Dissertação - Fernanda Rocha Morais

90
UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA NÚCLEO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA (PEQ – UFS) FERNANDA ROCHA MORAIS DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇÃO DE BIODIESEL A BAIXAS TEMPERATURAS São Cristóvão (SE) Março de 2011

Transcript of Dissertação - Fernanda Rocha Morais

Page 1: Dissertação - Fernanda Rocha Morais

UNIVERSIDADE FEDERAL DE SERGIPE

PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA

NÚCLEO DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA (PEQ – UFS)

FERNANDA ROCHA MORAIS

DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇÃO DE

BIODIESEL A BAIXAS TEMPERATURAS

São Cristóvão (SE)

Março de 2011

Page 2: Dissertação - Fernanda Rocha Morais

FERNANDA ROCHA MORAIS

DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇÃO DE

BIODIESEL A BAIXAS TEMPERATURAS

Dissertação apresentada ao Programa de Pós-

Graduação em Engenharia Química, como

requisito à obtenção do título de Mestre em

Engenharia Química.

Orientador: Prof. Dr. Gabriel Francisco da Silva

Co-orientador: Prof. Dr. André Luis Dantas Ramos

São Cristóvão (SE)

Março 2011

Page 3: Dissertação - Fernanda Rocha Morais

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA CENTRAL UNIVERSIDADE FEDERAL DE SERGIPE

M827d

Morais, Fernanda Rocha Desenvolvimento de um processo contínuo para produção de biodiesel a baixas temperaturas / Fernanda Rocha Morais. – São Cristóvão, 2011.

90 f. : il.

Dissertação (Mestrado em Engenharia Química) – Núcleo de Pós-Graduação em Engenharia Química, Pró-Reitoria de Pós-Graduação e Pesquisa, Universidade Federal de Sergipe, 2011.

Orientador: Prof. Dr. Gabriel Francisco da Silva.

1. Engenharia química. 2. Biodiesel – Tecnologia química. 3.

Reatores químicos. I. Título.

CDU 662.6

Page 4: Dissertação - Fernanda Rocha Morais

FERNANDA ROCHA MORAIS

DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇ ÃO DE BIODIESEL A BAIXAS TEMPERATURAS

Dissertação de Mestrado aprovada em 25 de março de 2011

BANCA EXAMINADORA

Prof. Dr. Gabriel Francisco da Silva – Orientador Universidade Federal de Sergipe DEQ/UFS

Prof. Dra. Ana Eleonora da Paixão Universidade Federal de Sergipe DEQ/UFS

Prof. Dr. Carlos Antônio Cabral dos Santos Universidade Federal da Paraíba DEM/UFPB

Page 5: Dissertação - Fernanda Rocha Morais

DEDICATÓRIA

A minha Família, que me apoiou em todas

as horas, confiando em mim e dedicando

todo o amor, que tanto foi alívio nas horas

difíceis. Obrigada por terem

compartilhado comigo essa caminhada.

Page 6: Dissertação - Fernanda Rocha Morais

AGRADECIMENTOS

Esta dissertação é resultado de muito esforço e dedicação, e não poderia deixar de

registrar aqui minha sincera gratidão a todos que estiveram ao meu lado durante o

desenvolvimento deste trabalho.

Primeiro a Deus, por me guiar em mais esse caminho e por ter me iluminado e me dado

forças, permitindo a conclusão de mais essa etapa da minha vida;

A meus pais, Hunald Carlos Santos Morais e Josefa Rocha Morais, por me apoiarem e

mais uma vez tornarem possível mais uma realização;

A minha irmã, Aninha, pelo amor que me dedica que, mesmo distante, pôde me

compreender e apoiar com suas palavras de força;

A meus tios Lucila Morais Chaves e Duclerc Chaves que sempre estiveram presentes na

minha caminhada torcendo por minha Vitória;

A minha Tia Mayra por me acolher em sua casa e por me dar sempre aquela força que

precisei e a minha prima Renata pelas horas de conversa;

A minha vozinha Maura que com seus lúcidos oitenta e oito anos me incentivava a cada

palavra dita;

A meu tio Zinho que acredita em mim e no meu sucesso como profissional;

A todos da minha família que torceram, mesmo de longe, pela concretização desta

etapa;

A meu noivo Breno Pinheiro França, amigo, companheiro de todas as horas. Obrigada

por me acolher e saber dizer as palavras certas nos momentos mais confusos e difíceis para

mim. Obrigada pelo grande apoio e paciência durante o desenvolvimento deste trabalho,

revelados, principalmente na fase final;

Ao Prof. Dr. Gabriel Francisco da Silva, Amigo e Pai Científico, obrigada pela

orientação, confiança e amizade não só durante esses dois anos de mestrado, mas desde o

início do meu ingresso na Iniciação Científica, me conduzindo para o crescimento na área

acadêmica;

Ao meu Co orientador Dr. André Luis Dantas Ramos, pelos ensinamentos e por estar

sempre disponível esclarecendo todas as minhas dúvidas e por todo o apoio dado;

À Karla, minha amiga, que esteve sempre presente todo esse tempo lutando junto

comigo; sua companhia diária me deu forças para concluir;

Agradeço pelo apoio, amizade e diversão que compartilhamos durante todo esse tempo

Page 7: Dissertação - Fernanda Rocha Morais

aos alunos de iniciação científica e mestrandos: Epaminondas, Carolzinha Lopes, Gaby,

Luciano, Alana, Bia, Layla, Diana e todos que fazem parte do Laboratório de Tecnologias

Alternativas;

Agradeço a todos os funcionários da UFS, pelo auxílio e atenção ao longo destes meses,

Agradeço a Kathyanne (secretaria do PEQ) pelas orientações em questões burocráticas. A Dª

Berna, secretária do DEQ, pelo apoio quando necessário. Aos Técnicos de Laboratório dos

departamentos de Química e Engenharia Química por contribuírem com reagentes, vidrarias,

aparelhos para as análises;

A todos os professores do Departamento de Engenharia Química por nos

proporcionarem o saber através de seus ensinamentos que garantiram minha formação básica

como Engenheira;

Ao CNPq, que me concedeu uma bolsa durante a realização deste mestrado, auxílio

financeiro que contribuiu para a viabilização deste trabalho;

Agradeço a todos os amigos pelo apoio e incentivo nas horas desanimadoras, em

especial a Sheilinha, Paty, Claudinha, Nadjma, Wesla, e não posso me esquecer de uma

grande pessoa que é Aloísio Bomfim.

E, a todos que, direta ou indiretamente, colaboraram para que esse mestrado se

completasse.

Page 8: Dissertação - Fernanda Rocha Morais

DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇ ÃO DE

BIODIESEL A BAIXAS TEMPERATURAS

RESUMO

O biodiesel surgiu como uma alternativa promissora aos combustíveis minerais, derivados do petróleo. É biodegradável, sendo definido como monoalquil éster de ácidos graxos derivado de fontes renováveis, como óleos vegetais e gorduras animais, obtido através de um processo de transesterificação, no qual ocorre a transformação de triglicerídeos em moléculas menores de ésteres de ácidos graxos e apresenta características físico-químicas semelhantes às do diesel fóssil, tornando-se uma alternativa sustentável na substituição do mesmo. A rota convencional de produção de biodiesel, a transesterificação metílica utilizando catalisadores homogêneos básicos, é realizada em equipamentos simples, em modo batelada, não exigindo muito gasto energético, nem cuidados especiais na operação e controle reacional. Diversos problemas encontrados em relação à purificação dos produtos, aliados aos custos envolvidos no processo, sugerem a necessidade de se investigar novas rotas. Vários processos contínuos para produção de biodiesel vêm sendo estudados, porém empregando condições supercríticas, envolvendo reatores tipo PFR, onde a principal vantagem está no reator, no qual elevadas pressões e temperaturas podem ser facilmente controladas; Todavia, estes processos têm custos elevados. Pensando em minimizar os problemas existentes no processo convencional de produção de biodiesel e aliado à idéia de aprimorar os processos contínuos já existentes, este trabalho trata do desenvolvimento de um reator que opere em condições amenas de temperatura e pressão em regime contínuo, utilizando o hidróxido de sódio em mistura com óleo para geração de biodiesel e glicerina. Especificamente, serão estudadas a influencia da razão álcool/óleo e da temperatura sobre a conversão em ésteres. Os fluidos óleo e álcool foram bombeados continuamente para o interior do reator às razões molares de 1:4, 1:8 e 1:12 com temperaturas variando na faixa de 30 a 80°C. Uma vez que a temperatura estava estabilizada, iniciava-se a reação de transesterificação por um período de 1 hora. Amostras foram coletadas e analisadas em cromatografia gasosa. Os resultados indicaram um melhor resultado para a razão de 1:8 e temperatura de 60°C atingindo conversão média de 59%. O reator contínuo foi comparado com o batelada e foi observado que em temperaturas de 60°C foi possível obter conversões de até 80% da conversão do batelada no tempo de 10 minutos de reação. Palavras Chaves: Biodiesel, Reação de Transesterificação, Reator Contínuo, óleo de soja

Page 9: Dissertação - Fernanda Rocha Morais

DESENVOLVIMENTO DE UM PROCESSO CONTÍNUO PARA PRODUÇ ÃO DE

BIODIESEL A BAIXAS TEMPERATURAS

ABSTRACT

Biodiesel has emerged worldwide as a promising alternative to oil-derived mineral fuels. It is biodegradable, renewable, obey to the carbon cycle and can be defined as fatty acid monoalquyl esters derived from renewable sources, such as vegetable oils and animal fats. It can be produced from a transesterification reaction, in which there is the transformation of triglycerides into smaller molecules of fatty acid esters, and it has characteristics very similar to fossil diesel fuel, becoming a sustainable alternative to the substitution of this fuel. The conventional route for biodiesel production, the methyl transesterification with alkali homogeneous catalyst, is carried out in simple equipment, under batch operation, and it needs neither lots of energy demand nor special cares in the operation and reaction control. The energetic spend is limited to heating the reactor up and the agitation system. Several problems regarding to product purification, and also to the process costs, point out the need of investigating new routes, applying mainly cleaner technologies. Many continuous processes of biodiesel production have been studied, but involving supercritical fluids and PFR reactors, where the main advantage is in the reactor, in which high pressure and temperature can be easily controlled. But, these processes have higher costs. Focusing to minimize the problems in the conventional process of biodiesel production and also improve the continuous processes already existing, this work deal with the development of a reactor that works under a continuous flow and mild conditions of pressure and temperature, using hydroxide chlorine mixed to the oil to generate biodiesel and glycerin. Specifically, the influence of the molar ratio alcohol/oil over the ester conversion and temperature was studied. The oil and alcohol were pumped continuously inside the reactor at molar ratio of 1:4, 1:8, and 1:12 with temperature range of 30-80 °C. Once the temperature was stable, the transesterification reaction was carried out for one-hour period. Samples were collected and analyzed in gaseous chromatography. The results indicate the best average conversion (59%) for ratio of 1:8 and temperature of 60 °C. The continuous reactor was compared to a batch one. At 60°C, that comparison showed that conversion on continuous system reached 80% of batch one, in a ten- minutes reaction.

Keywords: Biodiesel, Transesterificacion Reaction, Contínuous Reactor, Soybean oil

Page 10: Dissertação - Fernanda Rocha Morais

Índice de Tabelas

Tabela 1: Principais matérias-primas usadas na produção de biodiesel...............................

Tabela 2: Características das principais oleaginosas disponíveis para produção de

biodiesel no Brasil................................................................................................................

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais.......................................

Tabela 4: Vantagens e desvantagens de metanol e etanol na produção de

biodiesel................................................................................................................................

Tabela 5: Comparação entre rota Metílica e Etílica.............................................................

Tabela 6: Propriedades Termofisicas dos reagentes utilizados para a sintese do biodiesel

em meio contínuo empregando NaOH como catalisador....................................................

Tabela 7: Configuração do Reator .......................................................................................

Tabela 8: Plano Experimental...............................................................................................

Tabela 9: Planejamento dos experimentos................................................................

Tabela 10:Vazões de Entrada do Óleo e Metanol nas três razões Alcool/óleo

estudadas...................................................................................................................

Tabela 11: Resultados experimentais deste trabalho empregando um reator contínuo

de1/4 de diâmetro externo e volume de 68mL com razão molar óleo álcool=1:4 no tempo

de residência de 10 minutos..........................................................................................

Tabela 12: Resultados experimentais obtidos deste trabalho para a razão molar óleo

álcool=1:8 no tempo de residência de 10

minutos.......................................................................................................................

Tabela 13: Resultados experimentais deste trabalho para a razão molar óleo álcool=1:12

no tempo de residência de 10 minutos.........................................................................

27

28

29

30

32

55

57

61

62

64

68

69

70

Page 11: Dissertação - Fernanda Rocha Morais

Índice de Figuras

Figura 1. Distribuição das fontes de energia na matriz energética brasileira em 2007........

Figura2: Vagem e semente de Soja .....................................................................................

Figura 3: Soja no contexto dos outros grãos, em nível mundial..........................................

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010........................

Figura 5: Estrutura Química de Triglicerídeo .....................................................................

Figura 6: Esquema da Reação de Transesterificação...........................................................

Figura 7. Mecanismo de reação para esterificação conduzida sobre catálise ácida.............

Figura 8: Pirólise de triglicerídeo (1), Ácidos carboxílicos (2), cetenos (3), acroleína (4)

e hidrocarbonetos com (5) ou sem (6) insaturações terminais.............................................

Figura 9: Imagem de um reator CSTR.................................................................................

Figura 10: Imagem de um reator PFR..................................................................................

Figura 11; Efeito das variações de velocidade de mistura e concentração de catalisador

sobre a conversão em ésteres metílicos com uma razão molar álcool/óleo de 6:1 (●)

0,1% de catalisador encontrado por Noureddini; (□) 0,25% de catalisador; (■) 0,4% de

catalisador............................................................................................................................

Figura 12: Efeito das variações de velocidade de mistura e concentração de catalisador

sobre a conversão em ésteres metílicos com uma razão molar álcool/óleo de 8:1

encontrado por Noureddini(●) 0,1% de catalisador; (□) 0,2% de catalisador; (■) 0,3% de

catalisador............................................................................................................................

Figura 13: Resultados encontrados por SILVA, 2009: Efeito da geometria do reator na

20

24

25

27

29

36

39

41

43

43

48

48

Page 12: Dissertação - Fernanda Rocha Morais

conversão em éster etílico na razão molar óleo: álcool 1:40, pressão de 200 bar e sem

co-solvente (○) 325oC (□) 350oC.........................................................................................

Figura 14: Efeito do tempo de residência sobre o rendimento de ésteres etílicos não

catalíticos, volume de 30 mL, a pressão de 200 bar, sem cossolvente. (□) 1/4 “ – 3500C;

(◊) 1/4 “- 3250C; (∆)1/8 “- 3250C..........................................................................................

Figura 15: Aparato experimental proposto por JESUS 2010: Vista interna do forno de

aquecimento com diferentes geometrias de reatores: (A) reator não-catalítico em espiral

com diâmetro externo de 1/4 de polegada e volume de 30 mL acoplado a um reator

catalítico com volume de 3 mL. (B) reator catalítico com diâmetro externo de 3/8 de

polegadas e volume de aproximadamente 15 mL................................................................

Figura 16: Efeito da razão molar óleo:álcool sobre a conversão da reação de

transesterificação metílica de óleo de soja em reator contínuo pressurizado empregando

hidrotalcitas como catalisadores heterogêneos sobre um fluxo de 1 mL/min, pressão de

150 bar e temperatura de 250 ºC..........................................................................................

Figura 17: Aparato experimental de bancada que será montado para o estudo da

transesterificação de óleos vegetais.....................................................................................

Figura 18: Bomba de HPLC ................................................................................................

Figura 19: Reator Tubular encamisado................................................................................

Figura 20: Cromatógrafo SCHIMADZU, modelo GC 2010...............................................

Figura 21: Reator Batelada..................................................................................................

Figura 22. Análise do desempenho das vazões de saída do reator da unidade

experimental para a razão de 1:4 e variação das temperaturas escolhidas para o

estudo...................................................................................................................................

50

51

52

52

57

58

59

61

63

65

Page 13: Dissertação - Fernanda Rocha Morais

Figura 23. Análise do desempenho das vazões de saída do reator da unidade

experimental para a razão de 1:8 e variação das temperaturas escolhidas para o

estudo...................................................................................................................................

Figura 24. Análise do desempenho das vazões de saída do reator da unidade

experimental para a razão de 1:12 e variação das temperaturas escolhidas para o

estudo...................................................................................................................................

Figura 25. Análise do desempenho das vazões de saída do reator da unidade

experimental para a temperatura fixa de 50 0C nas razões de 1:4, 1:8 e

1:12.......................................................................................................................................

Figura 26: Funis de Separação referente às três razões molares Alcool: óleo utilizado

para a reação de transesterificação em reator contínuo 1:4., 1:8 e 1:12

respectivamente....................................................................................................................

Figura 27. Efeito da Temperatura sobre a conversão da reação de transesterificação

metílica de óleo de soja em reator contínuo empregando hidróxido de sódio como

catalisador e metanol como álcool da reação na razão molar álcool:óleo de 1:4 com um

intervalo de confiança de 99,5%..........................................................................................

Figura 28. Efeito da Temperatura sobre a conversão da reação de transesterificação

metílica de óleo de soja em reator contínuo empregando hidróxido de sódio como

catalisador e metanol como álcool da reação na razão molar álcool:óleo de 1:8 com um

intervalo de confiança de 99,5%..........................................................................................

Figura 29. Efeito da Temperatura sobre a conversão da reação de transesterificação

metílica de óleo de soja em reator contínuo empregando hidróxido de sódio como

catalisador e metanol como álcool da reação na razão molar álcool:óleo de 1:12 com um

intervalo de confiança de 99,5%..........................................................................................

Figura 30. Resultado das três melhores situações para cada Razão estudada: 1:4, 1:8 e

1:12.......................................................................................................................................

65

66

67

72

72

72

73

75

Page 14: Dissertação - Fernanda Rocha Morais

Figura 31. Efeito da Configuração do Reator para a reação de transesterificação do óleo

de soja nas temperaturas de 40,60 e 80°C e razão molar álcool óleo de

1:4.........................................................................................................................................

Figura 32. Efeito da Configuração do Reator para a reação de transesterificação do óleo

de soja nas temperaturas de 40,60 e 80°C e razão molar álcool óleo de

1:8.........................................................................................................................................

Figura 33. Efeito da Configuração do Reator para a reação de transesterificação do óleo

de soja nas temperaturas de 40,60 e 80°C e razão molar álcool óleo de 1:12 ....................

76

76

77

Page 15: Dissertação - Fernanda Rocha Morais

Sumário

CAPÍTULO 1- INTRODUÇÃO .................................................................................. 15

1.1 Objetivos .............................................................................................................. 17 1.1.1) Objetivo Principal ...................................................................................... 17 1.1.2) Objetivos Específicos ................................................................................. 17

CAPÍTULO 2- REVISÃO BIBLIOGRÁFICA ................. ......................................... 18

2.1 Biodiesel ............................................................................................................... 18 2.1.1 Histórico ....................................................................................................... 18 2.1.2 Definição ....................................................................................................... 21 2.1.3 Culturas de oleaginosas e fontes alternativas ........................................... 23

2.1.4 Matérias-prima e Insumos para produção de Biodiesel .......................... 26

2.1.5- Processos de Produção do Biodiesel ......................................................... 35

2.2 - Reatores com escoamento contínuo ................................................................ 42

2.2.1- Reator Contínuo de Tanque Agitado ....................................................... 42

2.2.2- Reator Tubular ........................................................................................... 43 2.2.3- Reatores Industriais ................................................................................... 44

2.3 Processos contínuos para Produção de Biodiesel ............................................ 44

CAPITULO 3 - METODOLOGIA ............................................................................. 55

3.1- Materiais ............................................................................................................ 55 3.2. Sistema reacional de produção de biodiesel em regime contínuo ................. 56 3.3 - Teste de Vazões do Reator ............................................................................... 57 3.4 - Procedimento Experimental ............................................................................ 59 3.5 - Análise da conversão em ésteres por cromatografia gasosa ......................... 60

3.6 - Planejamento Experimental ............................................................................ 61 CAPITULO 4: RESULTADOS E DISCUSSÕES ..................................................... 64

4.1. Testes de Validação da Unidade Experimental .............................................. 64

4.2. Testes de Vazão .................................................................................................. 64 4.4. Efeito da Razão Molar óleo: álcool .................................................................. 74 4.5 Efeitos do Modo de Operação do Reator ......................................................... 75

5. CONCLUSÕES E PERSPECTIVAS ..................................................................... 78

5.1. Conclusão ........................................................................................................... 78 REFERÊNCIAS BIBLIOGRÁFICAS ....................................................................... 79

Page 16: Dissertação - Fernanda Rocha Morais

15 Capítulo1 Introdução

CAPÍTULO 1- INTRODUÇÃO

Após a crise do petróleo iniciada no final de 1973, todos os países importadores de

petróleo foram afetados, principalmente aqueles em desenvolvimento, como o Brasil. Essa

crise causou uma necessidade em se obter fontes alternativas de energia. No Brasil, a saída

para essa crise foi o Programa Nacional do Álcool (PROALCOOL); entretanto, os veículos de

cunho comercial, como caminhões, ainda utilizam o diesel como combustível.

