CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA...

24
Artigo submetido ao Curso de Engenharia Civil da UNESC como requisito parcial para obtenção do Título de Engenheiro Civil UNESC Universidade do Extremo Sul Catarinense 2016/02 ENGENHARIA CIVIL CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA EXPANDIDA E POLIESTIRENO EXPANDIDO MOÍDO Rosielen Leopoldo Grassi (1), Elaine Guglielmi Pavei Antunes (2) UNESC Universidade do Extremo Sul Catarinense (1) [email protected] (2) [email protected] RESUMO A massa específica do concreto é uma propriedade relevante, pois está relacionada diretamente com questões estruturais. Reduções dessa característica podem produzir o concreto leve, conhecido por ser utilizado na diminuição do peso próprio de estruturas e no condicionamento térmico de ambientes. O estudo tem por objetivo a formulação e caracterização de traços de concreto com a substituição total e parcial do agregado graúdo basáltico por agregados leves de argila expandida e poliestireno expandido moído. O programa experimental foi baseado na caracterização dos materiais constituintes, confecção de um traço referência e de traços de concreto leve. A determinação das propriedades das composições incluiu ensaios de consistência, resistência à compressão, massa específica, índice de vazios, absorção de água e análise da interface agregado/matriz. Os resultados indicam ser possível a produção de concretos com massa específica reduzida. De um concreto convencional com 2373 kg/m³, atingiu-se valores de1556 kg/m³ no traço composto por apenas argila expandida e 1325 kg/m³ no traço composto por apenas poliestireno expandido. Além disso, alguns traços analisados podem ser classificados como leves e estruturais segundo a norma ACI 213R (2003), pois apresentaram valores de massa específica entre 1120 kg/m³ e 1920 kg/m³, e resistência à compressão aos 28 dias superior a 17 MPa. Palavras-chave: concreto leve, argila expandida, poliestireno expandido 1 INTRODUÇÃO O concreto é o segundo material mais consumido no mundo, com valores inferiores apenas ao uso de água. Estima-se que são consumidas anualmente 11 bilhões de toneladas (PEDROSO, 2009). Por se tratar de um material extremamente difundido, inúmeros estudos são publicados anualmente como forma de contribuição para o desenvolvimento e aperfeiçoamento de suas características. Segundo Mehta e Monteiro (2008), o concreto produzido com cimento Portland e agregados convencionais possui algumas deficiências, destacando-se a baixa

Transcript of CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA...

Page 1: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

1 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA

EXPANDIDA E POLIESTIRENO EXPANDIDO MOÍDO

Rosielen Leopoldo Grassi (1), Elaine Guglielmi Pavei Antunes (2)

UNESC – Universidade do Extremo Sul Catarinense (1) [email protected] (2) [email protected]

RESUMO

A massa específica do concreto é uma propriedade relevante, pois está relacionada diretamente com questões estruturais. Reduções dessa característica podem produzir o concreto leve, conhecido por ser utilizado na diminuição do peso próprio de estruturas e no condicionamento térmico de ambientes. O estudo tem por objetivo a formulação e caracterização de traços de concreto com a substituição total e parcial do agregado graúdo basáltico por agregados leves de argila expandida e poliestireno expandido moído. O programa experimental foi baseado na caracterização dos materiais constituintes, confecção de um traço referência e de traços de concreto leve. A determinação das propriedades das composições incluiu ensaios de consistência, resistência à compressão, massa específica, índice de vazios, absorção de água e análise da interface agregado/matriz. Os resultados indicam ser possível a produção de concretos com massa específica reduzida. De um concreto convencional com 2373 kg/m³, atingiu-se valores de1556 kg/m³ no traço composto por apenas argila expandida e 1325 kg/m³ no traço composto por apenas poliestireno expandido. Além disso, alguns traços analisados podem ser classificados como leves e estruturais segundo a norma ACI 213R (2003), pois apresentaram valores de massa específica entre 1120 kg/m³ e 1920 kg/m³, e resistência à compressão aos 28 dias superior a 17 MPa.

Palavras-chave: concreto leve, argila expandida, poliestireno expandido

1 INTRODUÇÃO

O concreto é o segundo material mais consumido no mundo, com valores inferiores

apenas ao uso de água. Estima-se que são consumidas anualmente 11 bilhões de

toneladas (PEDROSO, 2009).

Por se tratar de um material extremamente difundido, inúmeros estudos são

publicados anualmente como forma de contribuição para o desenvolvimento e

aperfeiçoamento de suas características.

Segundo Mehta e Monteiro (2008), o concreto produzido com cimento Portland e

agregados convencionais possui algumas deficiências, destacando-se a baixa

Page 2: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

2 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

relação resistência/massa se comparado ao aço. De acordo com os autores, esse

fato pode se tornar um problema econômico na construção de edifícios de múltiplos

andares, pontes com grandes vãos e estruturas flutuantes.

