digitais GARCIA IV - Vidjaya

22
Engenh C P Prof. José dos Sa haria de Automação e Cont Engenharia Elétrica Circuitos Digitais Prof. José dos Santos G São Paulo 2014 antos Garcia Neto 1 trole Garcia Neto

Transcript of digitais GARCIA IV - Vidjaya

Page 1: digitais GARCIA IV - Vidjaya

Engenharia de Automação e Controle

Circuitos Digitais

Prof. José dos Santos Garcia

Prof. José dos Santos Garcia Neto

Engenharia de Automação e ControleEngenharia Elétrica

Circuitos Digitais

Prof. José dos Santos Garcia

São Paulo 2014

Prof. José dos Santos Garcia Neto 1

Engenharia de Automação e Controle

Prof. José dos Santos Garcia Neto

Page 2: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 2

Introdução

Esta apostila tem como objetivo fornecer informações básicas sobre elementos da Eletrônica Digital de tal forma que se possa desenvolver circuitos digitais que resolvam problemas da Engenharia a partir da análise do problema, construção da tabela verdade e elaboração de expressões booleanas.

Seu conteúdo trata de:

- portas lógicas básicas - postulados da álgebra de Boole para simplificação de expressões algébricas - construção de tabelas verdade - elaboração de equações booleanas

o método do Produto Canônico o método do Mapa de Karnaugh

- exemplo prático

Page 3: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 3

Page 4: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 4

POSTULADOS. POSTULADO DA COMPLEMENTAÇÃO: regras da complementação na álgebra de Boole. Chamaremos de A� o complemento de A: 1º) Se A = 0 � A� � 1 2º) Se A = 1 � A� � 0 3º) Se A = 1 � A� � A � 1 Se A = 0 � A� � A � 0 Então estabelecemos a identidade � A� � A POSTULADO DA ADIÇÃO: são as regras da adição na álgebra de Boole: 1º) 0 + 0 = 0 2º) 0 + 1 = 1

3º) 1 + 0 = 1 4º) 1 + 1 = 1

Então estabelecemos a identidades: 1º) A + 0 = A

Se A = 0 � 0 + 0 = 0 Se A = 1 � 1 + 0 = 1

2º) A + 1 = 1 Se A = 0 � 0 + 1 = 1 Se A = 1 � 1 + 1 = 1

3º) A + A = A Se A = 0 � 0 + 0 = 0 Se A = 1 � 1 + 1 = 1

4º) A + A� = 1 Se A = 0 � 0 + 0� = 0 + 1 = 1 Se A = 1 � 1 + 1� = 1 + 0 = 1 POSTULADO DA MULTIPLICAÇÃO: regras da multiplicação na álgebra de Boole:

1º) 0 . 0 = 0 2º) 0 . 1 = 0 3º) 1 . 0 = 0 4º) 1 . 1 = 1

Então estabelecemos as identidades: 1º) A . 0 = 0

Se A = 0 � 0 . 0 = 0 Se A = 1 � 1 . 0 = 0

2º) A . 1 = A Se A = 0 � 0 . 1 = 0 Se A = 1 � 1 . 1 = 1

3º) A . A = A Se A = 0 � 0 . 0 = 0 Se A = 1 � 1 . 1 = 1

4º) A . A� = 0 Se A = 0 � 0 . 0� = 0 . 1 = 0 Se A = 1 � 1 .+ 1� = 1 . 0 = 0

PROPRIEDADES. PROPRIEDADE COMUTATIVA: estão propriedade é valida na adição e na multiplicação: ADIÇÃO: A + B = B + A MULIPLICAÇÃO: A . B = B . A PROPRIEDADE ASSOCIATIVA: da mesma forma que a anterior esta propriedade é valida na adição e na multiplicação: ADIÇÃO: A + (B + C) = (A + B) + C = A + B + C MULIPLICAÇÃO: A . (B . C) = (A . B) . C = A . B .C

Page 5: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 5

PROPRIEDADE DISTRIBUTIVA: regra da propriedade distributiva na álgebra de Boole: Expressão Booleana: A . (B + C) = A . B + A . C TEOREMA DE MORGAN. Os teoremas de De Morgan são muito empregados na prática, em simplificações de expressões booleanas e, ainda, no desenvolvimento de circuitos digitais. 1º TEOREMA DE DE MORGAN: o complemento do produto é igual a soma dos complementos: Então: A. B��������� � A� B� Estendendo o teorema: A. B. C. … N������������������������ � A� B� C� … N�

2º TEOREMA DE DE MORGAN: o complemento da soma é igual ao produto dos complementos.