Apesar de pesquisas serem realizadas desde a década de 20 sobre combustíveis

alternativos e renováveis, só há alguns anos que os bicombustíveis para motores de ciclo

diesel começaram a ser testados, especialmente nos centros urbanos.

A busca por combustíveis alternativos, visando principalmente à substituição de óleo

diesel em motores de combustão interna, tem sido intensificada devido à expectativa de

diminuição de reservas de petróleo, alto preço e problemas de poluição ambiental ocasionados

pela emissão de gases oriundos da queima dos combustíveis fósseis.

Esses combustíveis, sendo extraídos a um ritmo superior ao que se formam, correm o

risco de desaparecer a breve prazo. Assim, os países que deles dependem devem desde já

preparar-se para este problema.

Os óleos vegetais aparecem como uma fonte alternativa de combustível e o seu uso

direto em motores de combustão interna não constitui uma inovação recente. Em 1900,

Rudolf Diesel (1858 - 1913), inventor do motor do ciclo diesel, utilizou óleo vegetal de

amendoim para demonstrar seu invento em Paris (RABELO, 2001 e DEMIRBAS, 2003).

As vantagens do óleo vegetal como combustível em relação ao diesel são: líquido

natural, renovável, alto valor energético, baixo conteúdo de enxofre, baixo conteúdo

aromático e biodegradável (FANGRUI et al., 1999). Apesar de ser favorável do ponto de vista

energético, a utilização direta de óleos vegetais em motores a diesel é muito problemática.

Estudos efetuados com diversos óleos vegetais mostraram que a sua combustão direta conduz

a uma série de problemas, tais como carbonização na câmara de injeção, resistência à ejeção

nos segmentos dos êmbolos, diluição do óleo do cárter, contaminação do óleo lubrificante,

entre outros problemas.

O Brasil é um país rico em oleaginosas, mas, antes do biodiesel, restringia as suas

culturas para fins alimentícios. Dentre as várias espécies vegetais no Brasil das quais se pode

produzir biodiesel, destacam-se o dendê (palma), girassol, babaçu, amendoim, pinhão manso,

algodão, soja, dentre outras. Além da diversificada disponibilidade de oleaginosas, há de se

Page 17: Dissertação - Fernanda Rocha Morais

16 Capítulo1 Introdução

considerar as gorduras animais, como o sebo bovino, os óleos de peixes, o óleo de mocotó e a

banha de porco, entre outros. Outra fonte de matéria potencial para produção de

biocombustíveis no país consiste nos óleos e gorduras residuais, resultantes de processamento

doméstico, comercial e industrial (VILAS, 2005).

Segundo MEHER et al. (2006), “biodiesel é um éster mono-alquil de cadeia longa de

ácidos graxos derivados de fontes renováveis, provenientes de óleos vegetais ou gordura

animal, utilizado em motores de ignição por compressão”. Os principais processos utilizados

para a produção de biodiesel são a hidroesterificação, o craqueamento, e a transesterificação.

A reação pode ocorrer na presença ou não de um catalisador, seja ele homogêneo ou

heterogêneo.

No momento, a obtenção de biodiesel por transesterificação é o processo mais

utilizado nas plantas industriais, pois apresenta cinética bastante diferenciada em função do

tipo de catalisador utilizado, sendo os básicos homogêneos aqueles que fornecem maior

velocidade de reação e os mais utilizados industrialmente. (CARVALHO et al., 2007).

A transesterificação de triglicerídeos com álcool de baixa massa molar utilizando

catalisadores homogêneos básicos apresenta algumas vantagens, como o baixo custo da etapa

de reação, as condições reacionais brandas e a simplicidade dos equipamentos (MA e

HANNA, 1999). Segundo Ma e Hana (1999) e Van Gerpen (2005), uma série de

inconvenientes acompanha tal tecnologia, como a necessidade de especificação da matéria-

prima, possibilidade de saponificação e dificuldades na separação pós-reação, sendo, portanto,

necessário o desenvolvimento de processos alternativos que contornem estes problemas.

A rota convencional é realizada em equipamentos simples, em modo batelada, não

exigindo muito gasto energético, nem cuidados especiais na operação e controle reacional,

pois trabalham, geralmente, com pressão atmosférica e temperaturas moderadas. O gasto

energético se resume ao aquecimento do reator e ao sistema de agitação (mistura). Contudo,

apesar da simplicidade do processo, esta rota apresenta algumas desvantagens, que torna o

processo global desfavorável em relação ao processo por via supercrítica. Os principais

problemas são: tempo de reação alto, produção de sub-produto indesejável (sabões), diminuindo o

rendimento do biodiesel e, consequentemente, um processo de separação complexo. Os

diversos problemas encontrados em relação à purificação dos produtos, aliados aos custos

envolvidos no processo, sugerem a necessidade de se investigar novas rotas, utilizando-se,

principalmente, tecnologias mais limpas. É, portanto, muito importante que novas rotas

Page 18: Dissertação - Fernanda Rocha Morais

17 Capítulo1 Introdução

tecnológicas sejam investigadas, de forma a se avaliar as vantagens e desvantagens das várias

possibilidades existentes.

Nos últimos anos, alguns trabalhos podem ser encontrados na literatura no sentido do

desenvolvimento de processos contínuos (BUNYAKIAT et al., 2006; HE et al., 2007;

ANITESCU et al.,2008) e empregando etanol como álcool da reação (SILVA et al., 2007;

VIEITEZ et al., 2008a,b). O processo contínuo para produção de biodiesel empregando

alcoóis supercríticos, em geral envolvem reatores tipo PFR, no qual a principal vantagem

reside no reator (feixe de tubos), no qual elevadas pressões podem ser mais facilmente

controladas e operadas. Além disto, é possível a produção em maior escala e sem necessidade

de parada do reator para limpeza e realimentação dos reagentes. De forma genérica, os

resultados indicam uma cinética mais lenta do que no processo em batelada e alguns autores

sugerem problemas relacionados à homogeneização do meio reacional e separação de fases no

interior do reator durante o curso da reação (HEGEL et al., 2007). Desta forma, ainda é

necessário um desenvolvimento maior dos processos contínuos, justamente o que esta

dissertação pretende contribuir.

1.1 Objetivos

1.1.1) Objetivo Principal

A presente dissertação tem por objetivo o desenvolvimento de um processo contínuo

em reator tubular para produção de biodiesel a partir do óleo de soja, empregando metanol

como álcool e NaOH como catalisador do processo.

1.1.2) Objetivos Específicos

Para alcançar este objetivo, os seguintes objetivos específicos foram traçados:

1. Montagem da unidade experimental para síntese de biodiesel em meio contínuo a

baixa pressão;

2. Estudo de variáveis do processo de produção de biodiesel metílico de soja: efeitos

da temperatura, da razão molar entre etanol: óleo e do tempo reacional.

Page 19: Dissertação - Fernanda Rocha Morais

18 Capítulo2 Revisão Bibliográfica

CAPÍTULO 2- REVISÃO BIBLIOGRÁFICA

2.1 Biodiesel

2.1.1 Histórico

A utilização de combustíveis é antiga. O “ouro negro”, por exemplo, foi observado na

forma de chamas que se desprendiam da terra pelo imperador Alexandre, O Grande, em suas

expedições pela Ásia Menor. No início da era cristã, os árabes davam ao petróleo fins bélicos

e de iluminação, pois se esperava que o petróleo substituísse o óleo de baleia, em lamparinas e

lampiões. No entanto, o asfalto já era conhecido na civilização Inca e o betume foi usado

como material de liga na construção dos jardins suspensos da Babilônia. Os gregos e romanos

utilizavam o petróleo também de forma bélica, enquanto que os egípcios para o embalsamento

dos mortos célebres e como liga na construção de suas pirâmides (LAMAS, 2003, citado por

GONÇALVES, 2007).

O início da formação desse petróleo se deu nas bacias sedimentares, depressões na

superfície da terra, pela decomposição de material orgânico, proveniente de algas e animais

marinhos, com um intervalo de tempo na escala de milhões de anos (LAMAS, 2003).

Edwin Laurentine Drake, em 1859 na Pensilvânia, perfurou o primeiro poço para

obtenção de petróleo. No entanto, antes da 1a Guerra Mundial, o carvão mineral atendia 85%

do consumo total de energia primária na Grã-Bretanha, por exemplo. Anos mais tarde, os

combustíveis derivados de petróleo começaram a ser utilizados em larga escala, tornando-se

fontes indispensáveis de energia devido à grande concentração de energia por quilograma, às

novas reservas descobertas e ao preço baixo, permitindo o desenvolvimento tecnológico e

consequente expansão das indústrias (FARIA, 2004).

No ano de 1893, Rudolf Diesel, em Augsburg na Alemanha, criou o primeiro modelo

do motor a diesel que funcionou de forma eficiente, no qual era utilizado óleo de amendoim

como biocombustível. A dedicação da indústria do petróleo ao processo de otimização deste

motor resultou na criação de um derivado especifico, o óleo Diesel, até então não existente,

que permitiu o aumento de eficiência do motor de combustão interna por compressão e

dificultou a utilização dos óleos vegetais, devido principalmente aos depósitos de carbono e

resíduos gordurosos, aumentando cada vez mais o consumo e, consequentemente, a

dependência petrolífera (LUCENA, 2004).

Page 20: Dissertação - Fernanda Rocha Morais

19 Capítulo2 Revisão Bibliográfica

Na década de 70, em função da crise do petróleo, o mundo buscou basicamente dois

tipos de ações: a conservação ou eficiência energética das atuais fontes de energia ou a busca

por fontes alternativas de energia. Deste modo, o Brasil intensificou suas pesquisas acerca de

combustíveis alternativos, resultando no lançamento do PROÁLCOOL, em 1975. No final

desta década, na Universidade Federal do Ceará, surgiu a idéia de utilizar o biodiesel.

Somente em 1980 ocorreu o primeiro depósito de patente no Brasil, realizado por Expedito

Parente (PARENTE, 1980). É importante ressaltar que para resolver a questão do petróleo, as

grandes indústrias aumentaram a taxa de extração, não se atentando para a possibilidade de

futura escassez.

Durante a década de 90, a poluição ambiental atingiu níveis preocupantes, aumentando

consequentemente as pressões ambientais sobre os processos produtivos, surgindo um novo

conceito de desenvolvimento, o de “Desenvolvimento Sustentável”. Neste sentido, o

surgimento de problemas, tais como o efeito estufa e a chuva ácida, aliados aos elevados

níveis de emissões de poluentes, e ao aumento do preço e à demanda dos derivados do

petróleo têm estimulado o desenvolvimento de pesquisas por combustíveis alternativos.

O Governo Federal Brasileiro voltou a discutir o uso de biodiesel instituindo o

Programa Brasileiro de Desenvolvimento Tecnológico de Biodiesel – PROBIODIESEL,

regulamentado pela portaria MCT nº 702, de 30.10.2002, com o intuito de promover o

desenvolvimento científico e tecnológico do biodiesel, a partir de ésteres etílicos de óleos

vegetais puros e/ou residuais, sendo efetuados vários estudos por comissões interministeriais e

em parceria com universidades e centros de pesquisa (SUAREZ & MENEGHETTI, 2007).

Para viabilização do PROBIODIESEL, o Ministério da Ciência e Tecnologia se dispôs a

coordenar uma rede de pesquisa e desenvolvimento tecnológico para estimar a viabilidade

técnica, sócio-ambiental e econômica do mercado brasileiro de biodiesel, visando a sua

utilização no País (SARDENBERG, 2002). Deve-se destacar, também, que neste período, no

Brasil, o biodiesel deixou de ser um combustível puramente experimental, e passou para as

fases iniciais de produção industrial. A primeira indústria de ésteres de ácidos graxos foi

instalada no Estado de Mato Grosso em novembro de 2000, começando com uma produção de

1.400 t/mês de éster etílico de óleo de soja (SUAREZ & MENEGHETTI, 2007).

Atualmente, a sustentabilidade energética está diretamente associada ao

desenvolvimento econômico das cidades. Com a criação do PAC – Programa de Aceleração

do Crescimento, pelo Governo Federal, há a perspectiva de um crescimento catalisado pelo

apoio e incentivo às indústrias. No entanto, há três principais problemas que impedem o

Page 21: Dissertação - Fernanda Rocha Morais

Capítulo2

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

das relações tu

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

Nos dias d

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

desenvolvimento do País.

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

liderança do Brasil na área de biocombustíveis.

Capítulo2

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

das relações tu

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

Nos dias de hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

desenvolvimento do País.

Figura 1: Distribuição das fontes de energia

É com intuito de garantir a auto

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

liderança do Brasil na área de biocombustíveis.

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

das relações turbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

desenvolvimento do País.

Figura 1: Distribuição das fontes de energia

É com intuito de garantir a auto

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

liderança do Brasil na área de biocombustíveis.

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

Figura 1: Distribuição das fontes de energia

É com intuito de garantir a auto

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

liderança do Brasil na área de biocombustíveis.

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

Figura 1: Distribuição das fontes de energia na matriz energética brasileira. Ano Base 2009.

É com intuito de garantir a auto-suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

liderança do Brasil na área de biocombustíveis.

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

na matriz energética brasileira. Ano Base 2009.

suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

Revisão Bibliográfica

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

na matriz energética brasileira. Ano Base 2009.

suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

Revisão Bibliográfica

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem nov

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

Fonte: MME, 2010

na matriz energética brasileira. Ano Base 2009.

suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

20Revisão Bibliográfica

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

energética para atender o crescimento programado. Caso contrário, especialistas temem novas

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

Fonte: MME, 2010

na matriz energética brasileira. Ano Base 2009.

suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

20

crescimento estabelecido: possibilidade de falta de gás natural (principalmente no contexto

rbulentas com a Bolívia de Evo Morales), atraso nas construções de

hidrelétricas e atraso no desenvolvimento de energias alternativas, pois mais da metade do

consumo energético brasileiro depende dos combustíveis fósseis, como mostra a Figura 1.

e hoje, com a limitação da matriz energética, a taxa de crescimento anual não

ultrapassaria o teto dos 4% ou 5%. Apenas em 2012 teríamos condições de suprir a demanda

as

crises de apagão. Tendo em vista essa situação, pesquisadores impulsionam seus estudos

rumo à geração de energias alternativas que supram a demanda, garantindo o

suficiência sustentada no longo prazo que o PAC

pretende estabelecer um aumento de no mínimo 20% da produção de combustíveis acima do

consumo nacional em petróleo, gás natural e combustíveis renováveis, visando assegurar a

Page 22: Dissertação - Fernanda Rocha Morais

21 Capítulo2 Revisão Bibliográfica

2.1.2 Definição

O biodiesel surgiu mundialmente como uma alternativa promissora aos combustíveis

minerais, derivados do petróleo. O caráter renovável torna o produto uma fonte importante de

energia em longo prazo (PORTAL BIODIESEL BR, 2008).

No artigo 4° da Lei nº 11.097, de 13 de janeiro de 2005 define-se biodiesel como:

“Biocombustível derivado de biomassa renovável para uso em motores à combustão interna

com ignição por compressão ou, conforme regulamento para geração de outro tipo de energia,

que possa substituir parcial ou totalmente combustíveis de origem fóssil”. Por esta definição,

não existe nenhuma restrição quanto à rota tecnológica, sendo possível utilizar como biodiesel

os produtos obtidos pelos processos de transesterificação, esterificação e craqueamento

(SUAREZ & MENEGHETTI, 2007).

As especificações para biodiesel no Brasil, reguladas pela Resolução ANP N˚ 7,

abril/2010, são menos restritivas que na Europa, de forma a permitir a produção do biodiesel a

partir de diversas matérias-primas (PORTAL BIODIESEL BR, 2008).

A União Européia definiu biodiesel como um éster metílico produzido com base em

óleos vegetais ou animais (Diretiva 2003/30/CE do Parlamento Europeu). Dessa forma, o

biodiesel comercializado na Europa tem que ser obtido pela rota metílica (SILVA, 2008).

Em 1999, o biodiesel foi definido pela “National Biodiesel Board” dos Estados

Unidos, como o derivado mono-alquil éster de ácidos graxos de cadeia longa, proveniente de

fontes renováveis como óleos vegetais ou gordura animal, cuja utilização está associada à

substituição de combustíveis fósseis em motores de ignição por compressão (DANTAS,

2006). O biocombustível tem que atender às especificações da norma ASTM D 6751 (ASTM

– American Society of Testing and Materials).

Enquanto produto pode-se dizer que o biodiesel tem inúmeras características, tais

como ser virtualmente isento de enxofre e aromáticos; ter número de cetano equivalente ao

diesel; possuir teor médio de oxigênio em torno de 11%; ter maior viscosidade e maior ponto

de fulgor que o diesel convencional; possuir um nicho de mercado específico, diretamente

associado às atividades agrícolas e diminuir a poluição ambiental (DANTAS, 2006).

Sabe-se hoje que o uso direto de óleos vegetais como combustíveis para motores é

problemático. A combustão direta leva à formação de goma devido à oxidação, decomposição

do glicerol gerando acroleína (substância tóxica) e à polimerização através das ligações

duplas dos triglicerídeos durante a armazenagem e combustão, por causa da composição e da

Page 23: Dissertação - Fernanda Rocha Morais

22 Capítulo2 Revisão Bibliográfica

quantidade de ácidos graxos livres. Ela pode causar também carbonização na cabeça do

injetor, diluição do óleo do cárter, resistência à ejeção nos segmentos dos êmbolos,

contaminação do óleo lubrificante, formação de depósitos de carbono, problemas na

atomização do combustível por causa da alta viscosidade e baixa volatilidade dos óleos

vegetais (que interfere no processo de injeção e leva à combustão incompleta); o conjunto

dessas características causa má partida do motor a frio, falha e atraso na ignição

(GONÇALVES, 2007).

Com intuito de utilizar os óleos vegetais para fabricação de combustíveis, viu-se a

necessidade de adaptá-lo, pois esses problemas podem ser contornados através de reações

químicas que modifiquem a estrutura dos óleos vegetais, bem como a de outras matérias-

primas, como resíduos graxos, transformando-os em biodiesel. A transesterificação,

hidroesterificação, a pirólise (que se refere à mudança química ocasionada por aplicação de

energia térmica na presença de gases), o craqueamento catalítico, a decomposição térmica e a

microemulsificação (dispersões do óleo e co-surfactante, termodinamicamente estáveis) são

utilizados para transformação química das moléculas do óleo (SRIVASTAVA & PRASSAD,

2000). É importante que essa nova molécula apresente características físico-químicas e

termodinâmicas melhores ou, no mínimo, semelhantes ao diesel (GONÇALVES, 2007).

Muitas são as matérias-primas que podem ser usadas na produção de biodiesel, a

exemplo de óleos vegetais, gordura animal e óleos e gorduras residuais. Óleos vegetais e

gorduras são basicamente compostos de triglicerídeos, ésteres de glicerol e ácidos graxos.

Atualmente existem 67 plantas produtoras de biodiesel autorizadas pela ANP para

operação no País, correspondendo à capacidade total autorizada de 16.414 m3/dia. Destas, 58

possuem Autorização para Comercialização do biodiesel produzido, correspondendo a 15.979

m3/dia de capacidade autorizada para comercialização. Há ainda 5 novas plantas de biodiesel

autorizadas para construção e 8 plantas de biodiesel autorizadas para ampliação de

capacidade. Com a finalização das obras e posterior Autorização para Operação, a capacidade

total autorizada poderá ser aumentada em 3547 m3/dia. Destaca-se também que atualmente há

22 solicitações de Autorização para Construção de novas plantas produtoras de biodiesel e 7

solicitações de Autorização para Construção referentes à ampliações de capacidade de plantas

já existentes. Tais solicitações encontram-se em processo de análise na ANP (ANP, 2011).

Page 24: Dissertação - Fernanda Rocha Morais

23 Capítulo2 Revisão Bibliográfica

2.1.3 Culturas de oleaginosas e fontes alternativas

A potencialidade nacional quanto à produção de óleos vegetais é garantida pela

diversidade de culturas que podem ser produzidas no Brasil. A palma e a soja se destacam na

região Norte e também na Nordeste, que abrange além destas, as culturas de mamona, algodão

e babaçu. O sudeste brasileiro se mostra capacitado para o cultivo de soja, mamona, algodão e

girassol. A região Sul inclui, além de soja, girassol e algodão, o cultivo de canola. Já no

Centro-oeste, além das culturas promissoras de soja e algodão, também estão inclusas a

produção de óleos de mamona e girassol (GONÇALVES, 2007).

A soja ocupa um lugar especial entre as plantas oleaginosas que crescem no Brasil.

Esta leguminosa é cultivada em muitos estados do país e é responsável por 90% do total de

óleos vegetais produzidos. Sua participação no mercado está relacionada principalmente à

exportação de sementes in natura e é uma importante fonte de divisas para Brasil. (PINTO et.

al., 2005).

A soja hoje cultivada mundo afora é muito diferente da dos ancestrais que lhe deram

origem. Nos seus primórdios, a soja era uma planta rasteira e habitava a costa leste da Ásia,

principalmente a região da Manchúria, na China. Sua evolução ocorreu de plantas oriundas de

cruzamentos naturais entre duas espécies de soja selvagem, que foram domesticadas e

melhoradas por cientistas da antiga China.

