Densidades dos cloretos

download Densidades dos cloretos

of 6

Transcript of Densidades dos cloretos

  • 8/7/2019 Densidades dos cloretos

    1/6

    300 J. Chem. Eng. Data 1983, 28, 300-305Table V. X-Y Data for the 2,4-DichloroAzo Cresol Compoundin 75%Dioxane

    [ S I , Y 1 . 4 d i d h70 -10g[S] -X J = l J = 2 J = 3 J = 45 5 0.2596 0.08760 0.2218 0.176 11.10 10.88 10.66 10.4465 0.187 0.269 11.37 11.18 11.01 10.8270 0.155 0.368 11.46 11.30 11.16 11.0075 0.125 0.477 11.81 11.68 11.55 11.42

    Table VI . Slopes of X-Y Relationshipslopes

    substituent J = l J = 2 J = 3 J = 4H 3.99 3.99 4.88p-CH, 4. 22 4.48 4.8 0p-OCH, 4.18 4.5 2 4.880-OCH, 4.5 2 4.80 5.00P-NO, 4.52p-Br 3.00 4 .02 4 .22 4 .522,4dichloro 4.12

    solvation is of minor importance. The obtained straight linesin most cases are the J values between 2 and 4.RWv NO. 2-PhWIyh+p~e~oI ,952-47-6; 24p-nltrophenyl)ezO-p-cresol, 1435-68-3; 2-@ -bromophenyl)azo-p -cresol, 26029-75-4; 24p-

    15096-05-6 2~2,4-dlchlorophenyl)azo-p-cresol,19918-08-2; 240-meth-oxypheny1)azo-p -cresol. 1509 6-O6 -7.me thy lph eny l )e~ +pM , 17739-97-8; 24pmethoxyphenyl)et0+U&,

    Llteratwe CitedDlehl, H.; Jensen, R. Anal. U.1963, 144.Allmarin, I. P.; Savrln, S. B.; Aokanova, L. Talenta 1968. 15 , 601.Curcb. P. J.; Lon, P. F. Anal. Chh . Acta 1963, 26 . 487.Slrkl, M.; Djwdjevlc. C. Anal. Chem. 1971, 43 . 1375.Shlbata, S.; Gota, K.; Kamata. E. Anal. Chlm. Acta 1971, 5 5 , 234.Mamud, M. S.; Salem, T. M.;Elhenawl, M., presented at the 18th In -tematkmal Conference on Coordhatlon Chemistry, Sao Paulo, Brazil,Masoud, M. S.; Kaddah, A. M.;Khalll, A. M.; Tawflk, N. I . Indien J .Chem., Sect. A 1979, 17 , 502.Masoud, M.S.; Osman, M. M.;Salem, T. M.; KhaUI,E. A., presented atthe 20th IntematkmalConference on Coordination Chemistry, Calcut-Masoud,M. S.; Elzawawy, F. Talents 1980, 27, 766.Masoud, M.S.; Salem, T. M.;Elhenawl,M.A. Indien J . C hem. , Sec t.A 1981, 2 0 , 297.Masoud. M. S.;Salem, T. M.;Elhenawl, M. A. Synth. React. Inorg.Met.-ckg. Chem. 1981, 1 1 , 577.Goher, M. S.; Masoud, M. S.; Helba, A. M. Pol. J . Chem. 1981, 78.Masoud, M. S.; Osman, M. M.; Salem; T. M.; Khalll, E. A. Indlan J .Chem., Sect. A 1981, 2 0 , 584.Vogel, A. I. A Text Book of Practical Organic Chemistry, 3rd ed.;Longmans: London, 198 2.Van Unett, L. G. ; Haw, 0. G . J . A m . Chem. Soc. 1953, 7 5 . 451.Hamed, H. S.; Owen, B. B. The Physical Chemistry of EiecbolytlcSOkRkns,2nd ed.;Relnhold: New York, 1950; p 547.Wooley, E. M.; Hwkot. D. G.; Heplar, L. G. J . Fhys. Chem. 1970. 7 4 ,3908.Hasehch, E. Helv. chlm.Acta 1970, 53 , 1526.Patal, S. The Chemistry of the Hydrazo, Azo and Azoxy Groups;WHey: New York, 1975.Bellamy. L. J. The Infrared Spectra of Complex Molecules; Me-thuen: London, 1958.Mul, K. K.; McBryde, W. A.; Nelboar. E. Can . J . Chem. 1974, 5 2 ,1821.Masoud, M. S.; Abduallh, A. A. J. Chem. Eng. Date 1982, 27 , 80.