Então: A�. B�. C�. … .���� . N� � A B C ⋯… N���������������������������������

Este teorema é uma extensão do primeiro: Então:

1º Teorema �A. B��������� � A� B� Aplicando a identidade X� � X � A. B � A� B���������� (equação 1)

A é o complemento de A�, vamos chama-lo de X, então A� � XeA� � X� B é o complemento de B�, vamos chama-lo de Y, então B� � YeB� � Y� Escrevendo a equação 1 em termos de X e Y � X�. Y� � X Y�������� Trocando as variáveis temos o 2º Teorema de De Morgan �A�. B� � A B��������

Page 6: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 6

OBTENDO UMA IDENTIDADE AUXILIAR A partir de uma expressão booleana obtida, seja por qualquer método, estudamos e realizamos sua simplificação aplicando os Postulados, as Identidades, as Propriedades, os Teoremas de De Morgan e também a Identidades Auxiliares conhecidas, com o objetivo de simplifica a expressão definindo assim uma Identidade Auxiliar que nos facilita a simplificação de outras expressões. Expressão Booleana a ser estudada � A�. B� B�

Aplicando a identidade X� � X � B A�. B������������� no próximo passo sai a 1ª inversão Aplicando o 2º Teorema. De Morgan X Y�������� � X�. Y�

chamando X=B e Y=A�. B� � B�. A�. B������������������������

no próximo passo sai a inversão em A�. B���������������������

Aplicando o 1º Teorema. De Morgan X. Y������ � X� Y� no termoA�. B���������������������

chamando X=A� e Y=B� �B�. A�� B����������������� � B�. A B��������������� �B�. A B. B���������������� =B�. A 0����������� = B�. A������ Aplicando o 1º Teorema. De Morgan X. Y������ � X� Y� onde X=B� e Y=A � B�� A� = �B A� Elaborado o desenvolvimento expressão com o auxilio das “REGRAS” para analise de circuitos digitais, concluímos a dedução de mais uma identidade auxiliar que incluímos no formulários, no livro adotado temos a dedução de outras identidades auxiliares utilizando o Teorema de De Morgan Identidade incluída:

��. �� � � �� �

Page 7: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 7

Page 8: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 8

Page 9: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 9

PROJETOS DE CIRCUITOS COMBINACIONAIS PASSOS A SEREM EXECUTADOS - Entender o que esta sendo pedido (rascunhe bastante) - Estabelecer as variáveis de ENTRADA e quais são as variáveis de SAIDA - Obter a tabela verdade do projeto - Obter a equação (equações) que implementam o projeto - Desenhar o circuito lógico - Desenhar o esquema elétrico - Implementar a solução e testar O QUE É TABELA VERDADE? A tabela verdade é uma tabela que relaciona o comportamento das variáveis de entrada com as respectivas saídas. A quantidade de linhas de uma tabela verdade depende do numero de variáveis de entrada e segue sempre a potencia de 2. Exemplo: 2 variáveis de entrada: 22 = 4 � tabela verdade com 4 linhas. 3 variáveis de entrada: 23 = 8 � tabela verdade com 8 linhas. 4 variáveis de entrada: 24= 16 � tabela verdade com 16 linhas. 5 variáveis de entrada: 25 = 32 � tabela verdade com 32 linhas. 6 variáveis de entrada: 26 = 64 � tabela verdade com 64 linhas. . . . .

n variáveis de entrada: 2n = 2n � tabela verdade com 2n linhas. Tabela verdade 2 variáveis 3 variáveis 4 variáveis EXERCICIOS Obter a tabela verdade e desenhar o circuito lógico para as seguintes funções: a) S � A C������������ B b) S � A C�. B c) S � A. B�� C� d)S � A. B� B. C� e)S � A B�� C� D�

A B C 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

A B 0 0 0 1 1 0 1 1

A B C D 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1

Page 10: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 10

RESOLVENDO a)S � A C������������ B

A B C C�

A C�)