O Brasil é o segundo maior produtor mundial de soja. Na safra 2006/2007, a cultura

ocupou uma área de 20,687 milhões de hectares, o que totalizou uma produção de 58,4

milhões de toneladas. Os Estados Unidos, maior produtor mundial do grão, responderam pela

produção de 86,77 milhões de toneladas de soja. A produtividade média da soja brasileira é de

2823 kg por hectares, chegando a alcançar cerca de 3000 kg/ha no estado de Mato Grosso, o

maior produtor brasileiro de soja. A Figura 2 mostra com detalhes a semente de soja.

Page 25: Dissertação - Fernanda Rocha Morais

24 Capítulo2 Revisão Bibliográfica

Fonte: Fundação Pro sementes, 2010.

Figura 2: Vagem e semente de Soja

Dados do Ministério do Desenvolvimento, Indústria e Comércio Exterior mostram que

a soja tem uma importante participação nas exportações brasileiras. Em 2006 foram US$ 9,3

bilhões, o que representou 6,77% do total exportado (EMBRAPA, 2010).

No contexto das grandes culturas produtoras de grãos, a soja foi a que mais cresceu,

em termos percentuais, desde a década de 1970, tanto no Brasil quanto mundialmente. De

1970 a 2007, o crescimento da produção global de soja foi da ordem de 500% (de 44 para 220

milhões de toneladas) enquanto as produções de culturas como trigo, arroz, milho, feijão,

cevada e girassol cresceram, no máximo, uma terça parte desse montante (Fig. 3). Com o

fechamento da safra 2009/10, que promete ultrapassar 250 milhões de toneladas, essa

diferença deverá se ampliar (EMBRAPA, 2010).

Page 26: Dissertação - Fernanda Rocha Morais

25 Capítulo2 Revisão Bibliográfica

Fonte: FAO.

Figura 3: Produção mundial de grãos, em nível mundial.

A soja, apesar do seu baixo teor de óleo (18% a 22%), é a segunda oleaginosa mais

importante do planeta, depois do dendê. Em 2007, ela respondia por 27% do óleo vegetal

produzido no mundo, contra 36% do dendê (polpa + amêndoa).

A soja é a matéria-prima mais viável para a utilização imediata na produção de

biodiesel. Segundo uma pesquisa realizada na Escola Superior de Agricultura Luiz de Queiroz

(Esalq), em Piracicaba (SP), a estrutura da produção, distribuição e esmagamento dos grãos

torna seu uso vantajoso.

Uma das principais vantagens da soja é o nível tecnológico em que se encontra sua

produção. O processo de modernização da agricultura e a cultura da soja confundem-se e,

além disso, a cultura da soja teve grande influência nas discussões sobre a agroindústria, a

pesquisa tecnológica e a infraestrutura logística do país (AMORIM, 2005)~.

Atualmente, o óleo de soja representa aproximadamente 90% da produção brasileira

de óleos vegetais. Em função disso, a soja desponta como principal cultura oleaginosa que

pode suprir a demanda por biodiesel, no curto prazo. Porém, o mercado da soja já está muito

bem desenvolvido e o uso desta oleaginosa para fins não alimentícios só será viável nos

momentos em que o preço do óleo de soja estiver em patamares baixos (AMORIM, 2005).

Page 27: Dissertação - Fernanda Rocha Morais

26 Capítulo2 Revisão Bibliográfica

2.1.4 Matérias-prima e Insumos para produção de Biodiesel

As fontes de insumos para a produção de biodiesel compreendem os seguintes

componentes: uma fonte de ácidos graxos de cadeia longa, um álcool e catalisador.

2.1.4.1) Matéria Graxa

Os triglicerídeos são os principais componentes de qualquer gordura animal e vegetal.

Óleos vegetais e gorduras animais, in natura ou modificados, têm grande utilidade em vários

segmentos, tais como: químicos, cosméticos, alimentícios e nos últimos anos tem obtido

destaque na produção de biocombustíveis. A utilização de óleo vegetal como combustível

remonta do século XIX, quando Rudolph Diesel utilizou em seus experimentos óleo de

amendoim (MA e HANNA, 1999; DEMIRBAS, 2002).

Em 1912, Rudolph Diesel declarava sobre os óleos vegetais: “O motor a diesel pode

ser alimentado por óleos vegetais e ajudará no desenvolvimento agrário dos países que vierem

a utilizá-lo. O uso de óleos vegetais como combustível pode parecer insignificante hoje em

dia, porém com o tempo irá se tornar tão importante quanto o petróleo e o carvão são

atualmente.”

Atualmente, sabe-se que os óleos vegetais e gorduras animais in natura apresentam

alguns inconvenientes associados a seu uso direto em motores diesel, tais como a viscosidade

elevada, a composição ácida, a baixa volatilidade, o entupimento dos bicos injetores, a

formação de depósitos de carbono e a presença de ácidos graxos livres (MA e HANNA, 1999;

FUKUDA et al., 2001; MEHER et al., 2006; VARMA e MADRAS, 2007).

No Brasil, inúmeros estudos estão sendo realizados com foco na seleção e

potencialidades de oleaginosas para atendimento das metas de produção de biodiesel. Tal

efervescência acadêmica e industrial é certamente devida à sua grande extensão territorial, à

diversidade de oleaginosas disponíveis e adaptadas ao nosso país, com a preocupação de

desenvolver em cada região oleaginosas específicas e com maior potencial para produção de

óleo. A Tabela 1 mostra os principais ácidos graxos de cadeia longa empregados como

matéria-prima na produção de biodiesel.

Page 28: Dissertação - Fernanda Rocha Morais

Capítulo2

Tabela 1: Principais matérias

Origem

Vegetal

Industrial

biodiesel no Brasil em 2010. Observa

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

na gordura bovina.

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

Capítulo2

Tabela 1: Principais matérias

Origem

Vegetal

Animal

Industrial

A Figura 4

biodiesel no Brasil em 2010. Observa

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

gordura bovina.

Os dados mostrados na figura

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

Tabela 1: Principais matérias-primas usadas na produção de biodiesel

Clássicos: Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa Sebo Bovino, Banha de Porco, Gordura de Frango Ácidos Graxos (Borra)

Figura 4 apresenta as principais matérias

biodiesel no Brasil em 2010. Observa

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

gordura bovina.

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

os mostrados na figura

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

primas usadas na produção de biodiesel

Clássicos: Girassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Sebo Bovino, Banha de Porco, Gordura de Frango

Ácidos Graxos (Borra)

apresenta as principais matérias

biodiesel no Brasil em 2010. Observa

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

os mostrados na figura

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

primas usadas na produção de biodiesel

Matéria PrimaGirassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Sebo Bovino, Banha de Porco, Gordura de Frango

Ácidos Graxos (Borra)

apresenta as principais matérias

biodiesel no Brasil em 2010. Observa-se que, apesar do grande potencial para produção de

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

os mostrados na figura indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

primas usadas na produção de biodiesel

Matéria Prima Girassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Sebo Bovino, Banha de Porco, Gordura de Frango

apresenta as principais matérias-primas utilizadas para produção de

apesar do grande potencial para produção de

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

Revisão Bibliográfica

Girassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Sebo Bovino, Banha de Porco, Gordura de Frango

Fonte: KHALIL (2006)

primas utilizadas para produção de

apesar do grande potencial para produção de

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

Revisão Bibliográfica

Girassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Fonte: KHALIL (2006)

primas utilizadas para produção de

apesar do grande potencial para produção de

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja

Fonte: ANP, 2010

Figura 4: Matérias primas utilizadas para produção de Biodiesel em 2010.

indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

27Revisão Bibliográfica

Girassol, Soja, Mamona, Dendê, Algodão, Colza, Amendoim

Exóticos: Macaúba, Babaçu, Coco, Pinhão Manso, Andiroba, Moringa

Fonte: KHALIL (2006).

primas utilizadas para produção de

apesar do grande potencial para produção de

biodiesel com diversas culturas, a produção ainda se encontra concentrada no óleo de soja e

Fonte: ANP, 2010.

indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

27

primas utilizadas para produção de

apesar do grande potencial para produção de

e

indicam que, em função da matriz de óleos vegetal

atualmente instalada em nosso país, a soja é a opção natural para a produção de biodiesel.

Porém, é importante ressaltar que este cenário não é definitivo, uma vez que a soja é uma

Page 29: Dissertação - Fernanda Rocha Morais

28 Capítulo2 Revisão Bibliográfica

oleaginosa com baixo teor de óleo em sua semente, quando comparada a outras oleaginosas

como por exemplo: a mamona, o dendê, o amendoim, entre outras. Neste sentido, inúmeras

pesquisas acadêmicas e industriais estão sendo conduzidas no sentido da seleção e adaptação

de novas oleaginosas para serem empregadas na matriz produtora de biodiesel. Na Tabela 2

são mostradas algumas características das principais oleaginosas disponíveis para produção de

biodiesel.

Tabela 2: Características das principais oleaginosas disponíveis para produção de biodiesel no Brasil.

Fonte: Embrapa,2009.

Os triglicerídeos são os principais compostos dos óleos vegetais e são constituídos por

uma cadeia de ácidos graxos ligados a uma molécula de glicerol, conforme mostrado na

Figura 5. A maior parte dos triglicerídeos são compostos por ácidos palmítico, oléico,

linoléico e linolênico: C16:0 (cadeia de 16 carbonos sem insaturações), C18:1 (cadeia de 18

carbonos com uma insaturação), C18:2 e C18:3 (cadeia de 18 carbonos com duas e três

insaturações), respectivamente.

Espécie

Produtivid

ade (ton/há)

% de óleo

Ciclo de

Vida

Regiões

Produtoras

Tipo de Cultura

(Rendimento Ton de

Óleo/há)

Algodão

0,6 a 1,4

15

Anual

MT, GO, MS,

BA E MA

Mecaniza

da

0,1 a 0,2

Amendoim

1,5 a 2

40 a 43

Anual

SP

Mecaniza

da

0,6 a 0,6

Dendê

15 a 25

30

Perene

BA e PA

Mecaniza

da

3 a 6

Girassol

1,5 a 2

28 a 48

Anual

GO, MS, SP,

RS e PR

Mecaniza

da

0,5 a 0,9

Pinhão-Manso

2 a 12

50 a 52

Perene

NE e MG

Mecaniza

da

1 a 6

Mamona

0,5 a 1,5

43 a 45

-

-

-

0,5 a 0,9

Soja

2 a 3

17

Anual

MT, PR, RS, GO, MS, MG

e SP

Mecaniza

da

0,2 a 0,4

Page 30: Dissertação - Fernanda Rocha Morais

Capítulo2

A T

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

óleoAlgodão

Papoula

Colza

Cártamo

Girassol

Sésamo

Linhaça

Trigo

Palma

Milho

Mamona

Sebo

Soja

Laurel

Amendoim

Avelã

Noz

Amêndoa

Azeitona

Côco

Fonte: DEMIRBAS, 2005

Capítulo2

Figura 5: esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

A Tabela 3 mostra que

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

óleo 16:0Algodão 28.7

Papoula 12.6

Colza

Cártamo

Girassol

Sésamo 13.1

Linhaça

Trigo 20.5

Palma 42.6

Milho 11.8

Mamona

Sebo 23.3

Soja 13.9

Laurel 25.9

Amendoim 11.4

Avelã

Noz

Amêndoa

Azeitona

Côco

Fonte: DEMIRBAS, 2005

esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

mostra que

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

16:0 16:128.7

12.6 0.1

3.5

7.3

6.4 0.1

13.1

5.1 0.3

20.5 1.0

42.6 0.3

11.8

1.1

23.3 0.1

13.9 0.3

25.9 0.3

11.4

4.9 0.2

7.2 0.2

6.5 0.5

5.0 0.3

7.8 0.1

Fonte: DEMIRBAS, 2005.

esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

mostra que a maioria dos óleos apresenta majoritariamente ácidos graxos

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

16:1 18:00 0.9

0.1 4.0

0 0.9

0 0.9

0.1 2.9

0 3.9

0.3 2.5

1.0 1.1

0.3 4.4

0 2.0

0 3.1

0.1 19.3

0.3 2.1

0.3 3.1

0 2.4

0.2 2.6

0.2 1.9

0.5 1.4

0.3 1.6

0.1 3.0

esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

a maioria dos óleos apresenta majoritariamente ácidos graxos

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

18:0 18:10.9 13.0

4.0 22.3

0.9 64.1

0.9 64.1

2.9 17.7

3.9 52.8

2.5 18.9

1.1 16.6

4.4 40.5

2.0 24.8

3.1 4.9

19.3 42.4

2.1 23.2

3.1 10.8

2.4 48.3

2.6 83.6

1.9 18.5

1.4 70.7

1.6 74.7

3.0 4.4

esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

a maioria dos óleos apresenta majoritariamente ácidos graxos

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas

Tabela 3: Composição de ácidos graxos de alguns óleos vegetais

18:1 18:213.0 57.4

22.3 60.0

64.1 22.3

64.1 22.3

17.7 72.9

52.8 30.2

18.9 18.1

16.6 58.0

40.5 10.1

24.8 61.3

4.9 1.3

42.4 2.9

23.2 56.2

10.8 11.3

48.3 32.0

83.6 8.5

18.5 56.0

70.7 20.0

74.7 17.6

4.4 0.8

Revisão Bibliográfica

Fonte: INNOCENTesquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

a maioria dos óleos apresenta majoritariamente ácidos graxos

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O

exceção clássica, onde 93,6% dos ácidos graxos presentes nas cadeias são saturados

18:2 18:357.4 0

60.0 0.5

22.3 8.2

22.3 8.2

72.9 0

30.2 0

18.1 55.1

58.0 2.9

10.1 0.2

61.3 0

1.3 0

2.9 0.9

56.2 4.3

11.3 17.6

32.0 0.9

8.5 0.2

56.0 16.2

20.0 0

17.6 0

0.8 0

Revisão Bibliográfica

Fonte: INNOCENTINI, 2007esquema estrutural do: triglicerídeos (1), ácidos graxos (2) e glicerol (3)

a maioria dos óleos apresenta majoritariamente ácidos graxos

insaturados com 18 carbonos na cadeia (oléico, linoléico e linolênico). O óleo de coco é a

cadeias são saturados

18:3 Outros0 0

0.5 0

8.2 0

8.2 0

0 0

0 0

55.1 0

2.9 1.8

0.2 1.1

0 0.3

0 89.6

0.9 2.9

4.3 0

17.6 31.0

0.9 4.0

0.2 0

16.2 0

0 0.9

0 0.8

0 65.7

29Revisão Bibliográfica

INI, 2007.

a maioria dos óleos apresenta majoritariamente ácidos graxos

óleo de coco é a

cadeias são saturados

Outros 0

0

0

0

0

0

0

1.8

1.1

0.3

89.6

2.9

0

31.0

4.0

0

0

0.9

0.8

65.7

29

a maioria dos óleos apresenta majoritariamente ácidos graxos

óleo de coco é a

Page 31: Dissertação - Fernanda Rocha Morais

30 Capítulo2 Revisão Bibliográfica

As propriedades físicas essenciais dos óleos e gorduras, como a viscosidade, o ponto

de fusão e a estabilidade térmica, são determinados de acordo com a composição química de

ácidos graxos do triglicerídeo, permitindo assim prever o comportamento de cada óleo ou

gordura e de seus derivados, como o biodiesel.

Um alto grau de insaturação do óleo confere instabilidade à estocagem do

biocombustível, manifestando-se na forma de escurecimento do líquido e favorecendo à

formação de depósitos (FARIA, 2004).

2.1.4.2) Álcool

Dentre os diversos alcoóis orgânicos, o metanol (CH3OH), o etanol (C2H5OH), o

propanol (C3H7OH) e o butanol (C4H9OH) podem ser usados para produção de biodiesel

(WARABI et al., 2004; DEMIRBAS, 2005; MARCHETTI et al., 2007), sendo o metanol e o

etanol reportados na literatura como de maior potencial e viabilidade (DEMIRBAS, 2005). O

metanol é o álcool predominantemente utilizado para a produção de biodiesel em termos

mundiais. Esta predominância se deve ao fato relacionado com o custo de produção, que em

países como nos Estados Unidos pode ser até 50% mais barato do que o etanol (HAAS e

FOGLIA, 2006).

Em termos técnicos, o uso de metanol é vantajoso por permitir a separação do glicerol

de forma mais simples. A mesma reação utilizando etanol é mais complicada por requerer um

álcool livre de água, como também um óleo com um baixo teor de água para obter separação

de glicerol (DEMIRBAS, 2005). A Tabela 4 mostra algumas vantagens e desvantagens de

metanol e etanol na produção de biodiesel no Brasil.

Tabela 4: Vantagens e desvantagens de metanol e etanol na produção de biodiesel

Álcool Vantagens Desvantagens

Metanol

Menor Custo Menos Consumo

Maior Reatividade Não higroscópio

Não renovável Risco a saúde

Produto importado Não biodegradável

Etanol

Maior rendimento Maior Oferta Renovável

Biodegradável

Maior consumo Maior custo

Higroscópico Menor reatividade

Fonte: KHALIL, 2006.

Page 32: Dissertação - Fernanda Rocha Morais

31 Capítulo2 Revisão Bibliográfica

Desde 1973, com a primeira crise de petróleo, o Brasil busca desenvolver o etanol

como combustível substituto da gasolina através da implantação do Programa Proálcool.

Atualmente, o país é o maior produtor mundial de etanol de cana-de-açúcar e esta fonte

superou as fontes de energia hidráulica e elétrica na matriz energética brasileira em 2007

(ABREU, 2008). Com foco na sustentabilidade, o etanol seria um produto potencial para a

produção de biodiesel no Brasil, ou seja, renovável, economicamente viável e socialmente

aceito. Além destes fatos, há que se considerar também que o emprego do etanol contribuiria

para redução da dependência de óleo diesel, redução da poluição ambiental e do aquecimento

global com a emissão de dióxido de carbono (DEMIRBAS, 2005).

Em nível mundial, a oferta de biomassa, ainda que crescente, é baixa, e menor ainda a

disponibilidade de derivados da cana, que está inclusa na parcela de 2,2% de Biomassa

Moderna e outras (DANTAS, 2010).

Segundo Khalil (2006), existe uma polêmica na escolha da rota tecnológica metílica e

etílica, que é a questão da relação entre o consumo de álcool e o rendimento em biodiesel. O

consumo de metanol é menor, cerca de 105 g de álcool por 1 kg de óleo transesterificado,

produzindo 1,09 L de biodiesel. Utilizando etanol, o rendimento é maior: 150 g de álcool por

1 kg de óleo, produzindo 1,17 L de biodiesel. O custo benefício será avaliado por questões

como oferta, logística e segurança operacional, entre outros.

Por outro lado, há que se destacar também o apelo ambiental que o etanol possui, pois

para o balanço de carbono é mais eficiente do que o biodiesel metílico. Tal fato é devido à sua

origem também renovável, o que faz com que o carbono emitido na forma de dióxido de

carbono seja incorporado novamente durante o crescimento da oleaginosa pelo processo de

fotossíntese. Por fim, existe a questão estratégica para o Brasil de empregar matérias-primas

que são produzidas com tecnologia nacional, atenuando o impacto de oscilações do mercado

estrangeiro na economia nacional.

No Brasil, atualmente, uma vantagem da rota etílica possa ser considerada a oferta

desse álcool, de forma disseminada em todo o território nacional. Assim, os custos

diferenciais de fretes, para o abastecimento de etanol em função do custo do abastecimento de

metanol, em certas situações, podem influeomada. Sob o ponto de vista ambiental, o uso do

etanol leva vantagem sobre o uso do metanol, quando este álcool é obtido de derivados do

petróleo. No entanto, é importante considerar que o metanol pode ser produzido a partir da

biomassa, quando essa suposta vantagem ecológica pode desaparecer. Em todo o mundo, o

biodiesel tem sido obtido via metanol (BIODIESEL BR, 2006).

Page 33: Dissertação - Fernanda Rocha Morais

32 Capítulo2 Revisão Bibliográfica

O metanol (álcool tóxico, venenoso e de origem fóssil, ou seja, derivado do petróleo),

é uma das grandes desvantagens deste processo. Atualmente, é mais utilizado nas reações de

transesterificação por razões de natureza física e química (cadeia curta e polaridade) (COSTA

NETO, 2000 e BIODIESELBR, 2006). Contudo, o etanol está se tornando mais popular, pois

ele é renovável e muito menos tóxico que o metanol, é obtido da cana-de-açúcar, que é 100%

renovável, e garante maior segurança na manipulação devido a sua menor toxicidade. Além

disso, no Brasil existe uma maior disponibilidade do álcool de cana (maior produtor mundial

de etanol), enquanto parte (50% aproximadamente) do metanol consumido no país para outras

finalidades é importado (COSTA NETO, 2000, JULIANA 2005 e BIODIESELBR, 2006).

O uso do etanol reduz o consumo energético e, por vias de conseqüência, os custos

operacionais, porque a operação ocorre à temperatura ambiente (a frio) (COSTA NETO, 2000

e BIODIESELBR, 2006).

A transesterificação com etanol para a produção do biodiesel é um pouco mais

trabalhosa do que com o metanol, devido ao tamanho da molécula do primeiro ser maior.

