPERIMENTAL

Objetivo

Verificar e entender o funcionamento de um termômetro.

Material

- água colorida

- kit experimental 1

- 1 termômetro

Procedimento

Pegue o frasco de vidro e encha com água colorida e tampe, segure o vidro

envolvendo-o com a mão, por alguns minutos e observe o comportamento da coluna

de líquido no interior do tubo como mostra a figura 3. Se você fosse graduar o maior

nível indicado na coluna de líquido em equilíbrio registrado, quando o frasco de vidro

estiver envolvido com as mãos, que valor você marcaria?

Para melhor compreender o funcionamento do termômetro mergulhe o frasco

de vidro em água quente, em água fria e em água morna. Agora você poderá fazer o

mesmo processo, utilizando um termômetro para comparar com os valores

registrados e também poderá criar sua própria escala termométrica.

Figura 3 - Experimento 1

Fonte: Fudal, 2012

Page 18: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

17

Questões

1- Como você faria para graduar um termômetro sem ter conhecimento de outra

escala?

2- As escalas mais usadas são a escala Celsius, a escala Fahrenheit e a escala

Kelvin. Qual o valor nessas escalas termométricas que corresponde a temperatura

de fusão do gelo e da ebulição da água sob pressão normal?

3- Como você explica o funcionamento de um termômetro de mercúrio?

4- São várias as substâncias termométricas, entre elas o mercúrio, uma mistura de

álcool, corante e querosene. Por que a água não é considerada uma boa substância

termométrica?

5- Para medir a temperatura de um corpo, o termômetro deve permanecer algum

tempo em contato com o corpo. Em que momento o termômetro indicará a

temperatura do corpo?

ATIVIDADE EXPERIMENTAL 2

Objetivo

Calcular a dilatação volumétrica aparente do líquido

Material

1 régua

1 kit experimental 1

Procedimento

Encha o frasco de vidro com 10 cm3 de água da torneira, verifique e anote a

temperatura que deve ser em torno de 20 ºC. Ajuste a coluna líquida na menor

posição no capilar, em relação à tampa de borracha do frasco, isto você faz retirando

ou introduzindo o capilar no frasco de vidro. Aqueça o conjunto em uma chama e

observe o aumento do líquido no capilar, retire a tampa do frasco e rapidamente

coloque o bulbo do termômetro dentro do líquido e marque a temperatura final que

poderá ser 50 ºC. Agora poderemos calcular aumento aparente do líquido no capilar,

com a diferença entre dilatação real do líquido e a dilatação do vidro.

∆Vaparente=∆Vreal-∆Vvidro → v0.αaparente.∆t=v0.αreal.∆t-v0.αvidro.∆t → αaparente=αreal-αvidro

αvidro=3.10-5 /ºC

αágua=1,3.10-4 /ºC

Page 19: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

18

αaparente=αreal-αvidro

αaparente=1,3.10-4 - 3.10-5

αaparente=10.10-5/°C

αaparente=1.10-4/ºC

∆Vaparente= v0.αaparente.∆t

∆Vaparente=10. 1.10-4.30

∆Vaparente=10. 1.10-4.30

∆Vaparente =300.10-4cm3

∆Vaparente=3.10-2cm3

∆Vaparente= 0,03 cm3

7.2 ESCALAS TERMOMÉTRICAS

As escalas mais utilizadas são a escala Celsius, a Fahrenheit e a Kelvin. A

escala proposta por Kelvin foi chamada de escala absoluta, por afirmar a existência

teórica de uma temperatura mínima, e atribuiu a este estado o zero Kelvin (0 K),

conhecido por zero absoluto e por convenção não se usa a denominação grau,

somente pronunciando quelvins. Observem na figura 4 os valores do zero absoluto

nas três escalas. A escala Kelvin é centesimal e nela atribui-se o valor de 273 K para

a fusão gelo e 373 K para o ponto de ebulição da água. A escala Celsius é a mais

usada, ela foi construída por Anders Celsius, e adota para o ponto de gelo 0 ºC e

para a ebulição da água 100 ºC, ao nível do mar. A escala construída por Daniel

Gabriel Farenheit, usada nos países de língua inglesa, adota para a fusão do gelo 32

ºF e para a ebulição da água 212 ºF.

Page 20: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

19

Figura 4 - Escalas termométricas

Fonte:http://educacao.uol.com.br/fisica/temperatura-escalas-termometricas.jhtm em

09/11/2012.

Fazendo a relação entre as escalas, de acordo com a figura 5, podemos

escrever equações para relacionar valor de temperaturas entre elas e variação das

temperaturas num determinado período.

Figura 5 - Relações entre escalas

Fonte:http://www.fisicapaidegua.com/conteudo/conteudo.php?id_top=020101 em 05/11/2012.

5

273

9

32

5

KFC

Page 21: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

20

Para concluir esta atividade vamos comentar as respostas das questões

sugeridas, e com as informações obtidas na realização da atividade prática realizada

anteriormente, que servirão de base para a introdução de conceitos:

- Controle de temperatura

- Variação de temperatura

- Escalas termométricas

- Tipos de termômetros

- Funcionamento dos termômetros

- Pontos fixos e graduação de um termômetro

- Principais escalas termométricas, relações entre elas e equações.