A C������������ S � A C������������ B

0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 0 1 0 1

Page 11: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 11

FORMAS DE SE OBTER A EQUAÇÃO BOOLEANA Em um projeto de circuitos combinacionais a sequencia deve ser respeitada: 1-Entendimento do projeto 2-Determinação das variáveis de entrada e das variáveis de saída. 3-Elaboração da tabela verdade que implementa a solução 4-Equações Booleanas minimizadas 5-Circuitos Lógicos 6-Esquema elétrico Para obtenção das equações booleanas os seguintes métodos são utilizados: 1-PRODUTO CANÔNICO E TEOREMA DA SOMA: dada uma tabela verdade cada linha corresponde ao produto (AND) das variáveis de entrada barradas se for 0(zero), não barradas se for 1(um). EXEMPLOS: Dada uma tabela verdade que representa a solução de um problema qualquer, a equação booleana será formada por uma soma (OR) dos produtos canônicos, onde a função assume valor 1(um). EXEMPLOS: a-Tabela verdade de uma proposta qualquer. Da analise da tabela verdade selecionamos as linhas cujos S sejam iguais a 1, e esta seleção comporá a equação booleana a solução para o problema, então: S � A�. B�� A. B� Da analise da tabela verdade selecionamos as linhas cujos S sejam iguais a 1, e esta seleção comporá a equação booleana a solução para o problema, então: S � A�. B.C� A. B� .C� A. B. C�

A B Produto Canônico 0 0 A�. B� 0 1 A�. B 1 0 A. B� 1 1 A. B

A B C Produto Canônico 0 0 0 A�. B�. C� 0 0 1 A�. B�. C 0 1 0 A�. B. C� 0 1 1 A�. B. C 1 0 0 A. B�. C� 1 0 1 A. B�. C 1 1 0 A. B. C� 1 1 1 A. B. C

A B S Produto Canônico Analise 0 0 1 A�. B� S = 1 faz parte da solução 0 1 0 A�. B S = 0 NÃO faz parte da solução 1 0 0 A. B� S = 0 NÃO faz parte da solução 1 1 1 A. B S = 1 faz parte da solução

A B C S Produto Canônico Analise 0 0 0 0 A�. B�. C� S = 0 NÃO faz parte da solução 0 0 1 0 A�. B�. C S = 0 NÃO faz parte da solução 0 1 0 0 A�. B. C� S = 0 NÃO faz parte da solução 0 1 1 1 A�. B. C S = 1 faz parte da solução 1 0 0 0 A. B�. C� S = 0 NÃO faz parte da solução 1 0 1 1 A. B�. C S = 1 faz parte da solução 1 1 0 0 A. B. C� S = 0 NÃO faz parte da solução 1 1 1 1 A. B. C S = 1 faz parte da solução

Page 12: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 12

2-MAPA DE VEITCH-KARNAUGH: em um sistema de coordenadas binárias onde cada célula (“quadradinho”) corresponde ao resultado (coluna S) de uma determinada linha da tabela verdade, isto é corresponde aos possíveis resultados da tabela verdade. 2.1 Mapa com 2 variáveis de entrada: 2.2 Mapa com 3 variáveis de entrada: neste caso coluna tem duas variáveis de entrada e a seqüencia das combinações sempre tem que ser essa, o segundo sinal igual ao primeiro do seguinte, assim variando apenas o estado de 1 sinal (variável) por vez na mudança de condição.

2.3 Mapa com 4 variáveis de entrada: Montagem do Mapa de Karnaugh : Mapa 1. Mapa 1 complemento Outra apresentação, muito interessante, da montagem do MK segue: Mapa 2. Mapa 2 complemento

A B S 0 0 P� 0 1 P� 1 0 P� 1 1 P�

0 1 0 P� P� 1 P� P�

A B C S 0 0 0 P� 0 0 1 P� 0 1 0 P� 0 1 1 P� 1 0 0 P� 1 0 1 P 1 1 0 P! 1 1 1 P"

00 01 11 10 0 P� P� P! P� 1 P� P� P" P

2º sinal = 0 sendo igual ao

1º sinal do seguinte= 0

2º sinal = 1 sendo igual ao

1º sinal do seguinte= 1

2º sinal = 1 sendo igual ao

1º sinal do seguinte= 1

A B C D S 0 0 0 0 P� 0 0 0 1 P� 0 0 1 0 P� 0 0 1 1 P� 0 1 0 0 P� 0 1 0 1 P 0 1 1 0 P! 0 1 1 1 P" 1 0 0 0 P# 1 0 0 1 P�$ 1 0 1 0 P�� 1 0 1 1 P�� 1 1 0 0 P�� 1 1 0 1 P�� 1 1 1 0 P�� 1 1 1 1 P�

00 01 11 10 00 P� P� P�� P# 01 P� P P�� P�$ 11 P� P" P�� P�� 10 P� P! P� P��

A�B� A�B AB AB� C�D� P� P� P�� P# C�D P� P P�� P�$ CD P� P" P�� P�� CD� P� P! P� P��

00 01 11 10 00 P�

A=0, B=0, C=0, D=0

P� A=0, B=1, C=0, D=0

P�� A=1, B=1 C=0, D=0

P# A=1, B=0, C=0, D=0

01 P� A=0, B=0, C=0, D=1

P A=0, B=1, C=0, D=1

P�� A=1, B=1, C=0, D=1

P�$ A=1, B=0, C=0, D=1

11 P� A=0, B=0, C=1, D=1

P" A=0, B=1, C=1, D=1

P�� A=1, B=1, C=1, D=1

P�� A=1, B=0, C=1, D=1

10 P� A=0, B=0, C=1, D=0

P! A=0, B=1, C=1, D=0

P� A=1, B=1, C=1, D=0

P�� A=1, B=0, C=1, D=0

A�B� A�B AB AB� C�D� A�B�. C�D� A�B. C�D� AB. C�D� AB. C�D� C�D A�B�. C�D A�B. C�D AB. C�D AB�. C�D CD A�B�. CD A�B. CD AB. CD AB�. CD CD� A�B�. CD� A�B. CD� AB. CD� AB�. CD�

Page 13: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 13

ROTEIRO: para obtenção da equação booleana minimizada a partir do mapa de Karnaugh. 1-Obter o mapa de Karnaugh 2-Localizar todas células com valor 1(um) 3-Procurar formar grupos de vizinhos com as células de valor 1(um) 3.1-cada grupo deve ser o maior possível 3.2-obter a menor quantidade de grupos 4-Cada grupo de produtos correspondera a um produto (AND) das variáveis de entrada que não mudam de valor barradas se for 0(zero), não barradas de for 1(um) 5-A equação booleana final será formada por uma soma (OR) das soluções de cada grupo de vizinhos. COMO PODEM SER OS GRUPOS DE VIZINHOS? 1-Variável independente: seu conjunto é formado por 1 célula apenas com valor 1. S � A�. B� 2-Grupos de Vizinhos com 2(duas) células: são conjuntos de 2 células com valor 1 que possuem a propriedades de ao se deslocar pelas 2 células consideradas apenas uma variável de entrada muda de valor. Passo a passo: S � A�. B�� A. B� S � B�. A� A� S � A�. B B�� Diagonal Não é Grupos de Vizinhos S � B�. 1� ∴ S � B� S � A�. 1� ∴ S � A� Resultado elaborado por 2 variáveis Grupos de Vizinhos localizados independentes S � A�. C� A. B� S = C. B C�. B� Localizados 2 Grupos de Vizinhos Localizados 4 Grupos de Vizinhos S � C�. B�� C�. A�� A�. B C. B� 3-Grupos de Vizinhos com 4(quatro) células: são conjuntos de 4 células com valor 1 que possuem a propriedades de ao se deslocar pelas 4 células consideradas apenas duas variáveis de entrada mudam de valor. S � A� S � C� Localizado 1 Grupo de Vizinhos Localizado 1 Grupo de Vizinhos