    July 18-23, 1977.

    ta, I&, DeC 10-14, 1979.

    Recetved for review March 2, 1982 . Revised manuscript received July 27 ,1982. Accepted December 17, 1982.

    Densities of Aqueous NaCI, KCI, MgCI,, and CaCI, Binary Solutionsin the Concentration Range 0.5-6.1 m at 25, 30, 35, 40, and 45 OCLlsa A. Romanklw and I-MlngChouU S . Geological Survey, 923 National Center, Reston, Virginia 22092The densttks of the Mnary sdutlons NaCCH20, KCCH,O,MgC12-H20, and CaC12-H20 were measured at 1 atm,from 25 to 45 OC and from 0.5 to 6.1 m , by using acommercially avallalh oscllatlng tube-type densttometer.The data seis were desclcrlbed by ushg kast-squarespolynomlal regression analysis. StaUstkal evaluatlon ofthe exoerhenlal data indicatesthat uncertalntk In theconcentrations of the solutlonr due to adsorption of waterby the salts durlng welghlng Is the major ow c e of errorin the dendty measurements. The magnitude of thb errorIs greater for MgCl, and CaCI, solutlocrr because of thehygroscoplc nature of these salts. The measureddensltlee of NaCl and KCI solutlonr have a standarddevlatlon of 5.515 X lo- g/cms. Standard devlatlons forMgCi, and CaCI, soMlons range from 2.329 X lo- to2.334 X lo- g/cm3 and from 2.796 X lo- to 2.839 Xlo- g/cm3, respectively. The experhnental denshy datacompare well wlth publkhed values.Introduction

    Reliable experimental density data for aqueous binary saltsolutionshave important appbtb ns in gw t h l energy andradioactive-wastedisposal reseerch and technokgies. The useof such data in fundamental thermodynamic calculations per-

    taining to the volumetric properties of brines is essential foraccurate chemical modeling of complex geothermal brinesystems. The Potter and Haas model ( 1 ) for calculating thedensity of a brine is oneexample of a predictiveequation whichrequires precise experimental density data for binary systems.Raw experimental density data are available only for limitedconcentration ranges and temperature intervals. The diversityof experimental methods andthe lack of a c o m n system ofunits fo r reporting densitydata make meaningful comparisonsbetween similar data sets somewhat difficult. This study hasbeen undertaken to improve, as well as extend, the existingdata base by providing internally consistent sets of densitymeasurements at 1 atm, from 25 to 45 OC , for aqueous NaCI,KCI, MgCI,, and CaCI, binary solutions with concentrationsranging from 0.5 to 6.1 m .Experhental Method

    We prepared the NaCI, KCI, and CaCI, solutions by weightusing ovenQled (140 OC) reagent-grade chemicals and deion-ized water distilled with a Cornlng Mega-Pure automatic still.Becauseof particulate contamination, all CaCI, solutions wereflltered after preparation. The MgCI, solutions were made byvoiumetrically diluting aliquots of a concentrated MgCI, stocksdutlon. Formula weights used were 58.44, 74.55, 95.22, and110.99 for NaCI, KCI, MgCI,, and CaCI,, respectively.This article not subject to U.S. Copyright. Published 19 83 by the American Chemical Society

  • 8/7/2019 Densidades dos cloretos

    2/6

    Journal of Chemicaland Engineering Data, Vol. 28, No. 3, 1983 301Table 11. Experimentally Determined NaCl Densities Comparedwith ThoseCalculated from Regression Equations

    g ~ c m 3 g ~ c m 3 M O - ~ ) g ~ c m 3 g ~ c m 3 l X 1 o ? l~cm3 g ~ c m 3 ( x ~ ~ - 5 )a e x p t . o c a l c . d i f f . o e x p t . o c a l c . d i f f . p e x p t . o c a l c . d i f f .

    25:C 30'C 3 5 o c

    Table I . Results of Gravimetric Analyses of NaCI, MgCI,, andCaCI, Solutionss o ln n o wt. soln ana lyzed, g w t - AgCl P P t , m

    1

    123456

    123456789i n111 21 3

    3 . 0 ~ 0 7 23.n7669

    2.796582.799451.45871I .509n30.987140.982220 . 7 ~ n 7 n0.681 090.691 64n. 59936

    0.77302

    n.59RnR

    3.065393.1 24321 .537401 . 1 13961.111440.935240.89964

    1.62nt35

    0 . 8 8 7 ~ 2n . m f i 50.67707n.670280.61 8910.611 580.62521n.61872n. 55960n .5 in i5n.526570.4963sn. 54946n. 401 410.418420.42387n. 40n44