Questões

1- Explique o funcionamento de um termômetro clínico.

2- Em seu cotidiano como você faz o controle de temperatura?

Problemas

1- No verão do ano passado, a maior temperatura registrada em nossa cidade foi de

42 °C. Qual o valor dessa temperatura nas escalas Fahrenheit e Kelvin?

2- Uma variação de 5 graus na escala Celsius, corresponde a quantos graus nas

escalas Fahrenheit e Kelvin?

3- No período do inverno no hemisfério norte, em uma cidade Inglesa foi registrada a

temperatura de 20 ºF. Calcule o valor dessa temperatura nas escalas Celsius e

Kelvin.

4- Das temperaturas a seguir, qual delas é a mais alta?

a) 300 K

b) 90 ºF

c) 40 ºC

5- Em um deserto, durante a noite a temperatura mínima registrada foi de -10 ºC e

durante o dia a temperatura máxima registrada foi de 50 ºC. Calcule essa variação

de temperatura nas escalas Celsius, Fahrenheit e Kelvin.

Page 22: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

21

7.3 TRANSMISSÕES DO CALOR

O calor é uma forma de energia em movimento que se transfere do corpo com

maior temperatura, para o corpo de menor temperatura, assim, como a água se

movimenta em um dia chuvoso até que ocorra o equilíbrio.

Em nosso cotidiano encontramos materiais bons condutores de calor e

materiais bons isolantes. Nesta unidade de trabalho teremos grande discussão

sobre as formas de transmissão de calor que são: por condução, por convecção e

por irradiação.

- Por que, ao tocarmos com a mão na parte metálica da carteira temos a

sensação de frio em relação à parte de madeira?

- Por que os radiadores dos automóveis e das geladeiras são pintados na cor

preta?

- Por que os painéis solares, utilizados para o aquecimento de água são pintados

na cor preta e são cobertos com acrílico ou vidro transparentes?

A transmissão do calor nas suas diversas formas é desconhecida pela maioria

das pessoas, bem como as suas aplicações. Com este trabalho esperamos

despertar o interesse e a importância da utilização correta no cotidiano desta forma

de propagação do calor.

7.3.1 CONDUÇÃO DO CALOR

A propagação do calor por condução, sempre ocorre por um processo natural

e espontâneo, passando de molécula para molécula, da região do sistema ou corpo

de maior temperatura para o de menor temperatura, até ocorrer o equilíbrio térmico.

KIT EXPERIMENTAL 2

Objetivo

Montar um experimento, com fios metálicos de diferentes ligas.

Material

- 9 pedaços de fio metálico desencapados: 3 pedaços de fio cobre, 3 pedaços de fio

alumínio e 3 pedaços de fio de ferro, com 30 cm cada.

Page 23: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

22

Procedimento

Pegue dois fios metálicos um de cobre, outro de alumínio e enrole os dois fios

juntos por 3 cm. Faça o mesmo, com os fios de cobre e ferro e também com o fio de

alumínio e ferro. Assim, você montou três conjuntos que formam esse kit

experimental, conforme figura 6. Outro Kit experimental poderá ser montado,

pegando os três fios metálicos de diferentes ligas e enrolando a parte central dos

três fios, onde já poderá ser feito com o próprio fio, a base de suporte, como mostra

a figura 7.

Figura 6 – kit experimental 2

Fonte: Fudal, 2012

Figura 7 – kit experimental 2

Fonte: Fudal, 2012

ATIVIDADE EXPERIMENTAL

Objetivo

Verificar a condução do calor em diferentes materiais.

Material

- kit experimental 2

Page 24: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

23

- 1 vela

- missangas de varias cores

Procedimento

Utilizando o kit experimental 2, coloque quatro pingos de parafina derretida

em quatro posições diferentes de cada fio e fixe missangas nos pingos de vela, veja

a figura 8 e figura 9. Coloque para aquecer na chama a parte enrolada dos fios dos

kits experimentais e observe as missangas caírem.

Figura 8 – Atividade experimental

Fonte: Fudal, 2012

Figura 9 – Atividade experimental

Fonte: Fudal, 2012

- Através dos três condutores, como ocorreu a transmissão do calor?

- Qual dos três fios condutores perdeu às missangas primeiro?

- Então, qual dos três fios é o melhor condutor de calor?

- Quando usamos uma colher com cabo metálico para mexer o alimento, que está

sendo cozido dentro de uma panela, logo sentimos o calor do cabo da colher na

mão. Qual é a forma de propagação do calor nessa situação?

Page 25: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

24

- Então, é melhor assar o churrasco com espeto de madeira ou com espeto

metálico? Por quê?

A condutividade térmica dos materiais é devida as forças intermoleculares.

Um campo atrativo maior entre as moléculas torna as colisões entre elas mais

intensas e a condutividade térmica maior.