0 1 0 1 1 1 0 0

0 1 0 1 0 1 1 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 0

00 01 11 10 0 1 1 0 1 1 0 1 1 0

00 01 11 10 0 1 1 0 0 1 1 1 0 0

00 01 11 10 0 1 1 1 1 1 0 0 0 0

00 01 11 10 0 1 1 0 1 1 0 0 0 1

00 01 11 10 0 1 0 0 1 1 0 1 1 0

Resolução no próximo tópico

Page 14: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 14

4-Grupos de Vizinhos com 8(oito) células: são conjuntos de 8 células com valor 1 que possuem a propriedades de ao se deslocar pelas 8 células consideradas tres variáveis de entrada mudam de valor. S � B� S � B Localizado 1 Grupo de Vizinhos Localizado 1 Grupo de Vizinhos OBSERVAÇÃO: OS GRUPOS DE VIZINHOS SEGUEM SEMPRE A POTENCIA DE 2. 2, 4, 8, 16, 16, .......CELULAS APLICANDO O METODO DO PRODUTO CONICO E MAPA DE KARNAUGH. Encontrando as expressões Booleanas pelo método dos Produtos Canônicos. Exemplo 1: Tabela verdade Exemplo 2: Tabela verdade S = A�. B�. C� + A�. B. C� + A. B�. C� + A. B�. C S = A�. B�. C� + A�. B. C + A. B�. C� + A. B. C S = A�. C�. C� C� + A. B�. C� C� S = A�. B�. C� B. C� + A. B�. C� B. C� S = A�. C�. 1� + A. B�. 1� S = B�. C� B. C�.A� A� S = A�. C�+ A. B� S = B�. C� B. C�.1� ∴ S = C. B C�. B� Encontrando as expressões Booleanas pelo método do Mapa de Karnaugh. Exemplo 1: Exemplo 2: Passo a passo: S � C�. A�. B� A�. B� S � A. B�� C�. C� S � C. A�. B A. B� S � C�. A�. B� A. B�� S � C�. A�. B� B�� S � A. B�� 0� S � C. B. A� A�� S � C�. B�. A� A�� S � C�.A�. 1�) S � A. B� S � C. &B. 1�' � C. B S � C�. &B�. 1�' � C�. B� S � A�. C� A. B� S = C. B C�. B� Pode-se observar que simplificando a expressão fornecida pelo produto canônico o resultado é a mesma expressão obtida pelo mapa de Karnaugh. Localizados os grupos de vizinhança e solucionando de maneira algébrica o mapa de Karnaugh é encontrada a expressão solução da tabela verdade. Analisando o grupo de vizinhança em destaque abaixo, podemos generalizar que quando ocorrerem as situações abaixo as expressões resultante serão sempre as mesmas.

00 01 11 10 0 1 1 0 1 1 0 0 0 1

00 01 11 10 0 1 0 0 1 1 0 1 1 0

A B C S produto canônico 0 0 0 1 A�. B�. C� 0 0 1 0 A�. B�. C 0 1 0 1 A�. B. C� 0 1 1 0 A�. B. C 1 0 0 1 A. B�. C� 1 0 1 1 A. B�. C 1 1 0 0 A. B. C� 1 1 1 0 A. B. C

A B C S produto canônico 0 0 0 1 A�. B�. C� 0 0 1 0 A�. B�. C 0 1 0 0 A�. B. C� 0 1 1 1 A�. B. C 1 0 0 1 A. B�. C� 1 0 1 0 A. B�. C 1 1 0 0 A. B. C� 1 1 1 1 A. B. C

Localizados 2 grupos de vizinhos

00 01 11 10 00 1 0 0 1 01 1 0 0 1 11 1 0 0 1 10 1 0 0 1

00 01 11 10 00 0 1 1 0 01 0 1 1 0 11 0 1 1 0 10 0 1 1 0

Page 15: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 15

Individualizando: Analise a partir da coluna 1 Analise a partir da linha 2 Resultado Aplicação direta para obtenção do maior beneficio do mapa de Karnaugh: a obtenção de expressões algébricas simplificadas, rapidamente, tornando o projeto do circuito otimizado.

Os elementos que forem complementares durante a

resolução algébrica resultam em “1”, com isto este elemento

não fará parte da expressão resultante. Então no caso em

analise o termo B� B� resulta “1”, resultando emS � A. 1

Os elementos que não forem complementares durante a

resolução algébrica resultam no elemento barrado se for “0 e

0” ou no próprio elemento se for “1 e 1”. Então no caso em

analise o resultado será S � A�. 1

Daí o termo:

S � A�. 1 � A�

Analise facilitada pois o resultado será o elemento

barrado se for 0 e o próprio elemento se for 1. No caso

em analise apontou para 0 então o resultado será S � C�

Como trata-se de uma operação AND a componente

fornecida pelo par de vizinhança é S � A�. C�

1 – Analisar individualmente linhas e colunas do grupo de vizinhança 2 – Elementos complementares (0 – 1 ou 1 – 0) ����NÃO fazem parte do resultado 3 – Elementos em 0 e 0 ���� fazem parte do resultado porem barrados 4 – Elementos em 1 e 1 ���� fazem parte do resultado 5 – O resultado da analise da linha é multiplicado pelo resultado da coluna e vice-versa 6 – Os resultados de todos os grupos de vizinhança devem ser somados (OR)

Page 16: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 16

EXEMPLOS 1- 2- S � A� S � B� A 3- 4- S � S � 5- 6- S � S � 7- S � S �

0 1 0 1 0 1 1 0

0 1 0 1 1 1 0 1

00 01 11 10 0 1 0 0 0 1 0 1 1 1

00 01 11 10 0 1 1 1 1 1 0 1 0 0

00 01 11 10 00 1 0 0 1 01 0 1 1 0 11 0 1 1 0 10 1 0 0 1

00 01 11 10 00 1 1 1 1 01 0 1 1 0 11 0 1 0 0 10 0 0 1 1

00 01 11 10 00 1 0 0 1 01 1 0 0 1 11 1 0 1 1 10 1 0 0 1

00 01 11 10 0 1 1 1 0 1 0 1 0 0

Page 17: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 17

O QUE SÃO CONDIÇÕES IRRELEVANTES? Chamamos de condição irrelevante (X) a situação de entrada onde a saída pode assumir 0 ou 1 indiferentemente. Esta condição ocorre principalmente pela impossibilidade prática do caso de acontecer, sendo por vezes utilizadas. Para a utilização em diagramas de Karnaugh, devemos para cada condição irrelevante adotar como valor de X, 1 ou 2, escolhemos aquele que possibilitar melhor agrupamento com isto resultando uma expressão mais simplificada. Supor X = 0 S � C�. A�� A�. B Supor X = 1 S � A� Supor X = 0 4 grupos S � Supor X = 1 5 grupos S � Supor X = 0 ou X = 1 3 grupos S �

00 01 11 10 00 1 1 0 0 01 0 0 1 1 11 1 1 1 0 10 1 1 0 1

00 01 11 10 0 1 1 0 0 1 1 1 0 0

A B C S 0 0 0 X 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0

A B C D S 0 0 0 0 X 0 0 0 1 0 0 0 1 0 1 0 0 1 1 X 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 0 X 1 0 1 1 0 1 1 0 0 0 1 1 0 1 X 1 1 1 0 0 1 1 1 1 X

00 01 11 10 0 0 1 0 0 1 1 1 0 0

00 01 11 10 0 X 1 0 0 1 1 1 0 0

00 01 11 10 00 X 1 0 0 01 0 0 1 X 11 1 1 X 0 10 X 1 0 X

00 01 11 10 00 0 1 0 0 01 0 0 1 0 11 1 1 0 0 10 0 1 0 0

00 01 11 10 00 1 1 0 0 01 0 0 1 1 11 1 1 0 0 10 1 1 0 0

Page 18: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 18

O que são agrupamentos de ZEROS? Também podemos agrupar as células que valem 0 para obtermos a expressão booleana simplificada em diagrama de Karnaugh, porem, nestas condições obtemos o complemento da função, ou seja S� e não S. Aplicando o método tradicional de grupamentos de 1, o mapa de Karnaugh resulta em:

S � A C Aplicando o método de grupamentos de 0, o mapa de Karnaugh resulta em: S� � C�. A� ∴ S � C�. A������� Conforme o 1º Teorema de De Morgan A. B��������� � A� B�

Fazemos X � C� e Y �A� Substituímos em S � C�. A�������então S � X. Y�����

Aplicando 1º teorema X. Y��������� � X� Y� então S � X� Y� Voltando as variáveis originais X �C�e Y �A� S � A�� C�� ∴ S � A C Um tanto quanto trabalhoso, mas é possível.

00 01 11 10 0 0 0 1 1 1 1 1 1 1

A B C S 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1

00 01 11 10 0 0 0 1 1 1 1 1 1 1

Page 19: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 19

Exemplo Prático. Em uma estação de distribuição de água existe um reservatório abastecido por uma poço artesiano, este reservatório deve ser completado até seu nível máximo sempre que o mesmo atingir um nível mínimo, sendo o nível máximo e mínimo determinados por sensores, o controle da maquina de estado deve ser elaborado de forma a garantir que a bomba de recalque seja acionada somente quando o nível mínimo for atingido e desligada quando alcançado o nível máximo do reservatório, assim evitando-se partidas desnecessárias da bomba. Utilizar neste projeto somente porta E (AND), OU (OR) e INVERSOR (NOT). Também elaborar a tabela verdade da maquina de estado.