    0.52756

    0.414810.41572

    0.41 3041-1.41 zn40.41172n.42599n . 4 0 ~6n. 39679.n. 400590.4n459n.425510.432090.431 35n. 431 89

    n. 389620.39724n. 4nn02n . 3 7 5 7 ~n. 37204n.39674n. 409830.45585n.415060.411030.41 506n. 41 on3n.44714n.43995n . ~ n n 9 2n.44254n.41732n.47n53n. 48998n.38057n.396800.41415n. 391 45

    0.3721 50.37706

    0.45205

    0. 9941160.99775

    0.541 91.OR661.0A6A1.63431.62762.1 83R2.1 A40

    n. 5399

    2.751742.75033.30513.30R9

    0.4630n.46310.9374n.9281

    i .725n1.31381.31431.72272.13242.1 2562.68562.68663.01033 . n ~3.31 993.31 773.71233.71044.1167154.07004.42064 . ~ 3 n i5.04685.0504

    4.42164.R282

    The hygroscopic behavior of both MgCi2 and CaCI, neces-sitated the precise determination of solute concentration. Thiswas done gravimetrically by precipitation of chloride as silverchloride. A preliminary determinationof the concentration ofthe 1.O m NaCl solution verified the accuracy of this method.The resuits of the gravimetric analyses are given in Table I.Density measurements were made with a MettlerIPaar DMA55 digiil readout calculating precision density meter, whichoperates on thebasis of the oscillating-tube principledevelopedby Kratky et ai. (2). The density, p, of a sample is calculatedby the DMA according to the equation

    (1)where T = period of oscillation and A and B are apparatusconstants which were determined for each experimental tem-perature by calibration with air and distilled-deionized water.The densities of pure water were taken from Kell (3).A T-type (copper-constantan) thermocouple, calibratedagainst a platinum resistance thermometer, was used to mon-itor the temperature of the sample in the glass sample tubewithin the densitometer. The temperature withln the sampletube was controlled to f0.03 OC with a Neslab Exacai 300 bathcirculator. This temperature variation corresponds to a densityerror of *1 X g/cm3. To maintain experimental tem-peratures of 25,30, and 35 OC, we used a Neslab Endocal350flow-through cooler in conjunction with the Exacal 300.

    p = (1/A)(T2 - B)

    Results and MscusslonThe measured densities of NaCi, KCI, MgCi,, and CaCI,aqueous solutions are listed in Tables 11-V, along with calcu-

    0 . 0 01 .O O2 .O O1 . 0 04 .0 05 . 0 05 . 8 06 006 . 1 0

    0. 001 .oo2.003 . 0 04.005 . 0 05 80

    1 .1 9 3 9 0 1 . 1 9 3 9 3 -31 .1 9 6 5 9 1,19663 -4

    0 .9 9 5 6 51.034411 .0 7 0 1 81 ,1 0 3 4 01 ,1 3 4 5 31 ,1 6 3 7 61 .1 8 5 9 41 .1 9 1 3 01 19401

    ~

    1.99567,03436,07018,10346,13453,16371,18592,19133,19402

    __2

    +50-60r5

    t23140 C 4 5 - t

    8.99220 0.99223 - 3 0.99021 0.99024 - 3,03043 1.03035 t8 1.02824 1.02819 1 5,06572 1.06572 0 1.05342 1,06340 +Z,09857 1.09865 -8 1.09608 1,09617 -9,12945 1,12945 0 1 ,1 2 6 8 1 1,12682 -1,15850 1,15841 r9 1 ,1 5 5 7 8 1.15568 + l o18042 1 . l e 0 4 5 - 3 1 17764 1 177hR -4

    0.99403 0.994061.03248 1.032431.06803 1.068011 ,10101 1,101101,13202 1,132011.16114 1.161061.18314 1.183161 ,1 8 8 5 0 1 . 188551.19126 1,19123

    --3i 5t 2-91*8-2-5t 3

    6. 00 1 .1 8 5 7 9 1 ,1 8 5 8 3 -4 1.18298 1.1830< - 76.10 1.18854 1,18850 r 4 1 .1 8 57 7 1 .1 8 5 7 2 15

    Table 111. Experimentally Determined KCI Densities Comparedwith Those Calculated from Regression Equations0 e x p t . 0 c a l c . d i f f . o e x p t . o c a c . d i f f . 0 e x p t . 0 c a c . d i f f .