CONCLUSÃO

Após a realização desta atividade, os resultados obtidos e as conclusões

feitas servirão para discussão nos pequenos grupos das questões sugeridas na

introdução, formando o conceito de condução do calor.

7.3.2 CONVECÇÃO DO CALOR

A transmissão do calor por convecção ocorre quando as moléculas do meio

material se deslocam. Este processo de propagação do calor ocorre nas

substâncias líquidas ou gases, isto é, nos fluídos.

Quando a molécula do fluído recebe energia térmica ela fica maior, diminui a

densidade, sofre um empuxo e sobe, então, as moléculas mais frias por gravidade

dessem, formando as correntes de convecção.

- Como ocorre o resfriamento de alimentos dentro do refrigerador?

- Por que o congelador da geladeira está localizado na parte superior?

- Por que as chaminés das indústrias, dos fogões a lenha das casas são altos?

- Como ocorre o aquecimento da água nos aquecedores solares, nas serpentinas de

fogões a lenha?

- Em um país, onde o frio predomina durante o ano todo, para obter um bom

aproveitamento do calor gerado pelo ar condicionado em um cômodo da casa, ele

deve ser instalado na parte superior ou inferior da parede da casa? Por quê?

KIT EXPERIMENTAL 3 (Abajur giratório)

Objetivo

Confeccionar um abajur giratório

Material

Page 26: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

25

1 garrafa pet incolor

1 bocal de plástico para fixar

1 lâmpada incandescente de 40 W

30 cm de arrame nº 16

Papel celofane de várias cores

1 pedaço de cartolina preta 16 cm x 40 cm

1,5 m de fio 2 x 1,5

1 plug

1 pedaço de papel ceda 20 cm x 40 cm

1 ampola de água destilada

2 parafusos de fenda curtos

Figura 10 - Material do kit experimental 3

Fonte: Fudal, 2012

Procedimento

Após, reunido o material como mostra a figura 10, coloque a lâmpada no

bocal e conecte ao fio e ao plug. Recorte um cilindro de 20 cm da garrafa

transparente e fixe no bocal com cola ou parafusos. Na cartolina preta faça recortes

de figuras, como peixes, plantas e cole nos orifícios papel celofane colorido. Faça

um cilindro com a cartolina, de forma que ao ser colocado dentro do cilindro de

plástico possa girar sobre um suporte fixo na lâmpada. Recorte um círculo da

mesma cartolina, para fazer um fundo para o cilindro de cartolina e nesse fundo

deve ser feito quatro cortes para o ar quente sair e girar o cilindro. Na parte central

do circulo fixe uma ponta de ampola de água destilada. Com o arrame dê duas

voltas em torno da lâmpada e enrole o arrame deixando 2 cm de sobra que servira

de suporte para o cilindro girar, ligue a uma tomada e observe a montagem como na

Page 27: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

26

figura 11. Para o experimento funcionar deverão ser feitos ajustes, principalmente

para encontrar o equilíbrio do cilindro de cartolina.

Figura 11 – kit experimental 3

Fonte: Fudal, 2012

CONCLUSÃO

Esta atividade deve auxiliar a responder as questões sugeridas e ajudar os

grupos para o debate do grande grupo, para o entendimento do conceito de

convecção.

7.3.3 IRRADIAÇÃO DO CALOR

O tempo gasto pela luz solar para chegar até a Terra é em torno de 500s.

Esta distância que a luz percorre, é em uma região do espaço vazio, denominado

vácuo. A luz solar, chamada luz infravermelha ou radiação térmica, que transporta o

calor até nós. Mesmo em dias nublados as ondas eletromagnéticas de menor

comprimento e faixa situada entre a violeta e a vermelha nos aquecem. Se fizermos

a decomposição dessas cores e para cada cor colocássemos um termômetro

observaríamos que para cada cor a temperatura registrada é diferente. Os corpos

negros são radiadores e irradiadores de energia.

KIT EXPERIMENTAL 4

Objetivo

Confeccionar um experimento para verificar a propagação do calor por irradiação.

Material

Page 28: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

27

2 termômetros

2 latas iguais e de pequeno tamanho, uma na cor preta e outra na cor branca

1 vela

Figura 12 - Material do kit experimental 4

Fonte: Fudal, 2012

Procedimento

Os termômetros da figura 12 podem ser substituídos por outros tipos de

termômetros. Perfure as duas tampas das latas, de maneira que no orifício possa

ser introduzido um termômetro. Coloque a parte inferior dos termômetros na lata

preta e a na lata branca e posicione o kit conforme a figura 13.

Figura 13 – kit experimental 4

Fonte: Fudal, 2012

ATIVIDADE EXPERIMENTAL

Objetivo

Verificar a propagação do calor por irradiação.

Material

- kit experimental 4

- fósforos

Page 29: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

28

Procedimento

Antes de acender a vela, faça a leitura da temperatura nos dois termômetros

e anote os valores das temperaturas. Acenda a vela e deixe as latas a uma mesma

distância, conforme a figura 14, evitando também correntes de ar para não direcionar

a chama. Observe a temperatura registrada em cada termômetro variar, para depois

fazer a discussão dos resultados da atividade. Após, passados 10 min faça nova

leitura e anote os valores registrados nos termômetros.