Primeiro circuito elaborado sem a aplicação das técnicas envolvidas neste tipo de projeto, utilizando somente as portas lógicas:

Segundo circuito elaborado sem a aplicação das técnicas envolvidas neste tipo de projeto, utilizando somente as portas lógicas. Sabemos que o circuito acima opera da maneira

Page 20: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 20

desejada, porem ficou muito caro a sua produção. Devemos otimizar a expressão booleana encontrada para minimizar custos. Todos deverão tentar otimizar a equação mesmo que não consiga devera entregar a tentativa.

Expressão booleana a ser simplificada Expressão booleana simplificada, e circuito resultante da expressão booleana, resultado esperado (porem ainda não é o melhor)

Depois de todas as tentativas e observado que é possível a elaboração de tal maquina de estado vamos ao projeto, agora com aplicação das técnicas de circuitos lógicos digitais: A �sensor de caixa cheia B �Sensor de caixa vazia C �Motor S � Solução Expressão Booleana para o sistema utilizando o método do Mapa de Karnaugh: S � A�. B� C. A� ∴ S � A�. B� C� Expressão Booleana para o sistema utilizando o método dos Produtos Canônicos: S � A�. B�. C� A�. B�. C A�. B. C ∴ S � A�. B�. C� B�. C B. C� ∴ S � A�. B�. C� C. B� B�� ∴ S � A�. B�. C� C. 1�� ∴ S � A�. B�. C� C� Como podemos observar a expressão pelo método dos produtos canônicos, resultou diferente da expressão obtida pelo mapa de Karnaugh, sabemos que isto não pode acontecer. Isto nos diz que uma das expressões não esta simplificada ao máximo, também sabemos que o mapa de karnaugh resulta em uma expressão muito simplificada então vamos tratar a expressão resultado do método dos produtos canônicos. S � A�. B�. C� C� ( S � A�. B� C� (afirmação 1) Observando os resultados podemos supor que B�. C� C� � B� C�, para que as equações S � A�. B�. C� C� e S � A�. B� C�sejam iguais, então vamos manipular a equação B�. C� C�: Aplicando a identidade auxiliar ��. �� � � �� � vem: S � A�. B� C� = S � A�. B� C�

A B M S produto canônico 0 0 0 1 A�. B�. C� Atingiu nível mínimo�ligar bomba 0 0 1 1 A�. B�. C Começou enchimento�bomba ligada 0 1 0 0 A�. B. C� esvaziando�bomba desligada 0 1 1 1 A�. B. C Caixa enchendo�bomba ligada 1 0 0 Falha A. B�. C� Falha de sensor 1 0 1 Falha A. B�. C Falha de sensor 1 1 0 0 A. B. C� Caixa cheia – bomba desligada 1 1 1 0 A. B. C Caixa cheia – desligar bomba

00 01 11 10 0 1 0 0 0 1 1 1 0 0

Page 21: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 21

Esta identidade auxiliar possibilita a confirmação da afirmação que a expressão resultante da aplicação do método dos produtos canônicos é igual a equação resultante do mapa de Karnaugh. Então podemos concluir que o resultado é o mesmo, porem os caminhos podem sem muito mais complicados. Isto justifica porque a técnica mais utilizada para obtenção de expressões booleanas é a do MAPA de KARNAUGH. CIRCUITO DA EXPRESSÃO BOOLEANA SIMPLIFICADA S � A�. B� C�

Page 22: digitais GARCIA IV - Vidjaya

Prof. José dos Santos Garcia Neto 22

REFERÊNCIAS IDOETA, Ivan Valeije, CAPUANO, Francisco Gabriel. Elementos de Eletrônica Digital. 40ª edição. São Paulo, Editora Erika, 2009. TOCCI, Ronald J., WIDNER, Neal S., MOSS, Gregory L. Sistemas Digitais Princípios e Aplicações. 11ª edição. São Paulo, Editora Pearso, 2012.