    g /cm3 g icm3 w 5 ) g/cm3 g / c i 3 i X1 0 -5 ) g/cm3 9 /c1 3 lX1 0 -5 )25OC 3OCC 3 5 T

    -4+6+31-4

    - 41t 5+33

    0.99565 0.995701.01830 1.018231.03972 1,039701.06017 1.060181,07970 1.079741.09840 1.098441.11633 1.116341.13355 1.133511.15007 1.150021.16589 1.16593

    40C 45'C0.00 0 .9 9 2 2 3 0.99228 - 5 0.99022 0.99027 - 50 .5 0 1 ,0 1 4 6 6 1 .0 1 4 58 r8 1.01259 1.01250 t 91 .00 1.03 588 1.03586 t 2 1 .03372 1.03371 +I1 .5 0 1.056142.00 1 .0 7 5 5 52 .5 0 1 .0 9 4 1 03.00 1 .1 1 1 9 43.50 1.129054. 00 1 .1 4 5 4 74 . 5 0 1 .1 6 1 2 7

    ,05617 -3 1.05391 1,05396 - 5,07557 -2 1.07330 1,07332 -2,09414 - 4 1.09183 1.09184 -1,11193 tl 1 . 1 0 9 5 9 1 . 1 0 9 5 9 0,12901 r4 1.12665 1,12663 t2,14545 t2 1 ,14305 1.14303 t2,16130 -3 1.15883 1.15885 -2

    --4+61 31-3-41t 414-4

    Table IV. Experimentally Determined MgCI, Densities Compatedwith Those Calculated from Regression Equationsg ~ c m 3 g/cm3 ( x ~ ~ - 5 ) g ~ c m 3 g/cm3 ( x ~ ~ - 5 ) 9/cm3 g ~ c m 3 1 ~ 1 0 - ~ )

    o e r p t . o c a l c . d i f f . 0 e x p t . c c a l c . d i f f . 0 e x p t . o c a lc . d i f f .

    25'C 30C 35oc0.00 0.99702 0.99709 -7 0 .99565 0.99572 -7 0 .99403 0.99410 -70.54 1.03795 1,03771 t2 4 1.03647 1.03623 t24 1,03477 1 ,0 3 4 5 3 r2 41 .0 9 1.07629 1,07657 -2 8 1.07473 1.07501 -2 8 1.07297 1.07325 -281 .6 3 1 .1 1 2 4 9 1 ,1 1 2 4 4 t 5 1.11088 1.11082 t6 1 ,1 0 9 0 9 1,10904 r52 .18 1 ,1 4 6 9 8 1.14685 t1 3 1.14531 1.14519 '12 1.14351 1 .1 4 3 4 0 ill2 7 5 1 ,1 8 0 3 9 1.18048 -9 1.17871 1.17879 -8 1.17691 1.17698 -73.31 1.21172 1.21170 + 2 1 ,2 1 0 0 2 1 ,2 1 0 0 0 12 1.20816 1. 20815 +I

    40C 4 5 o c0.00 0.99223 0.99230 -7 0.99022 0.99029 -70.54 1.03296 1 .0 3 2 7 2 t2 4 1,03097 1,03072 r2 51 .0 9 1.07116 1.07144 -28 1.06918 1.06945 -271.63 1.10727 1,10722 t 5 1.10529 1.10526 +32 . 1 8 1.14169 1.14156 t13 1.13975 1.13964 t112.75 1.17505 1.17513 -8 1,17317 1.17324 -73.31 1,20632 1.20630 t2 1.20444 1.20444 0

    Table V. Experimentally D etermined CaCI, D ensities Comparedwith Those Calculated from Regression Equationsc e x p t . c c a l c . d i f f . z e w t . 3 c a l c . d i f f . p e x p t . 0 c a lc . d i f f .

    m gicm ' g / c m3 I X I O - ~ ) g/cm3 g/cm3 ( X ~ O - ~ ) g /cm3 g cm 3 I x I o - ~ )25C 30C 350c

    0 . 0 0 0.99702 0.997250 . 4 6 1.03803 1,037750. 93 1,07742 1,077531 .31 1.108 79 1,108551 .72 1.14122 1 .1 4 0 9 22.13 1.17184 1 .1 7 2 2 02 . 6 9 1.21288 1.213223.01 1. 23568 1.235823.32 1.25706 1.257173.71 1.28363 1.283274.07 1,30697 1,306664.42 1.32864 1.328794.83 1.35419 1.353965 .0 5 1 .3 6 6 8 8 1 ,3 6 7 1 5