Figura 14 – Atividade experimental

Fonte: Fudal, 2012

- Qual foi à variação da temperatura em cada termômetro?

- Agora apague a vela e observa qual das latas esfria mais rapidamente?

- Qual das latas absorveu maior quantidade de calor?

- Qual das latas ao resfriar, perdeu maior quantidade de calor?

- A cor das latas influenciou na variação da temperatura?

- Todos os corpos com temperatura superior ao ambiente, emitem radiações

infravermelhas para o meio exterior? Justifique.

- As coberturas com telhas transparentes permitem a entrada da luz, e dificultam a

saída da radiação térmica, causando grande aquecimento no ambiente. Por quê?

Questões

1- Qual é a melhor colher para mexer o alimento em cozimento em uma panela, a

colher com cabo de madeira ou com cabo de ferro? Por quê?

2- Em cima de um fogão ligado, estão duas chaleiras com a mesma quantidade de

água cada, uma é pintada na cor preta e a outra na cor do alumínio polido. Qual das

duas aquece a água antes?

3- Como ocorre o resfriamento dos alimentos no interior de uma geladeira?

Page 30: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

29

4- Qual a função do cobertor de lã que usamos nas noites frias?

5- Por que a chama de uma vela é sempre vertical para cima?

6- Qual é a cor de telha ideal para fazer a cobertura das casas? Por quê?

CONCLUSÃO

As análises dos resultados das atividades práticas e das questões sugeridas

devem servir de base para as discussões nos grupos. O entendimento das várias

formas de propagação do calor. A formação dos conceitos da propagação do calor

acontecerá quando discutidas as questões no grande grupo.

7.4 TROCAS DE CALOR

A transferência de calor entre os corpos que nos rodeiam são sempre

fenômenos naturais, na maioria das vezes não sendo percebido pelos nossos

sentidos. Quando um corpo é aquecido ou resfriado, podemos afirmar que houve

troca de calor, devido à mudança de temperatura, e que isto pode ocorrer com maior

ou menor rapidez.

Podemos fazer a seguinte investigação, substâncias diferentes, de mesma

massa e recebendo mesmas quantidades de calor, poderão sofrer a mesma

variação de temperatura?

Cada substância possui características próprias devido a capacidade de

poder ganhar ou perder energia interna com maior facilidade, que são grandezas

físicas denominadas capacidade térmica e calor específico.

O calor específico de uma substância representa a quantidade de calor que

um grama dessa substância pode ganhar ou perder para que sua temperatura sofrer

uma variação de um grau Celsius. A água é uma substância com grande calor

específico, sendo esse um dos fatores importantes para a temperatura do planeta

não sofrer grandes variações, mantendo assim todos os tipos de vida.

Os metais são as substâncias com menor calor específico, e ao receberem

pequenas quantidades de calor sofrem grandes variações de temperatura. O calor

específico é uma característica de cada material e tem a explicação a nível

molecular, pois para uma mesma massa o número de moléculas varia de substância

para substância. Em 50 g de água encontramos maior número de moléculas do que

em 50 g de óleo.

Page 31: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

30

Calor específico de algumas substâncias:

Água .......... c = 1 cal/g.ºC

Gelo ............ c = 0,5 cal/g.ºC

Óleo de oliva.....c = 0,400 cal/g.ºC

Alumínio ..........c =0,21 cal/g.ºC

Concreto.......... c = 0,20 cal/g.ºC

Ferro .......... c = 0,11 cal/g.ºC

Cobre ...........c = 0,092 cal/g.ºC

Prata ...........c = 0,056 cal/g.ºC

Chumbo ...........c = 0,031 cal/g.ºC

Ouro ............... c = 0,031 cal/g.ºC

Fonte: http://www.infoescola.com/fisica/calorimetria/ em 29/11/2012.

A capacidade térmica de um corpo é o produto da massa pelo calor específico

(C = m.c), então a capacidade térmica da água é maior do que a do óleo. A

expressão matemática que representa a quantidade de calor recebida ou cedida por

um corpo, devido a uma variação da temperatura é calculada por:

Durante a mudança de estado físico, uma substância absorve ou cede grande

quantidade de calor sem sofrer variação na temperatura. Essa quantidade de calor

necessária para mudar de estado físico de uma massa (m) de 1g é chamado de

calor específico latente (L) da substância.

Para a água, os valores de calor específico latente (L) são:

- calor latente de fusão do gelo: Lf= 80 cal/g

- calor latente de vaporização: Lv= 540 cal/g

- calor latente de solidificação: Ls= -80 cal/g

- calor latente de condensação: Lc = -540 cal/g

Esta atividade é proposta para verificarmos trocas de calor, que ocorrem

quando colocamos várias massas de substâncias e temperaturas diferentes,

ocorrendo trocas de calor entre elas e o meio, até acontecer o equilíbrio térmico.