Mesmo assim, devido à experiência do país em produzir e utilizar etanol, a grande capacidade

de produção hoje em atividade, um mercado consumidor bastante atraente e por ser menos

agressivo ambientalmente, o etanol está despertando muito interesse entre os produtores

brasileiros” (POLO NACIONAL DE BIOCOMBUSTÍVEIS, 2006).

Na Tabela 5 verifica-se as comparações entre o biodiesel, obtido via rotas metílica e

etílica.

Tabela 5: Comparação entre rota Metílica e Etílica

MeOH EtOH Quantidade de álcool por 1000L de biodiesel (kg/1000L)

90 130

Excesso de álcool recomendado (%)

100

650

Proporção molar (álcool:óleo) recomendada

6:1

20:1

Temperatura recomendada(°C)

60

80

Tempo de Reação (min)

45

90

Fonte: LEN, 2006.

Page 34: Dissertação - Fernanda Rocha Morais

33 Capítulo2 Revisão Bibliográfica

2.1.4.3) Catalisador

Os catalisadores são conceitualmente classificados como substâncias de elevada

atividade e promotoras de reação química específica. Os catalisadores podem ser classificados

como homogêneos ou heterogêneos. Os catalisadores homogêneos, por sua vez, podem ser de

característica ácida (ácido sulfúrico, fosfórico, entre outros) ou de característica básica

(NaOH, KOH, metóxidos, etóxidos, entre outros). Os catalisadores heterogêneos também

podem ser divididos nestas duas categorias: ácidos e básicos. Mais recentemente, lipases

imobilizadas também estão sendo utilizadas como catalisadores para a reação de produção de

biodiesel, podendo estas ser enquadradas dentro dos catalisadores heterogêneos (DEMIRBAS,

2007).

De acordo com Di Sério et al. (2008), hoje em dia o biodiesel é majoritariamente

produzido através da catálise homogênea alcalina (NaOH, NaOMe), na reação de óleos do

tipo comestível ou refinado com metanol. Segundo Demibras (2008), o hidróxido de sódio é

extensamente usado por causa do baixo custo e alto rendimento do produto. A catálise básica

é bastante rápida, mas é sensível à acidez do óleo vegetal e ao conteúdo de água presente

(reação de saponificação, resultando na formação de sabões), levando a dificuldades na

separação e purificação dos produtos da reação.

Apesar de a transesterificação empregando catalisadores ácidos minimizar tais

inconvenientes, a cinética da reação é extremamente lenta. Por outro lado, em sistemas com

alto teor de acidez livre e/ou elevado conteúdo de água, a catálise ácida pode ser empregada

(OLIVEIRA e OLIVEIRA, 2000; MA e HANNA, 1999). Em geral, nos processos

homogêneos são utilizadas grandes quantidades de água para limpeza do catalisador e do

produto.

Muniyappa et. al. (1996) realizou testes para reduzir o tempo de reação e a

concentração de catalisador (NaOH), para o Biodiesel de soja, sem que ocorra uma

significante redução na conversão dos triglicerídeos. O autor cita que para uma reação de 90

minutos, a diminuição da concentração de NaOH de 0,5 para 0,05% em massa não teve um

efeito significante na conversão dos triglicerídeos. Estudos mostraram que uma conversão alta

(98%) de triglicerídeos para ésteres metílicos foi obtido com concentração de 0,1% de

catalisador com 5-10 minutos de tempo de reação.

Segundo Kusdiana e Saka (2001), a utilização de catalisador homogêneo apresenta

alguns problemas como do catalisador, tempo de reação, separação do catalisador, purificação

Page 35: Dissertação - Fernanda Rocha Morais

34 Capítulo2 Revisão Bibliográfica

e separação dos produtos (éster e glicerina), ocasionando alto custo de produção e energia. A

pureza da matéria-prima é um fator importante na utilização de tais catalisadores

homogêneos: a presença de água tem efeito negativo na reação tanto por catálise básica como

ácida (percentual inferior a 0,06% deve estar presente na mistura reacional) e o teor de ácidos

graxos livres no óleo vegetal deve também ser controlado (tipicamente inferior a 0,5%) para

evitar reações de esterificação que promovem a formação de água e, em consequência,

reações de saponificação (KUSDIANA e SAKA, 2004).

Com isso, a literatura tem sido bastante eficiente na busca pela substituição de

catalisadores homogêneos por heterogêneos, para reduzir impactos ambientais e simplificação

nos processos (XIE et al., 2005). Dentre os mesmos, podem ser citados diversos tipos de

zeólitas, trocadoras de íons, e materiais com características básicas ou ácidas, tais como óxido

de magnésio e óxido de nióbio, entre outros (OOI et al., 2004; DOSSIN et al., 2006). Xie et

al. (2005) reportam uma série de catalisadores heterogêneos para a transesterificação de óleos

vegetais utilizando metanol como álcool, tais como CaCO3, EST-4 e EST-10 alcançando

conversões superiores a 90%.

Dentre tais catalisadores heterogêneos, diversos trabalhos têm surgido na literatura

utilizando catalisadores à base de precursores de hidrotalcitas que apresentam características

bastante interessantes para a reação de produção de biodiesel, a exemplo de: elevada área

superficial específica; propriedades básicas que podem ser modificadas pela substituição

parcial ou total dos íons Mg2+ por outros cátions di- ou trivalentes; estabilidade térmica e

possibilidade de formação de catalisadores bifuncionais, com combinação de propriedades

ácido-base e propriedades redox que podem ser criadas pela incorporação de cátions

específicos (TAPANES, 2008). Por exemplo, Cantrell et al. (2005) apresentaram um estudo

enfocando a estrutura e reatividade de hidrotalcita (MgAl) como catalisador para a produção

de biodiesel. O trabalho foi conduzido na temperatura de ebulição do metanol e em pressões

ambientes, com conversão máxima de 58%. Xie et al. (2005) apresentaram um estudo da

metanólise de óleo de soja, utilizando hidrotalcita (MgAl) como catalisador em processo de

batelada. Os melhores resultados obtidos pelos autores referem-se à condição de temperatura

próxima ao ponto de ebulição do metanol e à pressão ambiente, utilizando razão molar

óleo:metanol de 1:15, com conversão de 67%. Em ambos os trabalhos citados anteriormente,

ressaltam-se as temperaturas amenas utilizadas para a reação e os tempos de reação giraram

em torno de 6 a 8 horas de reação.

Page 36: Dissertação - Fernanda Rocha Morais

35 Capítulo2 Revisão Bibliográfica

Apesar de elevadas conversões serem possíveis de serem alcançadas na catálise

heterogênea, em geral a cinética de tais reações é lenta, principalmente devido a questões de

transferência de massa. Neste sentido, no intuito de acelerar a cinética da reação, as mesmas

são conduzidas em temperatura tipicamente acima de 120°C e em reatores pressurizados para

manter o sistema reacional na fase líquida.

Em outra frente de ação para o desenvolvimento de catalisadores heterogêneos,

encontram-se as enzimas. Tais biocatalisadores apresentam como principal aliado o fato de

poderem ser produzidos a partir de rejeitos de agroindústrias e, neste sentido, levando ao

processo a característica de sustentabilidade também nesta parte da cadeia produtiva do

biodiesel (ISO et al., 2001; OLIVEIRA et al., 2005a; DALLA ROSA, 2006).

Segundo Marchetti et al. (2007), os catalisadores enzimáticos apresentam algumas

vantagens: possibilidade de regeneração e reutilização, facilidade de separação do meio

reacional, estabilidade térmica maior e pureza dos produtos. Porém, o elevado custo de

produção destes biocatalisadores ainda é um obstáculo para sua utilização na produção de

biodiesel em escala industrial.

Da mesma forma, uma vez que as enzimas são compostas por proteínas, a temperatura

do processo é também limitada a valores inferiores a 70-80°C. Em consequencia, o tempo

reacional para obter elevadas conversões do processo de produção de biodiesel é geralmente

maior do que aquela que emprega catalisadores heterogêneos de origem química (argilas,

óxidos, etc).

Alguns trabalhos na literatura apontam para o uso de gases pressurizados como

cossolventes da reação no intuito de incrementar a velocidade da reação, tais como o de Dalla

Rosa et al. (2008) que utilizaram enzimas comerciais imobilizadas (Novozym 435 e

Lipozyme IM) na presença de propano como solvente da reação, obtendo conversões

superiores a 90% em 90 minutos de reação a 70°C.

2.1.5- Processos de Produção do Biodiesel

O processo para produção de biodiesel consiste na seleção do método adequado, que varia

de acordo com a matéria-prima selecionada (LEÃO, 2009). O biodiesel pode ser processado por

diferentes rotas reacionais, dentre os quais tem-se a transesterificação (alcoólise), a

Page 37: Dissertação - Fernanda Rocha Morais

36 Capítulo2 Revisão Bibliográfica

hidroesterificação, o craqueamento térmico ou pirólise e a microemulsificação (mistura co-

solvente).

2.1.5.1) Transesterificação

O processo químico empregado mundialmente para a produção de biodiesel é o da

transesterificação ou alcoólise, na qual um óleo vegetal ou gordura animal reage com um

álcool (geralmente metanol ou etanol) na presença de um catalisador para formar, ésteres

(biodiesel) e glicerol (RANESES et al., 1999; ZHANG et al., 2003). A Figura 7 mostra um

esquema da reação de transesterificação.

CH C R

CH2 RO C

O

O

O

+ 3 R OH CAT

3R O C R

O

+

CH2 OH

CH OH

CH2 OH

CH2 O RC

O

Fonte: ALVES, 2008.

Figura 6: Esquema da Reação de Transesterificação

A transesterificação de óleos vegetais a biodiesel com metanol pode ser conduzido

usando tanto catalisadores homogêneos (ácidos ou bases) e heterogêneos (ácido, básico e

enzimático) (HUAPING et. al., 2006).

A reação de transesterificação sofre os efeitos das variações causadas pelo tipo de

álcool, pelas proporções necessárias de álcool, por diferentes catalisadores, pela quantidade de

catalisador, pela agitação da mistura, pela temperatura e pelo tempo de duração da reação

(ZAGONEL, 2000; CANAKSI e VAN GERPEN, 1999; HANNA et. al., 1996). O tempo de

duração da reação afeta a produção de biodiesel realizada por bateladas; no entanto, deixa de

ser uma variável em instalações mais sofisticadas onde o biodiesel é produzido com fluxo

contínuo (DROWN, COX e WOOD, 1995).

Page 38: Dissertação - Fernanda Rocha Morais

37 Capítulo2 Revisão Bibliográfica

A estequiometria da reação necessita de três moles de álcool para cada mol de

triglicerídeo, produzindo três moles de ésteres e um mol de glicerina. Leung et al. (2010)

mostram que o excesso de álcool provoca um deslocamento do equilíbrio da reação no sentido

de formação de ésteres e glicerina.

Bernardes et. al. (2007) experimentaram a reação de transesterificação para o óleo de

soja analisando a síntese de biodiesel por vias química e enzimática, avaliando os efeitos de

concentração de catalisador, tipo de álcool (metanol ou etanol) e razão molar álcool/óleo.

Inicialmente, avaliou-se o sistema empregando KOH. Ao se analisar a influência da razão

molar dos reagentes etanol/óleo de soja (3:1 e 6:1), a razão molar 6:1 com uma concentração

de 6% de catalisador apresentou o melhor rendimento (63%). No tocante ao efeito do tipo de

álcool, observou-se que o metanol proporcionou resultados superiores ao etanol. Os

resultados da transesterificação do óleo de soja com etanol acarretaram rendimento em ésteres

etílicos de 59% nas reações com a enzima lipase comercial, empregando razão molar

estequiométrica dos reagentes. Este resultado é semelhante ao obtido nas reações com KOH

(63%), utilizando maiores quantidades de álcool (razão molar etanol/óleo de soja igual a 6).

Contudo, eles concluem que os resultados para o KOH e para reação enzimática são

semelhantes.

A catálise homogênea é a mais utilizada na produção de biodiesel tanto no Brasil

como no exterior. A mesma pode ser básica (seus principais catalisadores são o Hidróxido de

Potássio (KOH) e o Hidróxido de Sódio (NaOH) ou ácida, sendo que seus principais

catalisadores são Ácido Clorídrico (HCl) e o Ácido Sulfúrico (H2SO4).

Pinto et al. (2005) relatam que o hidróxido de sódio (NaOH) e o hidróxido de potássio

(KOH), responsáveis pela catálise homogênea alcalina, são usados normalmente como

catalisadores industriais pelo fato de que eles são relativamente baratos; entretanto, a

utilização deles na reação de transesterificação de óleo vegetal produz sabões. A formação de

sabão é o lado indesejável da reação, porque consome o catalisador parcialmente, diminuindo

o rendimento do biodiesel e dificultando a separação e a purificação.

A remoção destes catalisadores é tecnicamente difícil e traz custo extra ao

produto final. Além disso, a dificuldade de reciclar e a geração de desperdício tornam os

catalisadores tradicionais menos favoráveis. Mais recentemente, houve um desenvolvimento

crescente de catalisadores novos por produção de biodiesel.

Yong W et al. (2006) produziram biodiesel a partir de óleos e gorduras residuais

(OGR) e metanol em duas etapas, a primeira com sulfato férrico como catalisador e a segunda

Page 39: Dissertação - Fernanda Rocha Morais

38 Capítulo2 Revisão Bibliográfica

com hidróxido de potássio. A conversão, somando ambas as etapas para o biodiesel, foi de

97,02% que foi analisado em cromatografia gasosa.

Os catalisadores heterogêneos simplificam grandemente o pós-tratamento dos

produtos (separação e purificação). Eles podem ser separados facilmente do sistema ao

término da reação e também podem ser usados novamente. Além disso, o uso de catalisadores

heterogêneos não produz sabões por neutralização de ácidos graxos livres (KITAKAWA,

2006).

Comparados com reações catalisadas por sistemas tipicamente homogêneos, estes

novos sistemas oferecem a vantagem de simplificar significativamente a limpeza dos produtos

e de reduzir a quantidade de material que precisa ser descartado (KNOTHE G. et. al., 2006).

2.1.5.2) Hidroesterificação

Os ésteres são formados a partir de reações mais frequentemente observadas entre os

alcoóis e ácidos carboxílicos, denominadas de “esterificação”.

A reação de esterificação ocorre quando um ácido graxo e um álcool reagem de forma

a produzir moléculas de éster (biodiesel) e água como mostrado no mecanismo da Figura 7.

Geralmente, é conduzida com catalisadores homogêneos (ácidos de Brönsted e ácidos de

Lewis), que levam à formação de grande quantidade de efluentes, cujo tratamento é

complicado e oneroso. No caso de ácido sulfúrico, por exemplo, há problemas de toxicidade,

corrosão, separação e reutilização do catalisador (VIEIRA, 2005).

Page 40: Dissertação - Fernanda Rocha Morais

39 Capítulo2 Revisão Bibliográfica

Fonte: GONÇALVES, 2007

Figura 7. Mecanismo de reação para esterificação conduzida sobre catálise ácida

O uso de solventes orgânicos na síntese de biodiesel por esterificação pode ser

importante, visto que estes são solventes hidrofóbicos (fobia a água), ou seja, aumentam a

solubilidade dos ácidos graxos e evitam a presença de água no processo da reação e com isso

favorece o aumento da conversão. A síntese de ésteres de ácidos graxos em meio aquoso é

termodinamicamente desfavorável, pois a água é um dos produtos da esterificação e se a

reação ocorrer em solução aquosa, o equilíbrio é fortemente deslocado no sentido dos

reagentes (princípio de Le Chatelier). A presença de água no meio reacional ainda pode

hidrolisar os ésteres formados e inativar a maioria dos catalisadores heterogêneos por inibição

da taxa de reação. No entanto, alguns heteropoliácidos exibem elevadas atividades em várias

reações, pois possuem elevada acidez e alta área superficial. Estes heteropoliácidos são

classificados como ácidos de Brönsted fortes (VIEIRA, 2005) (transferem completamente um

próton).

Para aumentar o rendimento da reação de esterificação, outra opção, como o excesso

na quantidade de reagentes, pode ser utilizada ou a água produzida pode ser retirada (por

secagem ou por um processo de separação como adição no meio reacional de peneira

molecular) (LIMA et al, 1995). Adsorventes como alumina, sílica gel e zeólitas são efetivos

na remoção de água de solventes orgânicos. Como a reação de esterificação é reversível, esse

Page 41: Dissertação - Fernanda Rocha Morais

40 Capítulo2 Revisão Bibliográfica

excesso de reagente é necessário para garantir a maior formação possível de ésteres. Mas, em

se tratando da síntese de ésteres em larga escala, é preferível a remoção do produto à medida

que é formado, permitindo concentrações equimolares de reagentes, simplificando as etapas

de recuperação e purificação dos produtos (VIEIRA, 2005).

A esterificação é realizada a partir de ácidos graxos. Quando se tem matérias primas ricas

em triacilglicerídeos e deseja-se realizar reações de esterificação, pode-se gerar ácidos graxos a

partir da hidrólise. A viabilidade econômica para produção de biodiesel pode ser acentuada

quando realizada via esterificação de diferentes ácidos graxos livres presentes nas borras

ácidas oriundas do processo de refino de óleos vegetais (e com conversões acima de 90%)

(Ghandi et al, 1995 e Zaidi et al, 1995) e em resíduos graxos de outros processos (XUE et al,

2006).

Hidrólise é uma reação química onde um composto poder, realizar uma reação de dupla

troca com uma molécula de água. Em matérias primas ricas em triacilglicerídeos, estes podem ser

clivados antes do processo de saponificação ou de esterificação (DARIO, 2006). A cisão de

triacilglicerídeos possibilita a obtenção de ácidos graxos e águas glicerinosas. A hidrólise pode ser

realizada em meio ácido ou em meio básico variando, assim, de acordo com o tipo de catalisador

utilizado. A hidrólise ácida é exatamente o inverso da esterificação ácida. Já a hidrólise básica

ocorre sob condições alcalinas, onde evidentemente se obtém o ácido carboxílico (ácido graxo) e

um álcool correspondente, o glicerol (ALINGER et al., 1976).

O processo de hidroesterificação (hidrólise seguida de esterificação) se insere neste

contexto como uma alternativa ao processo convencional de produção de biodiesel. No Brasil

existem pelo menos três fábricas que desenvolvem esse processo. Estas fábricas obtém cerca de

99% de conversão (LIMA, 2007).

2.1.5.3) Pirólise ou Craqueamento Catalítico

A Pirólise ou craqueamento térmico pode ser definida como a conversão de uma

substância em outra através do aquecimento, com ou sem adição de um catalisador. Esse

aquecimento ocorre na ausência de ar ou oxigênio em temperaturas superiores a 450°C, ocorrendo

a quebra de ligações químicas gerando moléculas menores. Os materiais que podem sofrer pirólise

são os óleos vegetais, gorduras animais, ácidos graxos naturais e ésteres de ácidos graxos (MA et

al. 2009).

Page 42: Dissertação - Fernanda Rocha Morais

41 Capítulo2 Revisão Bibliográfica

A vantagem é que os produtos gerados pela pirólise podem ter outras aplicações, como

solvente, matérias-primas de plásticos, etc. No entanto, é um processo ainda caro

(AGROONLINE, 2006).

Diferentemente de mistura direta, gorduras podem ser objeto de pirólise para a

produção de compostos de menores cadeias. A pirólise de gorduras tem sido investigada há

mais de 100 anos, especialmente em países com pequenas reservas de petróleo. Catalisadores

típicos para serem empregados na pirólise são o óxido de silício (SiO2) e o óxido de alumínio

(Al 2O3). O equipamento para pirólise ou craqueamento térmico é caro. Contudo, os produtos

são quimicamente similares ao óleo diesel. A remoção do oxigênio do processo reduz os

benefícios de ser um combustível oxigenado, diminuindo seus ganhos ambientais e

geralmente produzindo um combustível mais próximo da gasolina que do diesel (LIMA,

2005).

A Figura 8 apresenta um exemplo de pirólise de triglicerídeos com a formação dos

produtos, onde pode ser observado que este processo produz uma série de produtos que,

segundo a literatura, apresentam propriedades adequadas para serem utilizados como

combustíveis líquidos.

Fonte: SUAREZ et. al., 2007.

Figura 8: Pirólise de triglicerídeo (1), Ácidos carboxílicos (2), cetenos (3), acroleína (4) e hidrocarbonetos com (5) ou sem (6) insaturações terminais.

Page 43: Dissertação - Fernanda Rocha Morais

42 Capítulo2 Revisão Bibliográfica

2.2 - Reatores com escoamento contínuo

Reatores com escoamento contínuo são quase sempre operados em regime

estacionário. São considerados três tipos: o reator contínuo de tanque agitado (CSTR), o

reator com escoamento empistonado (PFR) e o reator de leito fixo (PBR).

Os reatores em que se efetuam as reações homogêneas podem ser de três tipos: o

descontínuo ou batelada, o contínuo ou tubular e o semicontínuo.

O reator descontínuo é simples, necessitando de poucos acessórios, sendo ideal para

estudos cinéticos em escala experimental. Industrialmente, é usado quando se trabalha com

poucas quantidades de material.