    40'C

    - 2 3128-1 1t 2 413 0-3 6-34-14-11t 3 6t 3 1-1 51 2 3-27

    9956603647075691069113921169742105823327254572809430422325783511836386

    1.99587 -21,03620 127,07581 -12,10670 12 1,13893 t2 8,17006 -32,21090 -3 2,23341 -14,25465 -8,28064 13 0,30392 t 30,32594 -16,35099 11936411 - 2 545 c

    99022 0.99010 -18,03069 1.03045 + 24,06962 1.06976 -14,10059 1,10040 +I 9,13263 1.13235 t28,16292 1.16320 -28, 20323 1.20362 -39,22587,24682 1 .2 2 5 8 81.24688 -1-6,27276 1.27254 1 2 2,29575 I 29551 124

    , 3 5 4 5 4 1,35479 -2 5,31707 1,31721 -14,34208 1.34188 12 0

    1.99403 0.99424 -21,03411 1.03442 +29,01376 1.07389 -13,10485 1.10466 +19,13706 1.13676 +30,16745 1.16778 -33,20813 1.20845 -32,23076 1.23086 -10,25193 1 . 2 5 2 0 2 - 9,30138 1.30106 +3 2,32278 1.32296 -18,34808 1.34788 +ZO,36069 1.36094 -2 5

    ,27815 1.27789 +2 6

  • 8/7/2019 Densidades dos cloretos

    3/6

    302 Journal of Chemlcal and Englneerlng D ata, Vol. 28, No. 3, 1983

    3f, S .... .... . . . . . . . . . . . . . . . . . . . . . *.* ......i. ................1 -

    - -0 a-. .

    - I, -

    - l s ...........................................................A A *

    25'Ct2sl.

    0

    Ec-Un0

    Al

    +2s - 35'c C -.+,s ....i...- c .. ...............................................

    ~, . a. e ..0 - 1-- I, ....... .......-1 s .........................................I e.

    -2s L

    +IS --;..........L ................. +.-. ...*... .............0 a

    ** I- I 4- - 1c c-1 s ...................... f ................* ..............I 0 .I =-2 5 L JI I 10 1.0 2 .0 3.0 4.0 5.0 0.0 7.0m

    30'C 7

    +7c e 40'C . "1.. ......................

    _ _" -

    3 a

    0 10 2.0 3.0 4.0 5.0 6 0 7 0-2s

    m

    e '145'C+=II :+I S .......i.....=. ................................... * - - - - - - -

    . At A aI - - I.~I : c03 I . .J3 D

    -1 s ..................r........................!...............

    1.0 2. 0 3 0 4.0 5. 0 8 .0 7.0- 2 s

    m

    Error plots of (observeddensity - calculated density)/(precislon of measwement) as a function of molaltty for each experimentaltemperature: NaCl (solkl circles), KC I (open circles), Mgci, (open squares), CaCi, (solid triangles).lated densities and deviations of measured values from calcu-lated results. Each measured density value represents an av-erage of severaldeterminations. The calculateddensities, d ,(g/cm3), were obtained by a least-squares polynomial regres-sion of experimental density values according to the equation

    daM = Ca,d (2)0where m is the molality of solution (mol of solute/kg of H,O),a is a regression coefficient, and i is an integer. The regressioncoefficients are given in Table V I .The measured densities of NaCl and KCI solutions have astandard deviation of 5.515 X g/cm3. This value wasdetermined from replicatedensitymeasurements of 10different1.00m NaCl sokrtions at 25 OC. Standard deviations for MgCI,and CaCi, solutions were calculated from the equation

    (3)where A (g/cm3) is the instrumental error and B (g/cm3) is theestimated error In the density measurement due to uncertaintyin the calculated molalities of MgC12 or CaCI, solutions.Standard deviations for MgCl, and CaCI, solutions range from2.329 X IO-' to 2.334 X IO4 g/cm3 and from 2.796 X IO4to 2.839 X lo4 g/cm3, respectively.The instrumental error, A , was determined to be i1.4 Xg/cm3 for all solutions based on the reproducibility of