Page 32: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

31

Como a quantidade de calor recebida ou cedida pelo meio é difícil de saber,

então vamos confeccionar um recipiente termicamente isolado, que é denominado

Calorímetro. O calorímetro é utilizado para calcular a quantidade de calor trocada

entre as substâncias. A figura 15 mostra os materiais que usaremos na confecção do

calorímetro.

KIT EXPERIMENTAL 5

Objetivo

Confeccionar um recipiente termicamente isolado denominado calorímetro

Material

1 termômetro

2 porta garrafa de isopor

1 caneco de alumínio com diâmetro da garrafa

1 estilete

1 vela

cola de silicone

Figura 15 - Material do kit experimental 5

Fonte: Fudal, 2012

Procedimento

Faça a medida da massa do caneco de alumínio com uma balança, pois nos

cálculos poderá ser necessário saber o valor da massa do caneco. Coloque o

caneco de alumínio dentro da porta garrafa de isopor e recorte a parte do isopor que

estiver com sobra, fazendo uma boa colagem, e sempre procurando manter o bom

Page 33: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

32

encaixe existente nas partes do isopor, para ter uma boa vedação. Para facilitar o

corte no isopor, aqueça o estilete na chama e assim o corte fica mais uniforme. Para

a tampa ter boa vedação e bom funcionamento, recorte 2 cm da tampa do suporte

da garrafa de isopor e junte com o fundo já recortado de outro suporte de garrafa e

cole conforme a montagem do equipamento na figura 16. Na parte central de tampa

do seu calorímetro faça um orifício da grossura do termômetro que você ira utilizar e

está pronto o seu calorímetro.

Figura 16 – kit experimental 5

Fonte: Fudal, 2012

ATIVIDADE EXPERIMENTAL 1

Com o auxilio do calorímetro construído na atividade anterior e do princípio da

conservação da quantidade de calor, esta atividade servirá para determinar

experimentalmente o calor específico de outros materiais. Na figura 17 você observa

o conjunto de materiais para a realização da atividade.

Objetivo

Determinar o calor específico do ferro

Material

1 balança

1 calorímetro construído na atividade anterior

100 g de ferro (6 porcas de 1/2’’)

1 fonte térmica ( ebulidor elétrico ou bico de gás)

1 pedaço de barbante fino

Page 34: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

33

100 g de água

Figura 17 - Material da atividade experimental 1

Fonte: Fudal, 2012

Procedimento

Coloque dentro do calorímetro 100 g de água da torneira. A essa massa de

água chamaremos de m1 e com o termômetro faça a medida da temperatura da

água dentro do calorímetro, sendo t1 a temperatura inicial da água e t2 a temperatura

inicial do calorímetro. Agora meça a massa das porcas chamando de m3, prenda as

porcas a um barbante e coloque em um béquer com água para ferver. Quando a

água começar a ferver conte mais três minutos para que a temperatura das porcas

fique igual a temperatura da água, com o termômetro meça a temperatura da água

que será a temperatura inicial t3 do metal. Retire pelo barbante as porcas da água

em ebulição e rapidamente coloque dentro do calorímetro, tampando-o

imediatamente. Acompanhe no termômetro a temperatura no interior do calorímetro

durante quatro minutos, verificando a temperatura do equilíbrio térmico. Marque as

informações obtidas na tabela a seguir e usando o princípio das trocas de calor

Q1+Q2+Q3=0, calcule o calor específico do metal e compare o valor encontrado com

os valores de tabelas construídas pela comunidade científica.

material Calor

específico

(cal/g.ºC)

Temperatura

inicial (ºC)

Temperatura

final (ºC)

Variação de

temperatura

(ºC) Δt

Massa

(g)

Trocas

de calor

ferro 0,11 cal/g.°C

água 1 cal/g.ºC

Cuba(Al) 0,21 cal/g.°C

PROBLEMAS

1)Um calorímetro de alumínio com massa de 40 g, contém inicialmente 80 g de água

Page 35: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

34

à temperatura de 25 °C. Colocamos então dentro do calorímetro 100 g de ferro, a

temperatura inicial de 90 °C e calor específico c = 0,11 cal/g.°C. Sabendo que o calor

específico da água e c = 1 cal/g.°C calcule a temperatura final do sistema.

material Calor

específico

(cal/g.ºC)

Temperatura

inicial (ºC)

Temperatura

final (ºC)

Variação de

temperatura

(ºC) Δt

Massa

(g)

Trocas

de calor

ferro

água

Cuba(Al)

2)Um calorímetro com massa de 40 g, contém 80 g de água a 20 ºC. Uma peça de

ferro a uma temperatura de 80 ºc é colocada no interior do calorímetro. Sabendo que

o calor específico do ferro é 0,11 cal/g.ºC e a temperatura do equilíbrio térmico é 40

ºC. Calcule a massa de ferro.

material Calor

específico

(cal/g.ºC)

Temperatura

inicial (ºC)

Temperatura

final (ºC)

Variação de

temperatura

(ºC) Δt

Massa

(g)

Trocas

de calor

ferro

água

Cuba(Al)

3)No interior do calorímetro de alumínio de massa 40 g, que contém 60 g de água a

23 ºC são colocadas 100 g de ferro a 100 ºC, ocorrendo o equilíbrio térmico a 27 ºC.