O reator semicontínuo é um sistema flexível, porém de análise mais difícil que os

demais tipos. Oferece bom controle da velocidade da reação, pois a reação ocorre à medida

que os reagentes são adicionados. Tais reatores possuem uma variedade de aplicações, desde

as titulações colorimétricas de laboratório ate os fornos Siemens-Martin para a produção de

aço.

O reator contínuo é ideal para os processamentos industriais em que se trabalha com

grandes quantidades de material e quando a velocidade da reação está na faixa bastante alta –

extremamente alta. Os acessórios necessários são muitos; todavia, o controle de qualidade do

produto pode ser rigoroso e bastante perfeito. Como era de se esperar, esse reator é

largamente utilizado na indústria de petróleo (LEVENSPIEL, 1926).

2.2.1- Reator Contínuo de Tanque Agitado

Um tipo de reator comumente usado em processamento industrial é o tanque agitado

operado continuamente, conforme mostra a Figura 9. É chamado de reator contínuo de tanque

agitado (CSTR) ou reator de retromistura, sendo usado principalmente para reações em fase

líquida. É normalmente operado em estado estacionário e é considerado estar perfeitamente

misturado; consequentemente, a temperatura, a concentração ou a velocidade de reação dentro

do CSTR não dependem do tempo ou posição. Ou seja, cada variável é a mesma em cada

ponto dentro do reator. Uma vez que a temperatura e a concentração são idênticas em

Page 44: Dissertação - Fernanda Rocha Morais

43 Capítulo2 Revisão Bibliográfica

qualquer ponto no interior do tanque da reação, elas são as mesmas na saída, assim como em

qualquer outro ponto do tanque.

Fonte: web.

Figura 9: Imagem de um reator CSTR

2.2.2- Reator Tubular

Alem dos reatores CSTR e em batelada, outro tipo de reator comumente usado na

indústria é o reator tubular. Ele consiste em um tubo cilíndrico e é normalmente operado em

estado estacionário, como o CSTR. Reatores PFR são usados mais frequentemente para

reações em fase gasosa.

No reator PFR, os reagentes são continuamente consumidos à medida que escoam ao

longo do reator.

Fonte: web.

Figura 10: Imagem de um reator PFR

Page 45: Dissertação - Fernanda Rocha Morais

44 Capítulo2 Revisão Bibliográfica

2.2.3- Reatores Industriais 2.2.3.1) Reações em Fase Líquida.

Reatores semibateladas e CSTRs são usados principalmente para reações em fase líquida.

Um reator semibatelada tem essencialmente as mesmas desvantagens que um reator em

batelada. Entretanto, ele tem as vantagens de controlar a temperatura, a partir da regulagem da

vazão de alimentação, e a capacidade de minimizar as reações paralelas indesejáveis, por

meio da manutenção de uma concentração baixa de um dos reagentes. O reator semibatelada é

usado também para reações bifásicas, em que um gás geralmente é borbulhado continuamente

através do líquido.

Um CSTR é usado quando uma agitação intensa é requerida. Pode ser usado sozinho

ou como parte de uma série ou bateria de CSTRs. É relativamente fácil manter um bom

controle de temperatura com um CSTR, porque ele é bem misturado. Há, no entanto, as

desvantagens de que a conversão de reagente por volume de reator é a menor entre os reatores

tubulares empistonados. Consequentemente, reatores muito grandes são necessários para obter

altas conversões.

2.2.3.2) Reações em Fase Gasosa.

O reator tubular é relativamente de fácil manutenção (sem partes móveis) e geralmente

produz a mais alta conversão por volume de reator entre os reatores contínuos. A

desvantagem do reator tubular é a dificuldade em controlar a temperatura no interior do

reator, pontos quentes podem ocorrer quando a reação é exotérmica. O reator tubular é

comumente encontrado tanto na forma de um longo tubo, como também na forma de alguns

reatores menores, arranjados em um banco de tubos.

2.3 Processos contínuos para Produção de Biodiesel

Existem hoje 67 usinas de biodiesel autorizadas pela Agência Nacional do Petróleo,

Gás Natural e Biocombustíveis (ANP) a operar no Brasil. São pequenas e grandes empresas

Page 46: Dissertação - Fernanda Rocha Morais

45 Capítulo2 Revisão Bibliográfica

processando as mais diversas matérias-primas e formando um mercado bastante heterogêneo.

Em pesquisa recente conduzida pela BiodieselBR, 57 usinas informaram qual processo

utilizam: 45% (26 unidades) processam o biodiesel por batelada e 55% (31 unidades) operam

pelo processo contínuo.

Segundo o químico Bill Costa, gerente da divisão de biocombustíveis do Instituto de

Tecnologia do Paraná (Tecpar), a diferença fundamental entre os dois processos é a escala de

produção. Para produzir de modo contínuo, são necessários um grande investimento em

automação e a garantia de uma quantidade considerável de matéria prima para não

interromper o processamento. Já o processo por batelada é bem mais flexível, podendo-se

fazer uma nova mistura a cada batelada, mas a produção é mais reduzida.

Embora existam grandes usinas produzindo por batelada, como as unidades da Brasil

Ecodiesel, por exemplo, a regra é outra. A produção por batelada acaba abrangendo pequenas

plantas ou a produção voltada para pesquisa.

Costa explica que no processo por batelada todas as reações se resumem ao mesmo

reator. São colocados o óleo extraído da matéria-prima, o álcool e o catalisador e, das reações

químicas que ocorrem, forma-se o éster (biodiesel) e a glicerina. Produtos e coprodutos são

então extraídos e purificados, e o processo é interrompido até que seja feita uma nova

batelada. Cada batelada pode durar de 8 a 10 horas, sendo possível, portanto, realizar de duas

a três operações por dia.

Segundo o químico Evandro Luiz Dall’Oglio, professor da Universidade Federal do

Mato Grosso (UFMT), para escolher entre esse sistema ou o processo contínuo é preciso fazer

uma relação de custo-benefício. “Uma produção abaixo de 60 mil litros/ dia não justifica o

investimento inicial no método contínuo”, considera. É o caso da usina Bio Óleo, de Cuiabá

(MT), que tem autorização da ANP para produzir 10 mil litros por dia. (PORTAL

BIODIESEL BR, 2010).

Um terceiro caso que justifica o método por batelada, além da pesquisa científica e a

produção em pequena escala, é a diversificação dos cultivos agrícolas, uma vez que a

produção por este método permite usar um óleo vegetal diferente a cada batelada.

Visando superar as deficiências apresentadas no processo em batelada, em especial o

baixo rendimento na formação de etil éster e ao mesmo tempo aumentar a produtividade de

plantas industriais, processos contínuos têm sido propostos. É importante ressaltar que quando

se opera com processo em batelada, o controle da temperatura e da pressão da reação de

Page 47: Dissertação - Fernanda Rocha Morais

46 Capítulo2 Revisão Bibliográfica

forma independente é bastante difícil, uma vez que a pressão do sistema é resultado da

temperatura da reação.

O processo contínuo é voltado à produção de biodiesel em grande escala. “Não dá para

comparar, são sistemas completamente diferentes”, afirmou o químico Anderson Kurunczi

Domingos, que já trabalhou em empresas de grande porte como a Barralcool e a multinacional

Agrenco. Segundo Domingos, o controle de qualidade do biodiesel é superior no método

contínuo, e o processo ocorre em sintonia, gerando menos resíduo e havendo um

aproveitamento melhor da matéria prima. Ele compara o processo contínuo à confecção de

um bolo em que é colocada uma medida exata de ingredientes e sabe-se exatamente o que

sairá do forno. “No processo por batelada, cada vez sai um bolo diferente”.

A questão da qualidade também é o argumento de Silvio Rangel, gerente da divisão de

biodiesel da Barralcool, usina instalada em Barra do Bugres (MT). Ele acredita que a

automação das usinas que operam pelo modo contínuo garante a qualidade. Esse processo,

explica Rangel, começa com o tratamento da matéria-prima. “Em todo o processamento se

utiliza um óleo padrão, com o mínimo de acidez e umidade”, afirma. Para isso, é preciso

neutralizar o óleo, fazendo a secagem para retirar a água e reduzindo a acidez por

centrifugação.

O processo contínuo ocorre ininterruptamente em uma sequência de reatores. No

primeiro reator, o óleo neutro reage com álcool e catalisador, seguindo assim até o final do

processo, onde é separado e purificado. Nos últimos anos, alguns trabalhos podem ser

encontrados na literatura no sentido do desenvolvimento de processos contínuos

(BUNYAKIAT et al., 2006; HE et al., 2007; ANITESCU et al.,2008) e empregando etanol

como álcool da reação (SILVA et al., 2007; VIEITEZ et al., 2008a,b). O processo contínuo

para produção de biodiesel empregando alcoóis supercríticos envolve, em geral, reatores tipo

PFR, onde a principal vantagem do processo reside no reator (feixe de tubos), no qual

elevadas pressões podem ser mais facilmente controladas e operadas. De forma genérica, os

resultados indicam uma cinética mais lenta do que no processo em batelada e alguns autores

sugerem problemas relacionados à homogeneização do meio reacional e separação de fases no

interior do reator durante o curso da reação (HEGEL et al., 2007).

Medeiros et. al. (2006) apresentaram um novo reator sob condições supercríticas para

a realização da reação de transesterificação em meio contínuo, com aquecimento através de

uma resistência elétrica. Porém, foram encontrados problemas com as vedações, apresentando

vazamentos quando a pressão ultrapassava 400 bar e temperaturas de 250oC. Logo, não era

Page 48: Dissertação - Fernanda Rocha Morais

47 Capítulo2 Revisão Bibliográfica

garantida a hermeticidade do conjunto. O problema foi resolvido realizando modificações no

sistema e fazendo adaptações, mostrando que processos em condições supercríticas são mais

onerosos.

Vieitez et. al. (2009) investigaram o efeito da temperatura na eficiência da reação de

transesterificação do óleo de soja em etanol supercrítico em um processo contínuo sem

catalisador. O autor utilizou temperatura variando entre 250 a 350oC, a 20 MPa, com a razão

molar óleo/metanol de 1:40, como também foi adicionada água ao sistema em proporções

definidas, com o etanol utilizado. Os estudos mostraram que a temperatura e as vazões de

substrato afetam profundamente a conversão da reação a ésteres etílicos de ácido graxo. Nos

estudos houve também a degradação dos ácidos graxos que foi favorecida por tempos de

residência e temperaturas também maiores.

Alenzi et. al. (2009) estudaram a cinética de hidrólise não catalítica de óleo de

girassol sob água em condições subcríticas e contínuas. Os experimentos foram conduzidos

em um reator tubular na faixa de temperatura de 270 a 350oC e tempos de reação de até 30

min a 20 MPa. O rendimento dos ácidos graxos aumentou drasticamente com o aumento da

temperatura. Logo, a reação autocatalitica de hidrólise contínua de óleo de girassol em água

subcrítica foi encontrada como um método efetivo para produzir ácidos graxos com

rendimento superior a 90% sem nenhum catalisador. Segundo os autores, os ácidos graxos

atuam como catalisadores ácidos na hidrólise do óleo em água subcrítica.

A patente US 2006/0069274 reivindica o processo contínuo de produção de biodiesel

através de duas etapas: hidrólise dos triglicerídeos à temperatura de 60oC sob pressão

atmosférica, separando os triglicerídeos em ácidos carboxílicos e glicerol. A segunda etapa é

a esterificação dos ácidos carboxílicos com álcool hidratado. As reações ocorrem em duas

colunas separadas preenchidas com catalisador heterogêneo contendo óxido de cálcio e

magnésio. A separação do glicerol dos ácidos carboxílicos que saem da primeira coluna é

feita por diferença de densidade e os ácidos carboxílicos são misturados na segunda coluna

com etanol hidratado. Os ésteres etílicos juntamente com o etanol resultantes da segunda

coluna são separados da água por diferença de densidade e os ésteres etílicos são separados do

etanol por destilação fracionada.

Noureddini et. al. (1998) desenvolveram um processo contínuo para conversão de

óleos vegetais em ésteres metílicos de ácidos graxos. O estudo explorou o efeito das variações

de velocidade de agitação da mistura (0 a 3000 rpm), estequiometria (razão molar álcool/óleo

6:1 e 8:1) e concentração de catalisador hidróxido de sódio (0,1 – 0,4 % em peso) sobre a

Page 49: Dissertação - Fernanda Rocha Morais

48 Capítulo2 Revisão Bibliográfica

conversão total. Inicialmente, foi observado que há um limite superior para a concentração de

catalisador e para a velocidade de agitação a partir do qual o aumento destes parâmetros não

influencia a conversão, o que pode ser notado através das Figuras 11 e 12, respectivamente.

Fonte: NOUREDDINI, 1998.

Figura 11: Efeito das variações de velocidade de mistura e concentração de catalisador sobre a conversão em ésteres metílicos com uma razão molar álcool/óleo de 6:1 (●) 0,1% de catalisador; (□) 0,25% de catalisador; (■)

0,4% de catalisador

Fonte: NOUREDDINI, 1998.

Figura 12: Efeito das variações de velocidade de mistura e concentração de catalisador sobre a conversão em

ésteres metílicos com uma razão molar álcool/óleo de 8:1 encontrado por Noureddini(●) 0,1% de catalisador;

(□) 0,2% de catalisador; (■) 0,3% de catalisador

Page 50: Dissertação - Fernanda Rocha Morais

49 Capítulo2 Revisão Bibliográfica

Para a razão molar mais alta, o limite superior em relação ao catalisador foi menor

(0,3% em peso para 8:1 e 0,4% em peso para 6:1). Os autores concluíram que os efeitos

estudados tanto isoladamente como combinados resultaram em uma elevada conversão a

ésteres metílicos.

Fazzioni, I. (2004) depositou a patente PI-0404243 que trata de um processo contínuo

de produção de biodiesel a partir de óleo vegetal utilizando álcool em excesso (180 a 600 kg

de álcool por tonelada de óleo). O processo dispõe de dois reatores trabalhando em série para

que possa ser feita a conversão do óleo em biodiesel. No primeiro reator, os reagentes são

colocados em contato por um tempo determinado. Após este tempo, o produto formado é

enviado ao evaporador, onde o álcool em excesso é evaporado e condensado. O residual (óleo,

biodiesel e glicerina) é centrifugado, ocorrendo assim a separação da glicerina. Em seguida, o

biodiesel que sai do primeiro reator é inserido no segundo reator e passa pelo mesmo processo

que passou no primeiro, recebendo uma nova dosagem de álcool anidro. Após todo o processo

e separação da glicerina, uma lavagem ácida é feita para retirada de sabões formados na

reação. O biodiesel é então centrifugado para retirar a água de lavagem e impurezas, aquecido

e enviado a um secador a vácuo, onde o residual de umidade e álcool é eliminado.

Bonaventura, S. Di, (2006) também depositou a patente PI-0602511, que trata de um

reator e processo contínuo de produção de biodiesel. O reator apresenta forma tubular e

disposição horizontal compreendendo discos perfurados dispostos perpendicularmente a um

eixo central do reator, os ditos discos definindo seções nas quais são encontrados meios de

agitação nos quais podem estar presentes uma quantidade de 3 a 22 palhetas de agitação. As

palhetas são providas com uma pluralidade de aberturas, dispostas ao longo do seu

comprimento, diminuindo assim a resistência a seu movimento, ao mesmo tempo em que

favorece a mistura reacional (álcool, óleo e catalisador). O reator apresenta uma razão

diâmetro: comprimento (d:c) variando cerca de 1:5 a 1:15, e é especialmente destinado à

produção de biodiesel em regime contínuo. Para favorecer a eficiência do processo, uma

corrente de reciclo de cerca de 20% do meio reacional é provida no reator localizada na

extremidade final do reator, uma linha de reciclo do meio reacional operada por uma bomba e

controlada por uma válvula, é utilizada permanentemente durante o processo contínuo de

conversão, reciclando entre 10 a 30% do meio reacional para a entrada do reator.

Santos (2010) propôs a síntese de biodiesel etílico sem catalisador em meio

supercrítico contínuo. O sistema consiste em um reator tubular operando em condições

supercríticas que foi acondicionado no interior de um forno. O autor estudou a temperatura na

Page 51: Dissertação - Fernanda Rocha Morais

50 Capítulo2 Revisão Bibliográfica

faixa de 250 a 350oC, razão molar óleo/álcool de 1:10 a 1:100, tempo de residência entre 3 e

50 minutos, três distintas geometrias do reator fixando a pressão em 200 bar. Os estudos

mostraram conversões em ésteres de até 92% dentro da faixa de experimentos investigada,

sendo que o efeito de cada variável foi analisado separadamente. Com relação ao diâmetro do

reator, os estudos mostraram que com o reator de 1/4’’ de diâmetro externo, a conversão em

ésteres foi superior àquela obtida com o reator de 1/8 ‘’ .

Fonte: SANTOS, 2009. Figura 13: Resultados encontrados por SILVA, 2009: Efeito da geometria do reator na conversão em éster etílico

na razão molar óleo: álcool 1:40, pressão de 200 bar e sem co-solvente (○) 325oC (□) 350oC

Através de seus resultados, o autor pôde concluir que a conversão da reação em ésteres

etílicos também aumenta com a temperatura, já comentado em diversos trabalhos (SILVA et.

al. 2007; DEMIRBAS, 2003). Outro estudo realizado foi o efeito da razão molar com relação

ao rendimento em ésteres etílicos para dois distintos diâmetros do reator, sendo observado um

fenômeno bastante interessante de decréscimo da conversão da reação à medida que se

aumentava a quantidade de álcool, até a razão molar de 1:40, observado também por WANG

et. al. (2007 a,b). Foi observado que este fenômeno é bastante reprodutível para os reatores de

1/8” de diâmetro externo com distintos volumes totais (15 e 30 mL), indicando que a

velocidade de escoamento não é fator predominante para os reatores deste diâmetro. Em

relação ao tempo de residência, conforme Figura 14, foi observado que até 30 minutos houve

um contínuo aumento da conversão: para os experimentos realizados no reator de 1/4", as

conversões alcançaram 80%, ao passo que no reator de 1/8” alcançaram apenas 33%, cuja

cinética foi bastante lenta. Apesar da cinética ter sido mais rápida no reator de 1/4",

Page 52: Dissertação - Fernanda Rocha Morais

51 Capítulo2 Revisão Bibliográfica

investigou-se um decréscimo da conversão após 30 minutos de reação, como podemos

perceber na Figura 15, fato atribuído à degradação do biodiesel.

Fonte: SANTOS, 2009.

Figura 14: Efeito do tempo de residência sobre o rendimento de ésteres etílicos não catalíticos, volume de 30

mL, a pressão de 200 bar, sem cossolvente. (□) 1/4 “ – 3500C; (◊) 1/4 “- 3250C; (∆)1/8 “- 3250C

Jesus (2010) estudou a síntese de biodiesel em meio contínuo pressurizado

empregando hidrotalcitas como catalisadores heterogêneos. Assim como no trabalho de Silva

(2009), o sistema consiste em um reator tubular, que opera em condições supercríticas,

acondicionado no interior de um forno, porém com algumas modificações: foi incrementado

um leito catalítico, onde a temperatura variou na faixa de 150oC a 300oC, razão molar na faixa

de 1:20 a 1:100, concentração de catalisador e o tempo de residência com o objetivo de

avaliar o efeito destas variáveis sobre o rendimento da reação, além de estudar o efeito da

mistura adicionando um reator recheado com esferas antes do reator não catalítico. A Figura

15 mostra o aparato experimental utilizado pelo autor.

Page 53: Dissertação - Fernanda Rocha Morais

52 Capítulo2 Revisão Bibliográfica

A B

Fonte: JESUS, 2010.

Figura 15: Aparato experimental proposto por JESUS 2010: Vista interna do forno de aquecimento com

diferentes geometrias de reatores: (A) reator não-catalítico em espiral com diâmetro externo de 1/4 de polegada e

volume de 30 mL acoplado a um reator catalítico com volume de 3 mL. (B) reator catalítico com diâmetro

externo de 3/8 de polegadas e volume de aproximadamente 15 mL

O autor concluiu que a adição de um reator recheado com esferas acoplado ao reator

não catalítico promove conversões maiores quando comparado ao reator não catalítico

estudado por Santos (2009), afirmando que o efeito da mistura tem bastante influência na

conversão da reação. Outra conclusão foi que, ao aumentar o fluxo volumétrico de

alimentação dos reagentes, a conversão era reduzida, fato atribuído ao menor tempo de

residência. No que diz respeito à razão molar óleo:álcool, o autor concluiu que em meios

supercríticos, a adição de catalisador heterogêneo no meio reacional é viável, uma vez que foi

possível obter, com a razão molar óleo:álcool menor que 1:40, conversões em ésteres

metílicos satisfatórias, conforme mostra figura a seguir.

Fonte: JESUS, 2010.

Figura 16. Efeito da razão molar óleo:álcool sobre a conversão da reação de transesterificação metílica de óleo de soja em reator contínuo pressurizado empregando hidrotalcitas como catalisadores heterogêneos sobre um

fluxo de 1 mL/min, pressão de 150 bar e temperatura de 250 ºC.