    SD (g/cm3) = ( A 2 + B2)"2

    density measurements of the 10 1.00 m NaCl solutions at 25OC. Theestimated concentrationerrors were found to be f3.6X IO3 and f3.9 X IO3 m for MgCl, and CaCI, solutions,respecthrely. These numbers are the standard deviations of thedifferences in the duplicate gravlmetric determinations of con-centration (Table I ) . The value of B (in g/cm3) is the productof the estimated error in concentration and the slope of thedenslty/molality plot for a particular solution set at a giventemperature. Errors in density values which may result fromminor temperature fluctuations during measurement are in-cluded in the Instrumental error. The Instrumental error is as-swned to remain constant in the temperature interval25-45 OCand to be the same for all solutions studied In this experiment.Error plots of the quantity (observed density - calculateddensity)/(preclslon of measurement) as a function of molalityare presented in Figure 1 for each experimental temperature.Less than -third of the points plot outside the bounds of onestandard devlation (+IS)and none exceed f 2S . This indi-cates that the magnitudes of the experimental errorsare withinthe stated limits of experimental uncertainty and that the poly-nomlal regression functbns adequately describe the data.The selection of the published data with which our experl-mental data were compared was based on the concentrationranges and temperatures examined. The annotated bibliogra-phy of Potter et ai. ( 4 )and the data compilation of Chapmanand Newman (5) were extremely useful reference sourcesduring the literature search. Our NaCl density data, from 1.0

  • 8/7/2019 Densidades dos cloretos

    4/6

  • 8/7/2019 Densidades dos cloretos

    5/6

    304 Journal of Chemlcaland Englneering Data. Vol. 28, No. 3, 1983

    1.20 MgCIZ (25C)

    e0

    e

    e0e

    A This WorkCritical Tables (6)

    A Dunn (18)0 Perron et al. (1Q)0 Phang and Stokes

    0 1.o 2.0 3.0 4.0m

    Flgure 4. Comparison of density data for MgCI, at 25 O C .

    m5.W>:L.-VIEa

    aa - a i1.28 c 1

    A This W or kc Perron et al. ( 1 9 )A Dunn (18)o Potter and Clynne (20)a Lyons and Ri ley (21)

    0.960 1.o 2.0 3.0 4. 0 5 .0

    inFlgun5. Comparison of density data for CaCI, at 25 O C . The dataof the InternationalCrlticalTabbs (6),which are not shown, coincidewith the data of Potter and Clynne (20).cellent reproduciblltty of the gravimetric analyses suggest thatour experlmentalmethod is accurate and that our density dataare reliable.Conclusions

    The experimental density measurements for aqueous NaCI,KCI, MgCI,, and CaCI, solutions reported in this paper supple-ment the available denstty data for binary salt solutions. In -ternally consistent sets of densky data at 25, 30, 35,40, and45 OC are presented along with the results of least-squaresregression analyses. I t is important to note that the overall

    1.36

    1.280Fl\mJi.z 1.20a-Ca, t e0

    0e

    hl . 1 2 t e At! A This Work 1b- 0 Critical Tables (6 )1 0 Bogatykh and0.960 2.0 4.0 6.0m

    Flgure 6. Comparison of density data for CaCI, at 30 C.experimental precision is not determined solely by the instru-mental error. The measured density of a given solution is alsoinfluenced by the accuracy to which the concentration of thatsokrtion can be determined. This isespecially evident for WI,and CaCI, solutions. The addition of a remote cell to the den-sitometer in the near future will extend the range of possibledensity measurements to 150 OC and 6000 psi.Acknowledgment

    Special thanks are due to the following employees of the U.S.Geological Survey: Rob Robinson, for his help with the re-gression analysis; Bill Orem, for his help with the statistics: andCarl Thornber, for reading and criticizing this manuscript at allstages of preparation. We also thank the reviewers, TonyHabenschuss of Oak Ridge National Laboratory and anony-mous.

    R.gktry No. Sodium chloride, 7647-14-5; potassium chloride, 7447-40-7; magnesium chloride. 7786-30-3; calcium chloride, 10043-52-4.Llterature Clted