Calcule o calor específico do ferro e compare com o valor da tabela construída pela

comunidade científica.

material Calor

específico

(cal/g.ºC)

Temperatura

inicial (ºC)

Temperatura

final (ºC)

Variação de

temperatura

(ºC) Δt

Massa

(g)

Trocas

de calor

ferro

água

Cuba(Al)

4) Colocam-se 40 g de gelo a 0ºC e 80 g de água dentro de um calorímetro. Após

ocorrer o equilíbrio térmico observa-se 20 g de gelo boiando. Admitindo que não

Page 36: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

35

ocorra troca de calor com o meio externo, e o valor do calor específico da água é 1

cal/g.ºC e o valor do calor latente de fusão do gelo é 80 cal/g.

a) Qual a temperatura final da mistura?

b) Qual a temperatura inicial da água?

material Calor

específico

(cal/g.ºC)

Temperatura

inicial (ºC)

Temperatura

final (ºC)

Variação de

temperatura

(ºC) Δt

Massa

(g)

Trocas

de calor

ferro

água

Cuba(Al)

CONCLUSÃO

Após a execução destas atividades, as observações levantadas durante o

desenvolvimento devem ser respondidas nos grupos, para servirem de base para o

entendimento dos seguintes tópicos:

- trocas de calor

- capacidade térmica

- calor específico

- calor latente

7.5 PRINCÍPIOS DA TERMODINÂMICA

Em nossos estudos até aqui, verificamos que quando um objeto está em

movimento, ocorre o seu aquecimento devido ao atrito entre as superfícies de

contato com o meio. Quando arrastamos um corpo sobre uma superfície, ao

friccionarmos as mãos, o atrito de um corpo com o ar, pode-se perceber a energia

mecânica sendo transformada em energia interna e posteriormente em calor. Agora

vamos analisar situações em que o calor poderá ser convertido em energia

mecânica.

A partir do séc. XVll vem sendo feito estudos, para transformar o calor em

energia mecânica, com a queima de combustíveis. Com a invenção da máquina a

vapor, ocorreu uma grande revolução nos estudos da Termodinâmica, visando

Page 37: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

36

melhorar o rendimento das máquinas térmicas. Até hoje a preocupação é produzir

máquinas que tenham uma grande eficiência com um menor consumo de

combustível e bom rendimento.

Sabendo que o calor flui do corpo mais quente para o mais frio, e nunca em

direção oposta, assim a primeira Lei da Termodinâmica mostra que a quantidade de

energia (Q) recebida por um sistema pode realizar um trabalho (Ƭ), expandindo-se

ou contraindo-se, e provocando uma variação (ΔU) da energia do sistema.

A transformação do calor em qualquer outra forma de energia é chamada de

máquina térmica. A primeira máquina térmica foi inventada pelo grego Heron no séc.

l d. C. na cidade de Alexandria. Esta máquina não tinha a capacidade de produzir

grande quantidade de movimento. A partir do séc. XVII surgem os primeiros modelos

de máquinas térmicas, porém com baixo rendimento. O rendimento de uma máquina

térmica (η) é definido como sendo a razão entre o trabalho realizado (Ƭ) e a

quantidade de calor recebida (Q).

Com estudos realizados no séc. XVIII por James Watt, surgiram máquinas

térmicas com melhor rendimento e enorme vantagem sobre as que já existiam.

Essas máquinas térmicas inicialmente foram utilizadas para retirar água das minas

de carvão, nas locomotivas, em barcos a vapor e na indústria, causando uma grande

revolução, conhecida como Revolução Industrial.

No séc. XIX com estudos realizados por Sady Carnot, que veio fundamentar o

funcionamento das máquinas térmicas e prever limitações para o seu

funcionamento, ao transformar o calor em trabalho mecânico e o seu rendimento.

Para entender o princípio do funcionamento da máquina térmica, precisamos

entender o comportamento das variáveis dos gases (p,V,T), e veremos que a

variação da temperatura provoca variações no volume e na pressão do gás. O

princípio que rege o funcionamento das máquinas térmicas é denominado princípio

de Carnot, desenvolvendo transformações gasosas, com representação do ciclo na

figura 18 é assim definido:

- Absorção Isotérmica. O sistema recebe uma quantidade de calor e realiza

trabalho, ao variar o volume do gás, e a temperatura permanece constante.

- A expansão Adiabática reduz a temperatura final, não ocorrendo troca de calor com

Page 38: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

37

a vizinhança, mas o sistema continua a se expandir, realizando trabalho.

- A liberação Isotérmica do calor para a fonte fria. O sistema cede calor através do

trabalho realizado ao diminuir o volume e a temperatura permanece constante.

- Na compressão adiabática, a temperatura aumenta, sem ocorrer troca de calor com

a vizinhança, diminuindo o volume e aumentando a pressão.