Page 54: Dissertação - Fernanda Rocha Morais

53 Capítulo2 Revisão Bibliográfica

Maçaira et al. (2011) investigou a produção de biodiesel a partir de metanol

supercrítico empregando o dióxido de carbono como cosolvente em reator contínuo. A

temperatura da reação e o tempo foram estudados. No estudo foi encontrado 88% de

conversão para o tempo de 2 minutos de reação a temperatura de 200oC. Os resultados obtidos

mostraram que a conversão foi vinte vezes maior que pelo método de produção de biodiesel

convencional. Porém, é necessário lembrar que no método convencional são estudadas

temperaturas e pressões menores.

Outro estudo, também envolvendo reator contínuo, realizado por Silva (2010),

investiga a produção de ésteres etílicos (biodiesel) a partir da transesterificação do óleo de

soja e álcool etílico supercrítico em um processo sem catalisador. As análises foram

executadas em um reator tubular de 0,76 mm e 3,2 mm de diâmetro interno na faixa de

temperatura de 523 K a 598 K, com a faixa de pressão de 10 MPa a 20 MPa, variando

também a razão molar óleo:álcool etílico de 1:10 a 1:40. Silva avaliou ainda a influência dos

efeitos da adição de um cosolvente dióxido de carbono, o mesmo utilizado por Maçaira et al.

(2011). Os resultados mostraram que o rendimento em ésteres etílicos obtidos no reator

tubular com o menor diâmetro em regime contínuo eram mais elevados do que aqueles

obtidos em reator tubular com o diâmetro maior, possivelmente devido à melhor transferência

de massa encontrada dentro do reator. Rendimentos de reação não-negligenciáveis (70% em

peso) foram alcançados com baixa decomposição total de ácidos graxos (menor que 5% em

peso), mostrando que o uso do dióxido de carbono como cosolvente no reator não influenciou

significativamente no rendimento de ésteres etílicos dentro dos intervalos experimentais

estudados.

Kusdiana e Saka (2001) e Demirbas (2002) avaliaram a influência da razão molar

óleo:álcool metílico na transesterificação não-catalítica e obtiveram os melhores resultados

em termos de conversão em ésteres para uma razão molar óleo:álcool de 1:42. A mesma

relação foi estudada por Varma e por Madras (2007) para a transesterificação do óleo de

rícino usando o álcool etílico supercrítico na escala de temperatura de 523 a 623 K e pressão

do 20 MPa; os autores observaram um aumento na conversão da reação com relação crescente

da razão molar do álcool etílico ao óleo na escala do 1:10 ao 1:40.

Tretin et al. (2011) investigaram a produção de biodiesel através da transesterificação

do óleo de soja com etanol supercrítico em um processo contínuo livre de catalisador e

utilizando dióxido de carbono como cosolvente da reação. Os experimentos foram conduzidos

em um reator microtubo de capacidade de 37,9 mL na faixa de temperatura de 250 a 325°C ,

Page 55: Dissertação - Fernanda Rocha Morais

54 Capítulo2 Revisão Bibliográfica

na faixa de pressão 10 MPa a 20 MPa, razão molar óleo/etanol de 1:20 a 1:40, e co-solvente

em razão mássica em relação ao substrato de 0.05:1 a 0.2:1. Resultados mostraram que o

rendimento em ésteres foi proporcional ao aumento da adição do dióxido de carbono ao

sistema. Foram encontrados rendimentos consideráveis nas condições de 325°C, 20 MPa,

razão molar óleo:etanol de 1:20 e com razão mássica de CO2 de 0,2:1. Nota-se que as razões

molares utilizadas no presente trabalho são bem menores que as utilizadas pelos autores

citados.

Wen et al. (2009) realizaram um estudo de intensificação da síntese de biodiesel em

modo contínuo empregando óleo de soja e metanol em uma razão molar de 1:6 e hidróxido de

sódio como catalisador utilizando microreatores formados por placas com microcanais. Estes

autores verificaram que quanto maior era o diâmetro hidrodinâmico dos microcanais, menor

era o tamanho das gotículas de emulsão formadas e consequentemente maior era a conversão

da reação. Nas melhores condições reacionais, estes autores obtiveram um rendimento de

97,3% em ésteres com tempo de residencia de 28 segundos.

Page 56: Dissertação - Fernanda Rocha Morais

55 Capítulo3 Materiais e Métodos

CAPITULO 3 - METODOLOGIA

Neste capítulo são apresentadas as especificações dos materiais, a descrição do aparato

experimental montado para as reações de transesterificação contínua de óleo de soja, o

procedimento e o planejamento experimental elaborado para o alcance dos objetivos

propostos e a metodologia analítica utilizada na quantificação da conversão da reação.

3.1- Materiais

Nas reações de transesterificação foi utilizado como substrato o óleo de soja comercial

de marca Soya sem nenhum tratamento prévio e álcool metílico. Como catalisador foi

utilizado o hidróxido de sódio.

Para as análises cromatográficas em fase gasosa foi utilizado o heptadecanoato de

metila (Sigma-Aldrich) como padrão interno e como solvente hexano (F. MAIA, 98,5% de

pureza). Na Tabela 6 são apresentadas as propriedades termofísicas das substâncias utilizadas

no presente estudo.

O metanol foi escolhido como álcool reagente, uma vez que já existe um domínio

maior a respeito das reações processadas com o álcool em estudo e o óleo de soja por

representar 90% da produção brasileira de óleos vegetais (SILVA, 2008).

Tabela 6: Propriedades Termofísicas dos reagentes utilizados para a síntese do biodiesel em meio contínuo

empregando NaOH como catalisador

Substância Massa Molar (g/mol)

Densidade a 20 oC (g/cm3)

Metanol b32,04 c0,791-0,793

Óleo de Soja b873 d0,8825

bDEMIBRAS (2002); cSANTOS (2009); dNDIAYE (2004)

Page 57: Dissertação - Fernanda Rocha Morais

56 Capítulo3 Materiais e Métodos

3.2. Sistema reacional de produção de biodiesel em regime contínuo

O sistema experimental é composto de um tanque para a mistura álcool e catalisador

(metóxido), um tanque para óleo, uma bomba HPLC, um reator tubular, um tanque para

coleta da mistura reacional (biodiesel/glicerina/álcool) e um banho termostatizado para

controlar a temperatura do reator. Os tanques para o hidróxido e para o óleo consistem em

dois béqueres a controlar as vazões de alimentação na bomba. A bomba HPLC é usada para

impulsionar a mistura óleo e hidróxido para o reator. Nas saídas da bomba foram utilizados

tubos de aço inox 316 de 1/16’’ com expansão do diâmetro para 1/4”, o qual é o diâmetro do

reator tubular em estudo. No sistema da bomba existem válvulas micrométricas para controle

das vazões. O reator é formado de um tubo de aço inox 316 de 1/4’' de diâmetro externo (com

volume total de 68 mL), montado em espiral dentro de um reservatório encamisado para

controle da temperatura. Acoplado ao reator, foi colocado um tanque para coleta da mistura

reacional. As vazões de entrada e saída dos fluidos, que foram devidamente controladas,

foram medidas a partir do tempo gasto para se coletar o volume de 10 mL nos tanques de óleo

e hidróxido e no tanque da mistura reacional. A Figura 17 apresenta um diagrama

esquemático da unidade experimental de bancada que foi concebida para a consecução deste

trabalho.

Figura 17: Aparato experimental de bancada montado para o estudo da transesterificação de óleos

vegetais.

Page 58: Dissertação - Fernanda Rocha Morais

57 Capítulo3 Materiais e Métodos

Na figura 17 os itens a seguir estão presentes com suas respectivas funções na

unidade.

1- Tanque para armazenamento do hidróxido de sódio (álcool metílico –

homogeneização com hidróxido de sódio)2- Bomba de HPLC;

3- Válvula 1 controladora da Vazão de entrada para óleo de soja;

4- Válvula 2 controladora da Vazão de entrada para o hidróxido;

5- Reator tubular montado em espiral dentro de um reservatório encamisado para

controle da temperatura;

6- Tanque para armazenamento do óleo de soja;

7 - Tanque para coleta da mistura reacional (biodiesel/glicerina/álcool);

8- Entrada para água para aquecimento do banho;

9- Saída para água que circula o reator para manter a temperatura em estudo.

A montagem do sistema de produção de biodiesel em regime contínuo utiliza tanques,

tubos e acessórios em aço inox.

O sistema experimental desenvolvido nesta dissertação consiste em um reator tubular

que opera em condições brandas de temperatura e pressão com alimentação da mistura

reacional de óleo de soja e álcool metílico. O equipamento será todo construído a partir de

materiais adquiridos no mercado nacional (válvulas, conexões, tubulações, termopares,

bombas). A Tabela 7 resume as características do reator.

Tabela 7: Configuração do Reator

Geometria do Reator

Diâmetro do Tubo Volume (mL) Comprimento(m)

¼ ‘’ 68 6

3.3 - Teste de Vazões do Reator

Inicialmente foram feitos testes de vazão de entrada para as duas válvulas

micrométricas da bomba HPLC: óleo e álcool separadamente. A vazão do reator de entrada de

cada reagente foi medida através do volume que era bombeado no tempo de 1 minuto. As

válvulas são compostas de 5 (cinco) estágios, cada uma, tendo sido testados todos eles em 49

Page 59: Dissertação - Fernanda Rocha Morais

58 Capítulo3 Materiais e Métodos

combinações possíveis. Foram encontrados resultados satisfatórios de vazões para 3

combinações de estágios das válvulas. De acordo com as vazões encontradas, foram

realizados os cálculos relacionando a estequiometria da reação de transesterificação e, dessa

forma, foi possível predizer as razões álcool: óleo que seriam utilizadas nos experimentos. O

tempo de residência foi fixado em 10 minutos, que foi calculado de acordo com a equação a

seguir. A Figura 18 mostra a bomba HPLC com os tanques contendo o óleo e o hidróxido,

como também o tanque de coleta da mistura reacional:

� � �/� 7

Onde V é o volume do reator (mL) e Q é a vazão volumétrica do substrato (mL/min).

Figura 18: Bomba de HPLC

Page 60: Dissertação - Fernanda Rocha Morais

59 Capítulo3 Materiais e Métodos

3.4 - Procedimento Experimental

O procedimento experimental consistiu no bombeamento contínuo dos substratos óleo

de soja e álcool metílico (previamente homogeneizada com o hidróxido de sódio por agitador

magnético e filtrado para evitar incrustações durante o escoamento do fluido) a uma dada

razão molar (óleo: álcool metílico) e vazão volumétrica de alimentação determinada no

planejamento de experimentos, até o tempo necessário para preencher todo o sistema

reacional com a mistura. O reator pode ser observado na Figura 19. Quando a reação ocorria

em temperatura acima da ambiente, inicialmente o banho termostatizado era ligado para

aquecimento do reator até a temperatura da reação em estudo. Uma vez que a temperatura

estava estabilizada, iniciava-se a reação de transesterificação por um período de 1 hora para

que se pudesse garantir que a amostra atingiu o estado estacionário. A coleta das amostras foi

feita a cada 10 minutos. Ao serem coletadas (aproximadamente 5 mL em cada coleta) as

mesmas eram neutralizadas com solução alcoólica de HCl 0,1M a fim de parar a reação. As

amostras foram lavadas com água destilada (aproximadamente 5 lavagens cada) e colocadas

em estufa a 1300C durante 3 horas para evaporação da água e qualquer traço de álcool. Por

fim, foram guardadas em recipientes identificados para posterior análise de ésteres metílicos

por cromatografia gasosa.

Figura 19: Reator Tubular encamisado

Page 61: Dissertação - Fernanda Rocha Morais

60 Capítulo3 Materiais e Métodos

3.5 - Análise da conversão em ésteres por cromatografia gasosa

A quantificação de ésteres foi realizada baseada na norma EN 14103 (2001), com o

cromatógrafo gasoso, modelo GC 2010 da SCHIMADZU, equipado com detector de

ionização de chama (FID) de capacidade de 250°C. Para a separação dos compostos foi

utilizada coluna capilar de polietilenoglicol (RTX-WAX) de 30m de comprimento, 0,25 mm

de d.i. e 0,25µm de espessura de filme. O programa de forno consistira em manter a coluna

inicialmente a 120°C durante 2 minutos; em seguida, foi aquecida à taxa de 10⁰C/min até

1800C permanecendo por mais 3 minutos e por fim aquecida à taxa de 5⁰C/min até a

temperatura de 2300C. Para a medida de conversão da reação, as amostras passaram por um

preparo antes da injeção para análise. Foram pesados 100 mg de amostra produzida na reação

em um balão volumétrico de 10 mL, completando o volume com heptano. Em seguida 100 µL

dessa solução foi transferida para um balão volumétrico de 1 mL, contendo 50 µL da solução

de metil heptadecanoato (padrão interno com concentração de 5000 mg/L) e completado o

volume com hexano. Em seguida, a solução foi transferida para o vial de análise

cromatográfica. Apenas 1 µL da amostra era injetada no cromatógrafo (SANTOS, 2010).

Figura 20: Cromatógrafo SCHIMADZU, modelo GC 2010

Page 62: Dissertação - Fernanda Rocha Morais

61 Capítulo3 Materiais e Métodos

Após a injeção, a conversão foi analisada a partir da integração dos picos dos

cromatogramas gerados pelo programa, que indicam a quantidade de éster na amostra, através

da seguinte equação:

�� � ��� � � ��� � � � ��� � �� �� ��

��

Onde: PE= % de ésteres na amostra;

AT= área total obtida;

API= área do padrão interno;

M = Massa da amostra.

C= Concentração da amostra

3.6 - Planejamento Experimental

Os experimentos deste trabalho foram realizados no Laboratório de Tecnologias

Alternativas (LTA). Para a realização dos testes experimentais, foram estudadas as seguintes

variáveis: razão molar óleo: álcool, consequentemente, a vazão do reator e a temperatura,

como mostra a Tabela a seguir. O foco deste trabalho é o levantamento de informações acerca

da influencia das variáveis em estudo sobre a conversão em ésteres da reação. A Tabela 8

apresenta as condições experimentais investigadas durante o estudo e a Tabela 9 apresenta o

planejamento de como foi realizado este estudo.

O catalisador utilizado no trabalho foi o hidróxido de sódio, pois se trata de uma

tecnologia já convencional; a concentração utilizada foi fixada em 0,5% em relação à massa

de óleo.

Tabela 8: Plano Experimental

Variáveis Condições

Pressão Atmosférica

Razão Molar 1:4 1:8 1:12

Temperatura (oC) 30 40 50 60 70

Page 63: Dissertação - Fernanda Rocha Morais

62 Capítulo3 Materiais e Métodos

Tabela 9: Condições Experimentais

Ensaio Razão Molar álcool/óleo Temperatura(°C)

1 4 30

2 4 40

3 4 50

4 4 60

5 4 70

6 4 80

7 8 30

8 8 40

9 8 50

10 8 60

11 8 70

12 8 80

13 12 30

14 12 40

15 12 50

16 12 60

17 12 70

18 12 80

Com o intuito de comparar e verificar a influencia da configuração do reator no

processo de transesterificação do óleo de soja, foram escolhidas e estudadas três condições

experimentais deste trabalho para ser realizado em reator batelada: as temperaturas ficaram na

faixa de 40 a 80 °C, com variação de 20 °C. Para cada temperatura, três razões molares

óleo/álcool foram estudadas: 1/4, 1/8 e 1/12.

O reator batelada constituiu-se de um béquer (1000 mL), com um misturador no seu

interior e envolto em banho termostatizado para controle de temperatura. Após a retirada das

alíquotas, estas eram neutralizadas com solução alcoólica (metanol) de ácido clorídrico 37%

0,1M e lavadas com água destilada por cinco vezes para eliminar resíduos de catalisador.

Após a lavagem, as alíquotas eram postas em estufa a 130°C, durante 3 horas, para eliminar a

água residual. Assim como no processo contínuo que foi o foco de estudo deste trabalho, as

amostras foram analisadas por GC/FID segundo metodologia EN14103 e a conversão do óleo

em ésteres foi calculada. Um esquema do reator é apresentado na Figura 21.

Page 64: Dissertação - Fernanda Rocha Morais

63 Capítulo3 Materiais e Métodos

Figura 21: Reator Batelada

Page 65: Dissertação - Fernanda Rocha Morais

64 Capítulo4 Resultados e Discussões

CAPITULO 4: RESULTADOS E DISCUSSÕES

4.1. Testes de Validação da Unidade Experimental

Testes preliminares foram realizados para verificar a estanqueidade das conexões do

reator, verificando se as vazões da bomba HPLC que seriam estudadas estavam aferidas

corretamente.

4.2. Testes de Vazão

A vazão da bomba foi medida nas duas entradas dos reagentes, como também na saída

do reator, para ter um controle sobre a variação da mesma. Na entrada, a vazão foi calculada

mensurando o volume succionado pela bomba em 1 minuto e na saída, mensurando-se o

tempo para a coleta de 5mL. Este procedimento foi realizado para cada razão molar. A Tabela

10 mostra as vazões de entrada do reator. Os valores encontrados para as vazões de saída

encontram-se em anexo.

Tabela 10:Vazões de Entrada do Óleo e Metanol nas três razões Alcool/óleo estudadas.

Q cm³/min W g/min n mol/min RAZÃO A/O

Óleo 5,0 4,6 5,27E-3 4

Álcool 1,0 0,79 2,47E-2

Q cm³/min W g/min n mol/min RAZÃO A/O

Óleo 5,0 4,6 5,27E-3

Álcool 1,8 1,42 4,382E-2

Q cm³/min W g/min n mol/min RAZÃO A/O

Óleo 4,6 4,232 4,85E-3 12

Álcool 2,4 1,89 5,92E-2

A bomba utilizada neste trabalho apresenta duplo pistão, com desenho mecânico

incluindo baixa pulsação com apenas duas válvulas de fluxo pulsante. A menos que sejam

Page 66: Dissertação - Fernanda Rocha Morais

65 Capítulo4 Resultados e Discussões

tomadas precauções especiais, todas as partículas que entram na Bomba HPLC acabam

aumentando a pressão do sistema e eventualmente entupindo. Por este motivo, foi feito este

estudo da vazão, que inicialmente foi fixada, para verificar se havia variação da mesma .

As Figuras 22, 23 e 24 mostram o comportamento das vazões de saída do reator

tubular fixando a razão molar em 1:4, 1:8 e 1:12 e variando a temperatura em 50, 60 e 70°C

respectivamente, medido no intervalo de 10 minutos, durante a reação, totalizando 60

minutos.

Figura 22. Análise do desempenho das vazões de saída do reator da unidade experimental para a razão

de 1:4 e variação das temperaturas escolhidas para o estudo.

Figura 23. Análise do desempenho das vazões de saída do reator da unidade experimental para a razão de 1:8 e

variação das temperaturas escolhidas para o estudo

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70

Vaz

ão d

e s

aíd

a (c

m³/

min

)

Tempo de reação (min)

Razão 1:4

Reação a 50°C

Reação a 60°C

Reação a 70°C

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

Vaz

ão d

e s

aíd

a (c

m³/

min

)

Tempo de reação (min)

Razão 1:8

Reação a 50°C

Reação a 60°C

Reação a 70°C

Page 67: Dissertação - Fernanda Rocha Morais

66 Capítulo4 Resultados e Discussões

Figura 24. Análise do desempenho das vazões de saída do reator da unidade experimental para a razão

de 1:12 e variação das temperaturas escolhidas para o estudo.

Para os três valores da razão molar escolhidos, é possível verificar que houve uma

pequena variação na vazão durante os 80 minutos de reação. A própria ocorrência da reação

pode estar alterando a vazão. A temperatura de 50°C foi a que resultou na vazão mais estável.

Outro aspecto a ser evidenciado é que a vazão para a temperatura de 700C deveria ter sido

maior, já que o aumento da temperatura implica na diminuição da viscosidade e

consequentemente no aumento da velocidade de escoamento. Isso pode ter ocorrido

decorrente do início de uma evaporação do álcool nas temperaturas mais altas. Possivelmente

partículas do catalisador não dissolvidas ficavam nas paredes do tubo do reator à medida que

ocorria a evaporação do álcool e, dessa forma, ocorria o estrangulamento do tubo. Diversas

vezes o sistema precisou ser desmontado para limpeza da válvula de controle das linhas. A

Figura 25 mostra o comportamento da vazão de saída do reator tubular fixando a temperatura

em 50°C e variando a razão em 1:4, 1:8 e 1:12 respectivamente. Comprova-se a estabilidade

da vazão de saída nesta temperatura.

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

Vaz

ão d

e s

aíd

a (c

m³/

min

)

Tempo de reação (min)

Razão 1:12

Reação a 50°C

Reação a 60°C

Reação a 70°C

Page 68: Dissertação - Fernanda Rocha Morais

67 Capítulo4 Resultados e Discussões

Figura 25. Análise do desempenho das vazões de saída do reator da unidade experimental para a

temperatura fixa de 50°C nas razões de 1:4, 1:8 e 1:12.

De acordo com a Figura 25, pode-se perceber que o aumento da razão molar implicou

no aumento da vazão. Isso ocorreu devido ao decréscimo da viscosidade da mistura após a

reação de transesterificação.