    (1) Potter, R. W., 11; Haas. J. L., Jr. J. Res. U . S . Geol. Sum. 1978, 6 ,247.(2) Kratky, 0.; LeopoM, H.; Stabinger, H. Z. Angew. Phys. 1969. 27 ,273.(3) Keii, 0. S. J . Chem. Eng. Deta 1875, 20, 97 .(4 ) Potter, R. W., 11; Shaw, D. R.; Haas, J. L., Jr. Gml. Surv. Bull. ( U S . )1875, No. 1417.(5) Chapman, T. W.; Newman. J. Report No. UCRL-17767; University ofCalifornia, LaWP3tICe Redlation Laboratory: Berkeley, CA, 1968.(6)Washburn, E. W., Ed. Internatbnal Wlcal Tables of NwnerlcalData,Physics, Chemistry, and Technology; McQraw-Hill: New York, 1928;voi. 3.(7) Goncalves, F. A.; Kestln, J. Ber. Bunsenges. 1877. 81, 1156.(8 ) Lengyei. S.; Tamas. J.; Giber, J.; Holderlth. J. Magy. Kem. Foly. 1984,7 0 , 66 .(9) Fabuss, B. M,; Korosi, A. U.S. Off . Sallne Wafer, Res. D e v . hog .Rep. 1968, No. 384 .(10) Gucker. F. T.: Chernick. C. L.: Phanibusan. R.-C. Proc. Na t l . Acad.I , Sei. U . S .A . 1@8S,55 , 12.(11) Stakhanova, M. S.; Vaslkv, V. A. Zh. fk . Khlm. 1963, 37, 1568.(12) Potter, R. W., 11; Brown, D. L. Gml. Surv. Bull. ( U . S . ) 1877, N o .1421-C- .(13) Kapustinskll.A. F.; Stakhanova, M. S.; Vasllev, V. A. Izv. Akad. NaukSSSR, Otd. Khim. Nauk WSO, 2082.

  • 8/7/2019 Densidades dos cloretos

    6/6

    J. Chem. Eng. Data 1903,28,305-307 305(20) Potter, R. W., 11; Clynne, M. A. Qeol. Sum. Open-F/k,Rep . ( U . S . )(21) Lyons, P. A,; Riley, J. F. J . Am. Chem. Soc.1954. 76 . 5216.(22) Bogatykh. S. A.; Evnovich, I . D. Z b . RM.KMm. 1965, 38 , 945.

    (14) Potter, R. W., 11; Brown, D. L. Qeo/. Slav. Open-FHO Rep. (US.)(15) Nlckels, L.; Aiimand, A. J. J . phvs. Chem. 1937, 4 1 , 881.(16) F M , J. G.; Tyrreli, H. J. V. J . Chem. Soc. 1962, 1962, 2042,(17) Phang, S.; Stokes, R. H. J . SolutionChem. 1960, 9 , 497.(18) Dum, L. A. Faraday Soc.Trans. 1960, 6 2 , 2348.(19) Penon, G.; Desnoyers,J. E.; Mlllero, F. J. C an. J . Cbem. 1974, 52,3738. 1, 1982. Accepted February 3, 1 983.

    1976, No. 7 8 - 2 4 . 1976, NO . 76 -365 .

    Received for revlew March 8, 198 2. Revised manuscript received November

    Densities, Viscosities, Refractive Indices, and Molar Refractions ofthe Binary System Tetraethylene Glycol Dimethyl Ether-Waterat 25 OCRobert L. McGeeDepartment of Chemistry, Ohio University, Athens, Ohio 45701

    William J. Wallace and Raymond D Ratalczak'Department of Chemistof, Muskingum College, New Concord, Ohio 43762

    Dendtles, vlscodtles, and refractlve lndlces oftetraethylene glycol dlmethyl ether and water rolutlonrhave been determlned at 25.00 O C as part of a study ofblnary solvent systems. These data as well as the molarrefractlons and partlal molal volumes are presented. Therefractlve lndlces of the solutlons Increase sharply, wlthlncreadng ether mole fractlon, from the value of purewater to 0.20 mole fraction of ether and then theyIncrease at a dower rate to the value for the pure ether.The partlal molal volume of the ether passes through amlnknum, whkh Is about 8% leu than the Ideal molalvolume, at 0.0075 mole fraction of ether. The vkcosltyexhlblts a maxlmum at about 0.14 mole fractlon of ether.Introductlon

    As part of research designed to investigate physiochemicalproperties of binary solvent systems, the properties of denslty,viscosity, and refractive index have been determined for mlx-tures of tetraethylene glycol dimethyl ether and water at 25.00OC. Also reported are the calculated molar refractions, partialmolal volumes, and water-ether oxygen ratio.Experimental Sectlon

    Technicalgrade tetraethylene glycol dimethyl ether (AnsulChemical Co., Ansul E-181)was distilled from sodium under apressure of 6 mmHg at 115 OC. A controlled amount of ni-trogen was bubbled through the boiling ether. Ether distilledunder these conditions contains less than 0.01% water asmeasured by the Karl Fisher reagent and gave a negatlveperoxide test. At 25.00 OC the ether had a refractive index(n25D) of 1.4332and a density (d25,)of 1.0047 compared withthe respective values of 1.4320and 1.0090 ( 1). Water usedfor the solutions was distilled from deionized water in aclosed-system distilling apparatus. Solutions were prepared in509 samples by weighing the liquids to the nearest tenth of amilligram.Densities were determined at 25.00 OC wlth an Ostwaldpycnometer of 2.9404-mLcapacity. Trlplicate measurements