Figura 18 - Ciclo de Carnot

Fonte:http://nretoledo1.wikispaces.com/file/view/Maquinas_termicas_Segunda_lei_Termodinamica_PRO

F.pdf em 10/11/2012

Na máquina de Carnot, a quantidade de calor que é fornecida pela fonte de

aquecimento e a quantidade cedida à fonte de resfriamento são proporcionais às

suas temperaturas absolutas, assim:

O trabalho realizado pela máquina térmica é igual a diferença entre o calor

recebido e o calor rejeitado.

Assim, o rendimento de uma máquina de Carnot é:

Logo: η = Ƭ/Q1

Page 39: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

38

Sendo:

= temperatura absoluta da fonte de resfriamento

= temperatura absoluta da fonte de aquecimento

Se a máquina térmica operar ao contrário, temos o refrigerador, que retira o

calor da fonte fria e o transfere para a fonte quente. Esta transferência de calor só é

possível mediante a realização de trabalho sobre o sistema.

Para representar a transformação do calor em trabalho, com o material

representado na figura 19 confeccionaremos um kit experimental.

KIT EXPERIMENTAL 6

Objetivo

Confeccionar um dispositivo que represente uma máquina térmica

Material

- 1 lata pequena com tampa e vazia

- 1 agulha grossa de injeção de uso veterinário

- 1 pedaço de tábua de 20 cm x 25 cm

- 1 m de arame no 16

- 1 pedaço de placa de isopor circular com 10 cm de diâmetro.

- 1 cola epoxi

- 1 lamparina ou três velas

Figura 19 - Material do kit experimental 6

Fonte: Fudal, 2012

Page 40: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

39

Procedimento

Faça um pequeno furo na borda da tampa da lata e fixe a agulha com a cola

epoxi. Com o arame faça um suporte, para colocar a ventoinha de isopor e para

suspender a lata, fixe três pregos no pedaço de madeira sobre a chama da

lamparina ou velas. Com o isopor confeccione uma ventoinha, coloque-a em um eixo

feito com 8 cm de arame que deve ficar um pouco acima da ponta da agulha, de

modo que ela gire com a saída da pressão do vapor. Coloque meia lata de água,

acenda a lamparina, deixe a água ferver e observe a ventoinha girar. A figura 20

representa o kit montado, que depois de colocado em funcionamento ajudará a

responder algumas questões sobre as transformações do calor.

Figura 20 – kit experimental 6

Fonte: Fudal, 2012

CONCLUSÃO

Esta atividade deve auxiliar a responder nos pequenos grupos, as questões

sugeridas a seguir, para serem comentadas no grande grupo.

QUESTÕES

1- Quais os efeitos produzidos pela chama ao sistema?

2- Ocorrem perdas de calor no sistema? Como?

3- Como você explica o movimento da ventoinha?

4- O calor liberado pela chama é totalmente aproveitado para a produção de

Page 41: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

40

movimento?

5- O que poderia ser feito para melhorar o funcionamento desta máquina térmica?

PROBLEMAS

1) Uma máquina térmica obtém trabalho à custa de um gás realizando ciclos de

transformações. Em cada ciclo o gás recebe da fonte quente uma quantidade de

calor Q=800J e envia para a fonte fria uma quantidade de calor Qf = 600J. Suponha

que cada ciclo ocorra num intervalo de tempo de Δt = 0,20 s .

a)Calcule o trabalho realizado pela máquina em cada ciclo.

b)Calcule o rendimento da máquina.

c)Calcule a potência útil da máquina.

2) Uma máquina de Carnot funciona entre duas fontes de calor a temperaturas

Tf=400 K e Tq= 500 K, de modo que, em cada ciclo, recebe da fonte quente uma

quantidade de calor Qq= 1200J.

a)Calcule o rendimento dessa máquina.

b)Calcule o trabalho realizado em cada ciclo.

c)Calcule o calor rejeitado para a fonte fria em cada ciclo.

3) Calcule o rendimento de uma máquina térmica que retira de uma fonte quente

500 cal e passa para uma fonte fria 80 cal?

4) Certa máquina térmica recebe 700 cal de uma fonte quente e perde 500 cal para

uma fonte fria em 2 s. Determine a potência útil da máquina. 1 cal = 4,2 J

Page 42: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

41

8. TESTE 1) Qual a função térmica dos pelos, das penas nas aves e do vestuário em nosso

corpo?

2) Para medir a temperatura de um corpo, o termômetro deve permanecer algum

tempo em contato com o corpo. Em que momento o termômetro indicará a

temperatura do corpo?

3) Qual o valor da temperatura de ebulição da água em nossa cidade?

4) Por que, ao tocarmos com a mão na parte metálica da cadeira, temos a

sensação de frio em relação à parte de madeira?

5) Por que a chama de uma vela é sempre vertical para cima?

6) No verão do ano passado, a maior temperatura registrada em nossa cidade foi

35 °C. Qual o valor dessa temperatura nas escalas Fahrenheit e Kelvin?