As Tabelas 11, 12 e 13 apresentam os resultados de conversão em ésteres metílicos

obtidos no presente trabalho. O intuito de apresentar os resultados nestas tabelas é expor

inicialmente todas as condições experimentais estudadas e resultados alcançados para

posteriormente explorar os efeitos das variáveis de processo em termos das tendências

observadas. Neste trabalho foram investigadas 18 distintas condições experimentais para o

reator contínuo como também foram escolhidas e investigadas 9 destas condições para o

reator em batelada, a fim de comparar os resultados. Neste sentido, foram coletadas de cada

reação 63 amostras para análise em cromatógrafo, somando 189 amostras; como foram feitas

em duplicata, isso implica que um total de 378 amostras foram injetadas e analisadas em

cromatográfico. Logo, os valores das conversões são na verdade valores médios feitos em

cada condição experimental. Em termos gerais, pode-se observar nestas tabelas que

conversões em ésteres de até 74,5% foram obtidas dentro da faixa experimental investigada.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

Vaz

ão d

e s

aíd

a (c

m³/

min

)

Tempo de reação (min)

Reação a 50ºC

Razão 1:4

Razão 1:8

Razão 1:12

Page 69: Dissertação - Fernanda Rocha Morais

68 Capítulo4 Resultados e Discussões

Tabela 11: Resultados experimentais obtidos para a razão molar de 1:4

Experimento

Temperatura

(oC)

Razão Molar Óleo:metanol

Tempo da coleta (min)

Conversão Ésteres (%)

1

30

1:4

5 0,41 2 10 2,16 3 20 1,08 4 30 1,47 5 40 1,77 6 50 1,25 7 60 1,83 8

40

1:4

5 5,86 9 10 5,76 10 20 5,43 11 30 5,76 12 40 5,09 13 50 4,98 14 60 6,13 15

50

1:4

5 10,9 16 10 37,9 17 20 41,7 18 30 42,2 19 40 38,9 20 50 42,6 21 60 41,1 22

60

1:4

5 44,8 23 10 41,6 24 20 49,4 25 30 47,2 26 40 43,7 27 50 45,6 28 60 46,9 29

70

1:4

5 31,5 30 10 50,3 31 20 61,9 32 30 37,5 33 40 63,5 34 50 66,9 35 60 61,9 36

80

1:4

5 5,23 37 10 39,7 38 20 37,3 39 30 39,8 40 40 44,4 41 50 54,9 42 60 58,1

Page 70: Dissertação - Fernanda Rocha Morais

69 Capítulo4 Resultados e Discussões

Tabela 12: Resultados experimentais obtidos para a razão molar de 1:8

Experimento

Temperatura (oC)

Razão Molar Óleo:metanol

Tempo da coleta (min)

Conversão Ésteres (%)

1

30

1:8

5 3,82 2 10 4,84 3 20 2,49 4 30 5,48 5 40 4,57 6 50 5,29 7 60 4,05 8

40

1:8

5 38,4 9 10 45,8 10 20 46,8 11 30 51,7 12 40 46,8 13 50 51,2 14 60 70,0 15

50

1:8

5 4,92 16 10 4,86 17 20 2,66 18 30 4,72 19 40 5,07 20 50 5,50 21 60 4,65 22

60

1:8

5 74,5 23 10 55,6 24 20 47,7 25 30 65,9 26 40 58,2 27 50 65,5 28 60 46,9 29

70

1:8

5 10,6 30 10 39,9 31 20 49,0 32 30 46,0 33 40 47,0 34 50 42,3 35 60 42,7 36

80

1:8

5 40,2 37 10 29,7 38 20 37,0 39 30 39,6 40 40 32,9 41 50 26,4 42 60 28,9

Page 71: Dissertação - Fernanda Rocha Morais

70 Capítulo4 Resultados e Discussões

Tabela 13: Resultados experimentais obtidos para a razão de 1:12

Experimento

Temperatura (oC)

Razão Molar Óleo:metanol

Tempo da coleta (min)

Conversão Ésteres (%)

1

30

1:12

5 6,68 2 10 0,98 3 20 0,76 4 30 5,20 5 40 0,71 6 50 1,02 7 60 3,28 8

40

1:12

5 4,78 9 10 5,83 10 20 4,63 11 30 4,72 12 40 5,48 13 50 4,76 14 60 2,97 15

50

1:12

5 1,42 16 10 1,39 17 20 2,74 18 30 1,48 19 40 1,03 20 50 2,49 21 60 2,74 22

60

1:12

5 2,91 23 10 27,7 24 20 4,85 25 30 8,71 26 40 2,64 27 50 1,70 28 60 2,51 29

70

1:12

5 47,5 30 10 47,8 31 20 43,6 32 30 55,9 33 40 41,9 34 50 45,2 35 60 50,1 36

80

1:12

5 1,54 37 10 3,83 38 20 1,76 39 30 1,77 40 40 1,86 41 50 2,08 42 60 2,48

Page 72: Dissertação - Fernanda Rocha Morais

71 Capítulo4 Resultados e Discussões

A Figura 26 mostra o comportamento da mistura reacional após a reação de

transesterificação em reator contínuo para cada razão molar.

Figura 26: Funis de Separação referente às três razões molares Alcool: óleo utilizado para a reação de

transesterificação em reator contínuo 1:4, 1:8 e 1:12 respectivamente.

As Figuras a seguir mostram o efeito da temperatura sobre a conversão em éster para

cada razão molar estudada.

Page 73: Dissertação - Fernanda Rocha Morais

72 Capítulo4 Resultados e Discussões

Figura 27. Efeito da Temperatura sobre a conversão da reação de transesterificação metílica de óleo de

soja em reator contínuo empregando hidróxido de sódio como catalisador e metanol como álcool da reação na

razão molar álcool:óleo de 1:4 com um intervalo de confiança de 99,5%

Figura 28. Efeito da Temperatura sobre a conversão da reação de transesterificação metílica de óleo de

soja em reator contínuo empregando hidróxido de sódio como catalisador e metanol como álcool da reação na

razão molar álcool:óleo de 1:8 com um intervalo de confiança de 99,5%

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

Con

vers

ão e

m É

ster

es (

%)

Temperatura (°C)

Razão 1:4 (Intervalo de Confiança 99,5%)

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

Con

vers

ão (

%)

Temperatura (°C)

Razão 1:8 (Intervalo de Confiança 99,5%)

Page 74: Dissertação - Fernanda Rocha Morais

73 Capítulo4 Resultados e Discussões

Figura 29. Efeito da Temperatura sobre a conversão da reação de transesterificação metílica de óleo de soja em

reator contínuo empregando hidróxido de sódio como catalisador e metanol como álcool da reação na razão

molar álcool:óleo de 1:12 com um intervalo de confiança de 99,5%

Muitos experimentos são conduzidos a fim de investigar a influência da temperatura

sobre a conversão em éster. A temperatura é uma das variáveis de trabalho mais investigadaS

e muitos autores estão dando ênfase às condições supercríticas, sendo analisadas faixas entre

250 e 300oC (KUSDIANA E SAKA, 2001ª,b; DEMIBRAS,2002,2006,2007; HEGEL et al.

2007; VARMA E MADRAS, 2007; ANITESCU et al. 2008; VIEITEZ et al. 2008

JESUS (2010) buscou diminuir as condições de temperatura e empregou o uso do

catalisador, investigando numa faixa menor, de 150 e 300 oC variando em 50 °C.

Para o presente trabalho, o objetivo foi mais inovador, diminuindo consideravelmente

as condições de temperatura na faixa de 30 a 80 oC e empregando o catalisador homogêneo

hidróxido de sódio, com o intuito de acelerar a conversão em ésteres.

O efeito da temperatura sobre a conversão em ésteres na produção de biodiesel é

bastante documentada na literatura, indicando um acréscimo da conversão com o incremento

da variável. Por outro lado, temperaturas muito elevadas, como as estudadas, em sistemas

supercríticos, levam a uma decomposição térmica dos produtos e reagentes da reação. Neste

trabalho foi evidenciado que a conversão não aumenta diretamente com a temperatura, sendo

que conversões mais baixas foram obtidas a 80°C do que a 70°C. No entanto, a temperatura

limite deste trabalho é baixa para permitir concluir se está ou não havendo a degradação

térmica do meio reacional. Durante a reação em temperaturas mais altas, observou-se um

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Con

vers

ão (

%)

Temperatura (°C)

Razão 1:12 (Intervalo de Confiança 99,5%)

Page 75: Dissertação - Fernanda Rocha Morais

74 Capítulo4 Resultados e Discussões

fluxo interrompido na saída do reator (fluxo pulsante), o que pode ter sido ocasionado devido

ao aumento de pressão em determinado ponto do reator, fazendo com que o fluido jorrasse

com maior intensidade em dados instantes, provocando assim o decréscimo da conversão.

Com base nas Figuras, nota-se que há três situações a serem analisadas. Primeira,

todas as conversões não ultrapassam 80%, segunda, as melhores conversões ocorrem à

temperatura na faixa de 60 a 70°C e terceira, as conversões com maiores valores apresentam

maior intervalo de confiança.

O fato das conversões não ultrapassarem 80% pode ser atribuído ao regime de

escoamento, pois em regime laminar (Re < 2100) o contato entre os reagentes não é suficiente

para que ocorram os choques efetivos entre as moléculas que compõem os reagentes. Neste

tipo de regime, o que ocorre é que os reagentes tangenciam um ao outro e a reação ocorre

quando o choque efetivo coincide com o contato óleo/álcool durante o escoamento. Logo, a

mistura dos reagentes ainda precisa ser otimizada para este reator.

Outro fator que justifica a faixa de 60 a 70°C apresentar uma melhor conversão é o

ponto de ebulição do metanol, em torno de 65°C, o que favorece até certo ponto, pois com o

álcool (metanol) próximo do ponto de ebulição, aumenta o choque entre as moléculas e a

conversão aumenta; porém, quando a temperatura continua a aumentar, mais álcool se

volatiliza, o que ocasiona perda de reagente e diminuição da conversão, conforme Figuras

mostradas anteriormente na temperatura de 80°C.

4.4. Efeito da Razão Molar óleo: álcool

O efeito da razão molar entre óleo e álcool sobre o rendimento da reação foi

investigada neste trabalho nas proporções de 1:4, 1:8 e 1:12, para diferentes temperaturas. A

variação na razão molar implica em uma temperatura ótima de conversão, ou seja, para cada

razão há uma temperatura que se apresenta como a melhor dentre as estudadas. As Figuras 33,

34 e 35 mostram que estas temperaturas são 70, 60 e 70°C, respectivamente. Quando a razão

é 1:8 e de 1:12, há uma diminuição na conversão. Isso provavelmente está associado ao

desprendimento do álcool a temperaturas superiores a seu ponto de ebulição. Além disso,

pode estar havendo a formação de um escoamento multifásico devido ao álcool em excesso

no meio reacional, o que acarreta diminuição da conversão, uma vez que o contato entre os

Page 76: Dissertação - Fernanda Rocha Morais

75 Capítulo4 Resultados e Discussões

reagentes diminui. Quando se observa as melhores conversões apresentadas pelas razões de

1:4; 1:8 e 1:12, o de razão 1:12 é o que apresenta menor conversão, como pode ser visto na

Figura 30. Isso pode ter ocorrido porque a quantidade de álcool em excesso pode ter sofrido

ebulição e ter deixado de reagir, como também ter gerado um escoamento multifásico.

Figura 30. Resultado das três melhores situações para cada Razão estudada: 1:4, 1:8 e 1:12

4.5 Efeitos do Modo de Operação do Reator

Avellaneda & Salvadó (2011) compararam a transesterificação convencional com a

transesterificação em reator tubular contínuo. Neste reator, os reagentes (óleo, metanol e

hidróxido de sódio) escoaram através de um tubo helicoidal submerso em um banho de

aquecimento a 60°C. O reator tinha cinco tomadas de amostras distribuídas sem

uniformidades para permitir retirar alíquotas em tempos diferentes de reação com o intuito de

encontrar o melhor/menor tempo de reação, evitando assim a necessidade de agitação

mecânica do sistema. Eles estudaram uma maneira de melhorar a qualidade do biodiesel

obtido e variaram o sistema helicoidal incorporando um micromix estático, fornecendo a

energia sob a forma do ultrassom no banho de aquecimento. O reator produziu biodiesel e

glicerina em composições aproximadamente iguais àquelas obtidas no processo em batelada

(índice de ácidos graxos de 89% no tempo de 75 minutos), mas no processo contínuo (2,5

mL/min) foi observado o mesmo rendimento com um tempo menor, 13 minutos,

aproximadamente 6 vezes mais rápido.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4

Con

vers

ão (

%)

Razão 1:4 - 70°C Razão 1:8 - 60°C Razão 1:12 - 70°C

Page 77: Dissertação - Fernanda Rocha Morais

76 Capítulo4 Resultados e Discussões

Conforme foi mencionado na metodologia deste trabalho, foi feito um estudo em reator

batelada com o intuito de comparar e verificar a influência da configuração do reator no

processo de transesterificação do óleo de soja. As condições estudadas em reator batelada e no

processo contínuo podem ser vistas e comparadas a seguir, através das Figuras 31, 32 e 33,

para as razões molares 1:4, 1:8 e 1:12 respectivamente.

Figura 31. Efeito da Configuração do Reator para a reação de transesterificação do óleo de soja nas

temperaturas de 40,60 e 80°C e razão molar álcool óleo de 1:4.

Figura 32. Efeito da Configuração do Reator para a reação de transesterificação do óleo de soja nas

temperaturas de 40,60 e 80°C e razão molar álcool óleo de 1:8.

0

10

20

30

40

50

60

70

80

90

100

40 60 80

Co

nve

rsão

em

Ést

ere

s (%

)

Temperatura (°C)

Contínuo

Batelada

Razão 1:4

0

10

20

30

40

50

60

70

80

90

100

40 60 80

Co

nve

rsão

em

Ést

ere

s(%

)

Temperatura(°C)

Contínuo

Batelada

Razão 1:8

Page 78: Dissertação - Fernanda Rocha Morais

77 Capítulo4 Resultados e Discussões

Figura 33. Efeito da Configuração do Reator para a reação de transesterificação do óleo de soja nas

temperaturas de 40,60 e 80°C e razão molar álcool óleo de 1:12 respectivamente.

Para as três temperaturas estudadas, notou-se um efeito adverso do aumento desta

variável sobre a conversão em ésteres no reator batelada nas razões de 1:4 e 1:8.

Provavelmente, por facilitar a vaporização do álcool do meio reacional. Para o reator

contínuo, este efeito de temperatura (e conseguinte vaporização) não foi patente, uma vez que,

neste tipo de reator, a reação acontece em meio fechado e sem contato com a atmosfera.

Entretanto, a temperatura de 80 °C foi depreciativa para a conversão, posto que esta

temperatura está acima da temperatura de ebulição do álcool.

Quanto às razões molares, notou-se que os maiores valores rendiam maiores conversões

em ésteres.

Das conversões apresentadas acima, nota-se que o reator contínuo apresentou de 5 a

80% da conversão apresentada no reator batelada no tempo de 10 minutos de reação.

0

10

20

30

40

50

60

70

80

90

100

40 60 80

Co

nve

rsão

em

Ést

ere

s(%

)

Temperatura(°C)

Contínuo

Batelada

Razão 1:12

Page 79: Dissertação - Fernanda Rocha Morais

78 Referencias Bibliográficas

5. CONCLUSÕES E PERSPECTIVAS

5.1. Conclusão

O presente trabalho esteve focado na produção de biodiesel em modo contínuo em um

reator tubular, empregando catalisador homogêneo Hidróxido de sódio e álcool metílico.

Variáveis de Processo, tais como Razão molar e Temperatura, foram investigadas com o

intuito de observar os efeitos das mesmas sobre a conversão em éster. A partir da consecução

deste trabalho, as seguintes conclusões podem ser traçadas:

� A unidade reacional montada para produção de biodiesel mostrou que é possível

produzir biodiesel a baixas temperaturas, precisando, porém, ser otimizada com

relação ao reator, aumentando o comprimento e consequentemente o tempo de

residência dos reagentes no reator;

� A mistura reacional também precisa ser melhorada, criando-se reciclos, garantindo

assim um maior contato entre os reagentes.

� A temperatura é uma das variáveis que contribuem mais fortemente na conversão

em ésteres da reação, tendo-se obtido maiores conversões na faixa de 60 a 70°C.

� No tocante à razão molar óleo:álcool, observou-se conversões não muito favoráveis

na razão de 1:12, sugerindo haver uma forte relação com a quantidade de álcool em

excesso.

� Neste trabalho também pode ser observado que o reator contínuo apresentou de 5 a

80% da conversão apresentada no reator batelada no tempo de 10 minutos de

reação, sob as mesmas condições reacionais.

� Por fim, cabe concluir também que o sistema desenvolvido é uma tecnologia que

pode ser promissora e que contribuiu cientificamente para futuros trabalhos com

faixas de temperaturas e pressões mais baixas e principalmente pequenos tempos de

residência, tipicamente, 10 minutos.

Page 80: Dissertação - Fernanda Rocha Morais

79 Referencias Bibliográficas

REFERÊNCIAS BIBLIOGRÁFICAS

ANITESCU, G.; DESHPANDE, A.; TAVLARIDES, L. L. Integrated techonology for

supercritical biodiesel production and power cogeneration, Energy & Fuels, v. 22, p. 1391-

1399, 2008.

AVELLANEDA, F.; SALVADÓ, J.; Continuous transesterification of biodiesel in a

helicoidal reactor using recycled oil. Fuel Processing Technology, Volume 92, Issue 1,

January 2011, Pages 83-91.

ALENEZI, R.; LEEKE, G. A.; SANTOS, R. C. D.; KHAN, A. R. Hydrolysis Kinetics of

sunflower oil under subcritical water conditions, Chemical Engineering Research and Design,

87, p. 867-873, 2009.

ALINGER, N. L.; CAVA, M. P.; JONCH, D. C.; JOHSNON, C. R; LEBEL, N. A.;

STEVENS, L. L. Chemistry organic, Editora LTC, 2ª Edição, p.478, 1976.

ALVES, CARINE TONDO. Processo de biodiesel a partir de óleos de gorduras residuais em

escala de bancada e semi-industrial. 2008.235F. Dissertação de Mestrado, programa de pós-

graduação em engenharia química da Universidade Federal da Bahia-UFBA, Salvador, Bahia,

Brasil.

AMORIM, P. Q. R. Perspectiva Histórica da Cadeia da Mamona e a Introdução da Produção

de Biodiesel do Semi-Árido Brasileiro Sob o Enfoque da Teoria dos Estudos de Transação.

2005. Tese de Mestrado-Universidade de São Paulo, USP, Piracicaba.

BERNARDES, O. L., LANGONE, M. A. P., MERÇON, F. Produção de biodiesel através da

transesterificação de óleo de soja por via química e enzimática. Anais do XI Encontro da

SBQ, Rio de Janeiro, 2007

BONAVENTURA, SERGIO DI. Reator e processo para produção de biodiesel, PI 0602511-1

A, São Paulo-Brasil, 2008.

Page 81: Dissertação - Fernanda Rocha Morais

80 Referencias Bibliográficas

CANTRELL, D. G.; GILLIE, L. J.; LEE, A. F.; WILSON, K. Structure-reactivity correlations

in MgAl hydroltalcite catalysts for biodiesel synthesis, Applied Catalysis A: General, 287,

p.183-190, 2005.

CARVALHO, S. C. O.; OLIVEIRA, M. E. C.; FRANÇA, L. F. Modelagem e Simulação da

Cinética de Transesterificação de Óleos Vegetais para Produção de Biodiesel. Anais do II

Congresso da Rede Brasileira de Biodiesel, Brasília-DF, Nov, 2007.

CURBELO, F. D. S. et al. Coluna de vermiculita hidrofobizada para adsorção de óleo das

águas produzidas. In: 1º congresso brasileiro de p&d em petróleo e gás UFRN- SBQ regional

RN, 2001, Natal- RN. Pág 319.

DALLA ROSA, C. Estudo da Produção de Ésteres Etílicos a partir da Alcoólise e Óleos

Vegetais. Dissertação de Mestrado, Universidade Regional Integrada do Alto Uruguai e das

Missões – URI, Erechim, RS, Brasil, 2006.

DALLA ROSA, C.; MORANDIM, M. B.; NINOW, J. L.; TREICHEL, H.; OLIVEIRA, J. V.

Lipase-catalyzed production of fatty acid ethil esters from soybean oil in compressed propane,

Journal of Supercritical Fluids, 47, p. 49-53, 2008.

DANTAS, H. J. Estudo Termoanalítico, Cinético e Reológico de Biodiesel Derivadodo do

Óleo de Algodão (Gossypium hisutum). Dissertação de Mestrado - p.83. João Pessoa, PB,

2006.

DANTAS, D. N. Uso da biomassa da cana-de-açúcar para geração de energia elétrica: análise

energética, exergética e ambiental de sistemas de cogeração em sucroalcooleiras do interior

paulista. 2010. 131F. Dissertação de Mestrado, programa de pós graduação em Ciências da

Engenharia Ambiental- Escola de Engenharia de São Carlos, São Carlos, São Paulo, Brasil

DARIO, M. Recuperação de Glicerina Oriunda do Processo de Produção de Biodiesel – Um

Processo Químico, Monografia de graduação em química bacharelado, Universidade Federal

de Mato Grosso, Mato Grosso, Brasil, 2006.

DEMIRBAS, A. Biodiesel from sunflower oil in supercritical methanol with calcium oxide,

Energy Conversion and Management, 48, p. 937-941, 2007.