    Table I. Densities, Viscosit ies, and Partial Molal Volume sof Water-Tetraethylene Glycol Dimethyl Ether at 25 "Cpartial molalvol, mLdZ5,- viscosity,X," W,,b % ( obs d) c cP V , d v,e

    0.0000 0.0000 0 . 9 9 7 1 0 . 8 9 3 7 2 0 3 . 9 4 1 8 . 0 90 . 0 0 7 5 8 . 5 4 1 . 0 0 3 3 1 . 3 2 3 2 0 3 . 4 1 1 8 . 0 90 . 0 1 4 2 1 5 . 1 2 1 . 0 0 9 0 1 . 5 3 3 2 0 3 . 6 1 1 8 . 0 80 . 0 2 9 7 2 7 . 3 9 1 . 0 1 9 0 2 . 4 3 3 2 0 5 . 3 3 1 8 . 0 40 . 0 4 1 9 3 5 . 0 6 1 . 0 2 5 3 3 . 1 9 8 2 0 6 . 9 8 1 7 . 9 80 . 0 5 9 3 4 3 . 7 4 1 . 0 3 2 3 4 . 2 8 9 2 0 9 . 2 7 1 7 . 8 60 . 0 7 8 4 5 1 . 2 3 1 . 0 3 5 9 5 . 2 4 0 2 1 1 . 4 2 1 7 . 7 00 . 1 1 3 9 6 1 . 3 4 1 . 0 3 6 8 6 . 2 5 3 2 1 4 . 3 8 1 7 . 3 90 . 1 3 9 8 6 6 . 7 3 1 . 0 3 6 0 6 . 4 6 9 2 1 5 . 88 1 7 .1 80 . 1 5 4 3 6 9 . 2 5 1 . 0 3 5 1 6 . 4 1 1 2 1 6 . 58 1 7 .0 50 . 1 6 7 2 7 1 . 2 4 1 . 0 3 5 0 6 . 4 0 8 2 1 7 . 0 8 1 6 . 9 60 . 1 9 7 2 7 5 . 1 9 1 . 0 3 0 9 6 . 2 0 0 2 1 8 . 0 5 1 6 . 7 40 . 2 2 7 3 7 8 . 4 0 1 . 0 3 0 1 5 . 9 1 5 2 1 8 . 7 7 1 6 . 5 50 . 3 2 3 7 8 5 . 5 2 1 . 0 2 4 3 5 . 1 1 2 2 2 0 . 0 9 1 6 . 0 60 . 4 6 3 5 9 1 . 4 2 1 . 0 1 6 9 4 . 3 3 4 2 2 0 . 8 6 1 5 . 5 80 . 5 5 6 9 9 3 . 9 4 1 . 0 1 5 1 4 . 1 7 9 2 2 1 . 0 8 1 5 . 3 60 . 6 4 0 2 9 5 . 6 5 1 . 0 1 1 9 3 . 7 8 0 2 2 1 . 1 9 1 5 . 2 00 . 7 6 1 3 9 7 . 5 2 1 . 0 0 7 8 3 . 4 9 5 2 2 1 . 2 7 1 5 . 0 20 . 8 2 4 5 9 8 . 3 0 1 . 0 0 7 3 3 . 4 4 3 2 2 1 . 2 9 1 4 . 9 31 . 0 0 0 0 100.00 1 . 0 0 4 7 3 . 2 9 5 2 2 1 . 3 1 1 4 . 7 6

    d z s(obs d) i s the observed densi tyX , is the mole fraction of the ether. W , is the weightpercent of the ether .of the solut ion in g/mL. C P F o rthe ether. e For w ater.were identical within f0.0009 g/mL.

    Viscosities were determined at 25.00 O C with an Ubbelohdeviscometer. Flow times were reproducible within f0.0035 minfor flow times ranging from 1.5to 1 1 min.Table I shows the densities, the viscosities, and the partialmolal volumes wlth solution composition given both as molefraction of ether (X , ) and as weight percent of the ether (W 2 ) .Refractive indices were measured with a separate set ofsolutions at 25.00 f 0.01 OC with a Bausch and Lomb re-fractometer, Abbe type,usingthe sodium D line. Readings werereproducible wlthin f0.0002.Table I 1 shows refractive indices and molar refractions withsolution composition glven as mole fraction of tetraethyleneglycol dimethyl ether (X , ) . Also presented are the density data

    0021-956818311728-0305$01.50/0 0 1983 American Chemical Society