7) Como você faria para medir a temperatura de um lápis, de uma carteira e da

porta da sala de aula?

Page 43: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

42

8) A garrafa térmica é feita de vidro fino e espelhado para: a) evitar a perda de calor por convecção. b) facilitar a condução do calor para o seu interior, aumentando a temperatura. c) evitar a fuga de vapor de água. d) refletir a radiação infravermelha. e) permitir o rápido equilíbrio térmico com o meio exterior. 9) Para avaliar a temperatura de um corpo podemos utilizar várias grandezas, assinale a opção correta: a) a variação do comprimento de uma barra de ferro. b) a variação do volume de um líquido. c) a variação da pressão de um gás. d) a variação da resistência elétrica de um condutor. e) todas as respostas anteriores estão corretas 10) Assinale a opção em que estão ordenadas estão em ordem crescente, de acordo com suas temperaturas: 1) da chama do gás de cozinha 2) do corpo humano 3) do óleo em que batatas estão sendo fritas 4) da água fervendo 5) da água de um oceano a) 2 5 3 4 1 b) 5 2 4 3 1 c) 5 2 4 1 3 d) 2 5 3 1 4 e) 2 5 1 4 3 11) Quando se coloca uma colher de metal numa sopa quente, logo toda a colher também estará quente. A transmissão de calor através da colher é chamada: a) agitação; b) condução; c) irradiação; d) convecção.

12) A blusa de lã é um bom isolante térmico por que: a) é muito espessa; b) retém bastante ar no seu interior; c) impede a passagem da corrente de ar pelo corpo; d) impede a transpiração e a consequente diminuição de temperatura do corpo. 13) Nas geladeiras, a fonte fria (o congelador) deve ser colocada: a) na parte inferior, pois o ar quente é resfriado lá; b) na parte superior, pois o ar quente tende a se elevar; c) na parte inferior, pois o ar frio é mais denso e desce para o fundo; d) no meio do refrigerador. 14) O processo de transmissão de calor que só ocorre no vácuo (onde não tem ar) é denominado de: a) condução; b) convecção; c) absorção; d) irradiação.

Page 44: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

43

9. REFERÊNCIAS

ARRIBAS, S.D. Experiências de física ao alcance de todas as escolas. Rio de Janeiro: FAE. 1998.

AXT, R. O papel da experimentação no ensino de Ciências. In: Tópicos em Ensino de Ciências. Moreira, M. A. Porto Alegre: Sagra. 1991.

BAEYER, V.; CHRISTIAN, H. Arco-Íris, flocos de neve, quarks: a física e o mundo que nos rodeia. Tradução Luiz Euclides Trindade Frazão Filho. Rio de Janeiro: Campus, 1994.

BONADIMAN, H.; ZANON, L. B.; MALDANER, O. A. CIÊNCIAS: Proposta alternativa de ensino. Ijuí: Unijuí. 1997. BRASIL. Parâmetros Curriculares Nacionais Ensino Médio: Orientações Educacionais Complementares aos Parâmetros Curriculares Nacionais. Ciências da Natureza, Matemática e suas Tecnologias. Brasília: 1999. CARVALHO, A. M. P.; PÉREZ, D.G. Formação de professores de ciências, tendências e inovações. 2.ed. São Paulo: Cortez. 1995.

DELIZOICOV, D; ANGOTTI, J.A. Física. 2.ed. São Paulo: Cortez. 1992. DELIZOICOV, D; ANGOTTI, J.A. Metodologia do ensino de ciências. São Paulo: Cortez. 2000. Delizoicov, D; Angotti, J.A.,Pernambuco, M.M. Ensino de Ciências: fundamentos e métodos. 3.ed. São Paulo: Cortez. 2009. Freire, P. Pedagogia do oprimido. Rio de Janeiro: Paz e Terra S.A.. 1963.

GAMOW, G. Biografia da Física. Rio de Janeiro: Livrarias Editoras Reunidas. 1963. KUHN, T.S. A estrutura das revoluções científicas. 10.ed. São Paulo: Perspectiva.1962. NARDI, R. Pesquisas no ensino de física. São Paulo: Escrituras. 1998.

Page 45: Ficha de Identificação da Produção Didático-Pedagógica · Física, por natureza é uma Ciência experimental, onde o conhecimento científico pode ser comprovado com experimentos.

44

PARANÁ, Secretaria de Estado da Educação. Diretrizes Curriculares da Educação Básica de Física. Curitiba: SEED. 2008.

PIETROCOLA, M. Ensino de Física: conteúdo, metodologia e epistemologia numa concepção integradora. Florianópolis: Ed. Da UFSC. 2001. QUIRINI, W. G.; LAVARDA, F.C. Experimentos de Física para o Ensino Médio. Disponível em: <http://www2.fc.unesp.br/experimentosdefisica/rbef 1pp.htm>. Acesso em 20 de março de 2012.

TORRES, C. M. A.; ERRARO, N. G.; SOARES, P. A. T. Física – Ciência e tecnologia: volume 2: 2 ed. São Paulo: Moderna. 2010.