Page 82: Dissertação - Fernanda Rocha Morais

81 Referencias Bibliográficas

DEMIRBAS, A. Biodiesel from vegetable oils via transesterification in supercritical

methanol, Energy Conversion & Management, 43, p. 2349-2356, 2002.

DEMIRBAS, A. Biodiesel production from vegetable oil via catalytic and non-catalytic

supercritical methanol transesterification methods, Progress in Energy and Combustion

Science, 31, p. 466-487, 2005.

DEMIRBAS, A. Studies on cottonseed oil biodiesel prepared in non-catalytic SCF conditions,

Bioresource Technology, 99, p. 1125-1130, 2008.

DEMIRBAS, A.; Energy Conversion and Management, 44: 2093, 2003

DOLLIMORE, D., GAMLEN, G. A.; TAYLOR, T. J.; Themochimica Acta, 75: 59, 1984.

DOSSIN, T. F.; REYNIERS, M. F.; MARIN, G. B. Kinetics of heterogeneously

MgOcatalyzed transesterification, Applied Catalysis B-Enviromental, 61, p. 35-45, 2006.

FANGRUI, M.; HANNA, M. A.; Bioresource Technology 70: 1, 1999.

FARIA, M. M. C. Influência das propriedades físico-químicas das misturas diesel/biodiesel

na etapa de atomização de combustível em motores diesel de injeção direta. Dissertação de

Mestrado. Escola de Química – Centro de Tecnologia. Universidade Federal do Rio de

Janeiro, 2004.

FUKUDA, H.; KONDO, A.; NODA, H. Biodiesel Fuel Production by ransesterification of

Oils, Journal of Bioscience and Bioengineering, 92(5), p. 405-416, 2001.

GHANDI, N. N.; SAVANT, S. B.; JOSHI, J. B. Specificity of a lipase in ester synthesis:

Effect of alcohol. Biotechnology Progress, v. 11, p. 282-287, 1995.

GONÇALVES, JUSSARA DE ARAUJO. Esterificação de compostos modelos sobre ácido

nióbico para produção de biodiesel. 2007. 165F. Dissertação de Mestrado, programa de pós

graduação em Tecnologia de Processos Químicos e Bioquímicos – Universidade Federal do

Rio de Janeiro – UFRJ, Escola de Química – EQ, Rio de Janeiro, Rio de Janeiro, Brasil.

HAAS, M. J.; FOGLIA, T. A. Matérias-Primas Alternativas e Tecnologias para a produção de

Biodiesel. In: KNOTHE, G.; GERPEN, J. V.; KRAHL, J.; RAMOS, L. P. Manual de

biodiesel, 1 ed, capítulo 4.2, São Paulo: Editora Blucher, 2006.

Page 83: Dissertação - Fernanda Rocha Morais

82 Referencias Bibliográficas

HEGEL, P.; MABE, G.; PEREDA, S.; BRIGNOLE, E. A. Phase transitions in a biodiesel

reactor using supercritical methanol, Industrial Engineering Chemical Research, 46, p. 6360-

6365, 2007.

HUAPING Z., ZONGBIN W., YUANXIONG C., PING Z., SHIJIE D., XIAOHUA L.,

ZONGQIANG M., Preparation of biodiesel catalyzed by solid super base of calcium oxide

and its refining process, Chin. J. Catal., 27, 5, May, 2006, 391-396.

ISO, M. ; CHEN, B.; EGUCHI, M.; KUDO, T.; SHRESTHA, S. Production of biodiesel fuel

from triglycerides and alcohol using immobilized lipase, Journal of Molecular Catalysis

B:Enzymatic, 16, p. 53-58, 2001.

JESUS, ANDERSON ALLES. Síntese de Biodiesel em meio contínuo pressurizado

empregando hidrotalcitas como catalisadoresheterogêneos. 2010.87F. Dissertação de

Mestrado, programa de pós-graduação em engenharia de processos- PEP da Universidade

Tiradentes – UNIT, Aracaju, Sergipe, Brasil.

KHALIL, C. N. As tecnologias de produção de biodiesel. In: O Futuro da Indústria:

Biodiesel, p. 83-90. Série Política Industrial, Tecnológica e de Comércio Exterior, n° 14

Ministério do Desenvolvimento, Indústria e Comércio Exterior-MDIC/Instituto Euvaldo

Lodi-IEL/Núcleo Central, 2006.

KNOTHE G. GERPEN J. V., KRAHL J. RAMOS L. P. Manual do Biodiesel. Ed. Edgard

Blucher LTDA. São Paulo, 2006.

KNOTHE, G.; STEIDLEY, K. R.; Fuel 84: 1059, 2005.

KUSDIANA, D., SAKA, S. Kinetics of transesterification in rapeseed oil to Biodiesel fuel as

treated in supercritical methanol, Fuel, 80, p. 693-698, 2001a.

KUSDIANA, D., SAKA, S. Two-Step preparation for Catalyst-free biodiesel fuel production,

Applied Biochemistry and Biotechonology, 113, p.781-791, 2004b.

LAMAS, J. C. Como substituir a energia vinda dos derivados do petróleo. Trabalho de curso.

Universidade de São Paulo, Instituto de Química de São Carlos. 2003.

LEUNG, D. Y. C.; WU, X.; LEUNG, M.K.H. A review on biodiesel production using

catalyzed transesterification. Applied Energy, 87, p.1083–1095, 2010.

Page 84: Dissertação - Fernanda Rocha Morais

83 Referencias Bibliográficas

LEÃO, LUANA SILVA. Estudo empírico e cinético da transesterificação de ácidos graxos

saturados sobre o ácido nióbico. 2009. 97F. Dissertação de Mestrado, programa de pós

graduação em Tecnologia de Processos Químicos e Bioquímicos – Universidade Federal do

Rio de Janeiro – UFRJ, Escola de Química – EQ, Rio de Janeiro, Rio de Janeiro, Brasil.

LEVENSPIEL, OCTAVE.; CALADO, Verônica M. A. Engenharia das Reações Químicas.

São Paulo: Edgard Blücher, 2005. 563 p

LIMA, F. V.; PYLE, D. L.; ASENJO, J. A. Factors affecting the esterification of lauric acid

using an immobilized biocatalyst: enzyme characterization and studies in a well-mixed

reactor. Biotechnology and Bioengineering, v. 46, p. 69-79, 1995.

LIMA, P.C.R. Biodiesel: Um novo Combustível para o Brasil, Brasília, Fevereiro de 2005.

LOTERO, E.; LIU, Y.; LOPEZ, D.E.; SUWANNAKARN, K.; BRUCE, D.A.; GOODWIN

JR., J.G. Synthesis of Biodiesel via Acid Catalysis. Industrial and Engineering Chemistry

Research, 44, p. 5353-5363, 2005.

LIMA, L.L. Produção de Biodiesel a partir da Hidroesterificação dos Óleos de Mamona e

Soja, Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rj, 2007.

LUCENA, T. K. O biodiesel na matriz energética brasileira. Monografia de bacharelado. Rio

de Janeiro: Universidade Federal do Rio Janeiro, Instituto de Economia, 2004.

MA, F; HANNA, M. A. Biodiesel production: a review. Bioresource Technology, 70, p.1-15,

1999.

MAÇAIRA, J.; SANTANA, A.; RECASENS, F.; LARRAYOZ, M.A. Biodiesel production

using supercritical methanol/carbon dioxide mixtures in a continuous reactor, Fuel, In Press,

Uncorrected Proof, Available online 1 March 2011

MADRAS, G., KOLLURU, C., KUMAR, R. Synthesis of Biodiesel in supercritical fluids,

Fuel, 83, p. 2029-2033, 2004.

MARCHETTI, J. M.; MIGUEL, V. U.; ERRAZU, A. F. Possible methods for biodiesel

production, Renewable and Sustainable Energy Reviews, 11, p. 1300-1311, 2007.

Page 85: Dissertação - Fernanda Rocha Morais

84 Referencias Bibliográficas

MBARAKA, I. K.; RADU, D. R.; LIN, V., S.-Y.; SHANKS, B. H. Organosulfonic

acidfunctionalized mesoporous silicas for the esterification of fatty acid. Journal of Catalysis.

219, p.329–336, 2003.

MEDEIROS et. al. Proposta de um Reator para Produção de Biodiesel em Fluidos

Supercríticos. Anais do I Congresso Brasileiro de Tecnologia de Biodiesel, 2006, Brasília.

MEHER, L. C.; DHARMAGADDA, V. S. S.; NAIK, S. N., Otimization of alkali-catalyzed

transesterification of Pongamia pinnata oil for production of biodiesel, Bioresource

Technology, 97, p. 1392-1397, 2006b.

MEHER, L. C.; SAGAR, D. V.; NAIK, S. N. Technical aspects of biodiesel production by

transesterification - a review, Renewable and Sustainable Energy Reviews, 10, p. 248-268,

2006.

MEHER, L. C.; SAGAR, D. V.; NAIK, S.N. Technical aspects of biodiesel production by

transesterification - a review. Renewable and Sustainable Energy Reviews, 10, p. 248–268,

2006a.

MELO JUNIOR, CARLOS AUGUSTO RIBEIRO DE. Esterificação catalítica e não-

catalítica para síntese de biodiesel em reator microondas. 2008. 98F. Dissertação de Mestrado,

programa de pós-graduação em engenharia de processos- PEP da Universidade Tiradentes –

UNIT, Aracaju, Sergipe Brasil.

MINISTÉRIO DAS MINAS E ENERGIA. Balanço Energético Nacional 2009 – Ano Base

2008: Resultados Preliminares. Empresa de Pesquisa Energética (EPE). Rio de Janeiro:

MME/EPE, 2009.

MUNIYAPPA, P. R.; BRAMMER, S. C.; NOUREDDINI, H. Improved Conversion of Plant

Oils and Animal Fats into Biodiesel e Co-product. Bioresource Technology, v. 56, p. 19 - 24,

1996.

NARASIMHA, M., SRIPRIYA, R., BANERJEE, P. K. CFD modelling of hidrocicloneprediction

of cut size. International Journal of Minerals Processing 75, p. 53-68, 2005.

Page 86: Dissertação - Fernanda Rocha Morais

85 Referencias Bibliográficas

OLIVEIRA, D., DI LUCCIO, M., FACCIO, C., ROSA, C. D., BENDER, J. P., LIPKE, N.,

AMROGINSKI, C., DARIVA, C., OLIVEIRA, J. V. Optimization of alkaline

transesterificação of soybean oil and castor oil for biodiesel production, Applied Biochemistry

and Biotechnology, 121-124, p. 553–560, 2005b.

OLIVEIRA, D., NASCIMENTO FILHO, I.; DI LUCCIO, M.; FACCIO, C.; ROSA, C. D.;

BENDER, J. P.; LIPKE, N.; AMROGINSKI, C.; DARIVA, C.; OLIVEIRA, J. V. Kinetics of

enzyme-catalyzed alcoholysis of soybean oil in nhexane, Applied Biochemistry and

Biotechnology, 121-124, p. 231–242, 2005a.

OLIVEIRA, J. V., OLIVEIRA, D. Kinetics of the Enzymatic Alcoholysis of Palm Kernel Oil

in Supercritical CO2, Ind. Eng. Chem. Res., 39, p. 4450-4454, 2000.

OOI, Y. S.; ZAKARIA, R.; MOHAMED, A. R.; BHATIA, S. Catalytic conversion of palm

oil-based fatty acis mixture to liquid fuel, Biomass and Bioenergy, 27, p. 477-484, 2004.

PARENTE, E. J. DE S. Processo de produção de um combustível sucedâneo de óleo tipo

diesel. PI8004358-5, 1980.

PERES, J. R. R. Oleaginosas para biodiesel: situação atual e potencial. In: O Futuro da

Indústria: Biodiesel, p. 67-82. Série Política Industrial, Tecnológica e de Comércio Exterior,

n° 14 Ministério do Desenvolvimento, Indústria e Comércio Exterior-MDIC/Instituto Euvaldo

Lodi-IEL/Núcleo Central, 2006.

PINTO, A. C.; GUARIEIRO, L. L.; REZENDE, M. J.; RIBEIRO, N. M.; TORRES, E. A.;

LOPES, W. A.; PEREIRA, P. A. P.; ANDRADE, J. B. Biodiesel: Em Overview. Journal

Brazilian Chemical Society , v.16, 1313-1330, 2005.

RABELO, I. D.; Estudo de desempenho de combustíveis convencionais associados a

Biodiesel obtido pela transesterificação de óleo usado em fritura, Curitiba, Programa de Pós-

Graduação em Tecnologia, CEFET-PR, 2001, Dissertação de Mestrado.

RANESES, A.R.; GLASER, L.K.; PRICE, J. M.; DUFFIELD, J. A. Potential Biodiesel

Markets and Their Economic Effects on the Agricultural Sector of the United States.

Industrial Crops and Products, v.9, p.151–162, 1999.

Page 87: Dissertação - Fernanda Rocha Morais

86 Referencias Bibliográficas

ROCHA, L. L. L.; GONÇALVES, J. DE A.; JORDÃO, R. G.; DOMINGOS, A. K.;

ANTONIOSSI FILHO, N. R.; ARANDA, D. A. G. Produção de biodiesel a partir da

esterificação dos ácidos graxos de mamona (ricinus communis l.) e soja (glycine max).In:

Anais do 14º Congresso Brasileiro de Catálise, Porto de Galinhas-PE, Set. 2007.

RODRIGUES, R. A. Biodiesel no Brasil: diversificação energética e inclusão social com

sustentabilidade. In: O Futuro da Indústria: Biodiesel, p. 15-26. Série Política Industrial,

Tecnológica e de Comércio Exterior, n° 14 Ministério do Desenvolvimento, Indústria e

Comércio Exterior-MDIC/Instituto Euvaldo Lodi-IEL/Núcleo Central, 2006.

SANTOS, WILSON LINHARES. Produção não catalítica de biodiesel etílico em meio

supercrítico contínuo com e sem solvente. 2009.83F. Dissertação de Mestrado, programa de

pós-graduação em engenharia de processos- PEP da Universidade Tiradentes – UNIT,

Aracaju, Sergipe, Brasil.

SILVA, A. P. S. Influência da ingestão de diferentes ácidos graxos dietéticos desde a lactação

sobre o metabolismo lipídico e adiposidade em ratos jovens. Dissertação de Mestrado.

Instituto de Nutrição. Universidade Federal do Rio de Janeiro – UFRJ, Rio de Janeiro, 2005.

SILVA, C.; CASTILHOS, FERNANDA.; OLIVEIRA, J. V.; FILHO,L.C.; Continuous

production of soybean biodiesel with compressed ethanol in a microtube reactor. Fuel

Processing Technology, Volume 91, Issue 10, October 2010, Pages 1274-1281

SILVA, C. C. Produção do Biodiesel a partir do Óleo de Soja Utilizando a Hidrotalcita como

Catalisador. Dissertação de Mestrado. Escola de Química - Universidade Federal do Rio de

Janeiro, 2008.

SRIVASTAVA, A., & PRASSAD, R. Triglycerides- based diesel fuel. Renewable &

Sustainable Energy Reviews , v.4, 111-113, 2000.

SRIVASTAVA, S.; MADRAS, G.; MODAK, J. Esterification of myristic acid in supercritical

carbon dioxide, Journal of Supercritical Fluids, 27, p. 55-64, 2003.

SUAREZ, P. A. Z. Produção de Biodiesel na Fazenda. CPT: Viçosa – MG, 220p, 2006.

SUAREZ, P. A., & MENEGHETTI, S. M. 70º Aniversário do biodiesel em 2007: Evolução

histórica e situação atual no Brasil. Química Nova , v.30, 2068-2071, 2007.

Page 88: Dissertação - Fernanda Rocha Morais

87 Referencias Bibliográficas

TAPANES, N. C. O. Produção de Biodiesel a partir da Transesterificação de Óleo de Pinhão

Manso (JATROPHA CURCAS LIN): Estudo Teórico e Experimental. Tese de Doutorado,

COPPE/UFRJ, Rio de Janeiro, RJ, Brasil 2008.

TAPANES, N. C. O.; ARANDA, D. A. G.; CARNEIRO, J. W. M.; ANTUNES, O. A. C.

Transesterification of Jatropha curcas oil glycerides: Theoretical and experimental studies of

biodiesel reaction, Fuel, 87, p. 2286-2295, 2008.

VAN GERPEN, J. Biodiesel processing and production, Fuel Processing Technology, 86, p.

1097-1107, 2005.

VARMA, M. N.; MADRAS, G. Synthesis of Biodiesel from Castor Oil and Linseed Oil

inSupercritical Fluids, Industrial Engineering Chemical Research, 46, p. 1-6, 2007.

VIEITEZ, IGNACIO. SILVA, CAMILA DA. ALCKMIN, ISABEL LA., GUSTAVO R.,

CORAZZA FERNANDA C., OLIVEIRA J. VLADIMIR, GROMPONE MARIA A.,

JACHMANIA IVA´N ´N. Effect of Temperature on the Continuous Synthesis of Soybean

Esters under Supercritical Ethanol BORGES. Energy & Fuels, 23. p 558-563, 2009.

WARABI, Y.; KUSDIANA, D.; SAKA, S. Reactivity of triglycerides and fatty acids of

rapeseed oil in supercritical alcohols, Bioresource Tecnhnology, 91, p. 283-287, 2004.

WEN Z.;YU X.;TU S. T.;YAN J.;DAHLQUIST E.; Intensification of biodiesel synthesis

using zigzag micro-channel reactors, Bioresource Technology 100, 3054–3060, 2009

XIE, W.; PENG, H.; CHEN, L. Calcined Mg-Al hydrotalcites as solid base catalysts for

methanolysis of soybean oil, Journal of Molecular Catalysis A: Chemical, 246, p. 24-32,

2005.

XUE, F., ZHANG, X., LUO, H., TAN, T. A new method for preparing raw material for

biodiesel production. Process Biochemistry v. 41, 1699-1702, 2006.

ZAIDI, A.; GAINER, J. L.; CARTA, G. Fatty acid esterification using nylonimmobilized.

Biotechnology and Bioengineering, v. 48, 601-605, 1995

Page 89: Dissertação - Fernanda Rocha Morais

88 Referencias Bibliográficas

ZHANG, Y.; DUBE, M. A.; McLEAN, D. D.; KATES, M. Biodiesel Production from Waste

Cooking oil: Process Design and Technological Assessment, Bioresource Technology, v.89,

p.1-16,2003.

ABIOVE 2010, disponível em: http://www.abiove.com.br. consultado em 13/05/2010.

ABREU, F. Futuro da Matriz Energética Brasileira [on line]. Disponível na internet via www.

url: http://www.aea.org.br/apresentacoes. Frederique Rosa e_Abreu Futuro da Matriz

Energetica Brasileira.pdf. Arquivo capturado em 10/05/2010.

AGROENERGIA: Óleos Vegetais, o Substituto do Diesel, disponível em:

www.agoonline.com.br⁄artigos⁄artigo.php?id=282&pq=2&n=2. Acessado em 04/05/2010.

ANP 2010, disponível em: http://www.anp.gov.br, consultado em 21/06/2010.

EMBRAPA 2010, disponível em http://www.cnpso.embrapa.br. Consultado em 22/06/2010.

EMBRAPA 2010, disponível em http://www.cnpso.embrapa.br/download/CT74_eletronica.

pdf

INNOCENTINI, M.D.M., Biodiesel: energia Renovável, 2007. [on line] Disponível na

internet url: http://www.labcat.org/ladebio/semanal/palestra/SemanaBiodiesel-1- Murilo.pdf.

Acessado em 2/06/2010.

PARENTE, E. J. DE S.; SANTOS JUNIOR, J.N., PEREIRA, J.A.B.; PARENTE JUNIOR, E.

J. de S. Biodiesel: Uma Aventura Tecnológica num País Engraçado. 2003. Disponível em

http://www.tecbio.com.br/artigos/Livro-Biodiesel.pdf acessado em 22/06/2010.

PORTAL BIODIESEL BR. Acesso em fevereiro de 2010. http://www.biodieselbr.com, 2010.

SARDENBERG, R. M. Portaria MCT nº 702, de 30.10.2002. Acesso em 28/03/2010,

disponível em Ministério da Ciência e Tecnologia.

SILVA, I., MENEGHETTI, S. M. P., MENEGUETTI, M. R., COSTA, A. M., SALES, J. A.

A. Disponível em http://www. biodiesel.gov.br/docs/congresso2007/produção/64.pdf.

Acessado em 18 de junho de 2010.

Page 90: Dissertação - Fernanda Rocha Morais

89 Referencias Bibliográficas

PUHAN S., VEDARAMAN N., RAM B. V. B., SANKARNARAYANAN G., VILAS, L. H.

L. PANORAMA DA CERTIFICAÇÃO AMBIENTAL NO SETOR AUTOMOTIVO

BRASILEIRO: UM CENÁRIO DAS EMPRESAS RANDON. 2005. Disponível em

http://cebds.dynalias.net/cebds/docnoticia/panorama-da-certificao-ambientalno-setor-

automotivo.pdf acessado em 13/06/2010.

Revista Biodieselbr: Da batelada ao processo contínuo no biodiesel Disponível em

http://www.biodieselbr.com/revista/016/batelada-ou-continuo-2.htm. Acessado em 20 de

Julho de 2010.