Silva (2007) destaca que uma das variáveis mais importantes para a concepção

estrutural de um edifício é o seu peso próprio, pois uma redução dessa característica

pode resultar em economia de armaduras, diminuição das seções transversais dos

elementos estruturais e economia nas fundações. A massa específica é um

condicionante do fator de eficiência, definido como a relação entre a resistência e a

massa específica do concreto (HOLM; BREMNER, 1994). A utilização de agregados

leves é uma das formas de diminuir esta propriedade.

O concreto de agregados leves não é uma invenção atual, pois sua utilização data

de construções gregas e romanas, como por exemplo, o Panteão, erguido em 118 à

128 d.C. (CHANDRA; BERNTSSON, 2003). No entanto, conforme afirma Angelin

(2014), foi somente a partir de 1980 que foram realizadas pesquisas sobre concretos

leves, com o intuito de avaliar seu potencial de utilização e obter um entendimento

das propriedades físicas e químicas do material.

De acordo com Rossignolo (2003), denomina-se concreto leve estrutural aquele com

massa específica inferior à dos concretos convencionais e que pode ser obtido com

a substituição parcial ou total dos agregados tradicionais por agregados com massa

específica reduzida. Ainda, conforme a NBR 8953 (2015), o concreto leve deve

apresentar massa específica inferior a 2000 kg/m³.

A norma ACI 213R (2003) e NM 35 (1995) definem concreto leve estrutural como

aquele que aos 28 dias atinge uma resistência à compressão mínima de 17 MPa. A

primeira cita que o concreto leve deve possuir uma massa específica compreendida

entre 1120 kg/m³ a 1920 kg/m³, enquanto que a segunda dita que a máxima massa

específica é de 1840 kg/m³.

Os agregados leves utilizados podem ser naturais ou artificiais. De acordo com

Maycá et al (2008, apud ANGELIN, 2014) os agregados naturais são obtidos através

da extração em jazidas, possuindo pouca aplicação em concretos estruturais devido

à variação de suas propriedades e pouca disponibilidade. Os agregados artificiais,

por sua vez, são produzidos por meio de processos industriais.

Os agregados artificiais são obtidos por tratamento térmico de uma variedade de materiais e são classificados com base na matéria prima utilizada e no processo de fabricação. Dentre os agregados artificiais, temos

Page 3: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

3 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

os resultantes da aplicação de calor para a expansão de argilas, poliestireno, ardósias, folhelhos, perlitas e vermiculitas [...]. (MORAVIA, 2007, p. 13).

A argila expandida, conforme Moravia et al. (2006), é produzida por aquecimento de

determinados tipos de argila em temperatura de aproximadamente 1200ºC. Ao

atingir essa temperatura, parte dos constituintes da argila se funde e outra parte se

decompõe quimicamente liberando gases que não são expelidos devido à fase

líquida que envolve a partícula. Desta forma, os gases são incorporados pela massa

sinterizada e a partícula pode expandir em até sete vezes o seu volume inicial.

Conforme Rossignolo (2003) é possível obter resultados de resistência à

compressão aos 28 dias superiores a 38 MPa e massas específicas inferiores a

1605 kg/m³ através do uso de argila expandida.

Os resultados obtidos por Angelin (2014) evidenciam a mudança da massa

específica do concreto proporcionada pela substituição total e parcial do agregado

convencional por argila expandida. A massa específica do produto final resultante

decaiu de 2400 kg/m³ (apenas agregado convencional) para 1687 kg/m³ (apenas

agregado leve).

O poliestireno expandido, de acordo com Andrade (2010, apud CATOIA, 2012), é o

produto resultante da polimerização do estireno em água e posterior expansão

através do gás pentano. As pérolas de EPS podem apresentar um aumento de seu

volume de até 50 vezes, sendo constituídas de 95% a 98% de ar e o restante de

poliestireno.

Segundo Catoia (2012) pérolas de poliestireno expandido podem ser empregadas

para a confecção de concretos leves. O resultado mais satisfatório foi conseguido

para uma composição com massa específica de 1355 kg/m³ e resistência à

compressão aos 28 dias de 17,2 MPa.

Portanto a presente pesquisa tem como objetivo formular e caracterizar compostos

de concreto leve estrutural de cimento Portland confeccionados com argila

expandida e poliestireno expandido moído.

Como objetivos específicos destacam-se: (a) caracterizar os materiais constituintes

dos traços confeccionados; (b) determinar a influência da variação e proporção de

argila expandida e EPS moído sobre o concreto; (c) analisar os resultados de

resistência à compressão axial, massa específica, absorção de água e resistência à

Page 4: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

4 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

tração por compressão diametral; (d) confeccionar o diagrama de dosagem para os

traços de concreto leve; e (e) analisar a interface agregado/matriz.

2 MATERIAIS E MÉTODOS

2.1 MATERIAIS

2.1.1 Cimento

O tipo de cimento empregado no estudo foi o Cimento Portland IV-32. A massa

específica foi determinada através da técnica de picnômetro de gás hélio, sendo

utilizado o equipamento ULTRAPYC 1200e da marca Quantachrome, localizado no

laboratório de cerâmica técnica (CerTec).

2.1.2 Agregado Miúdo

Para a confecção dos traços utilizou-se como agregado miúdo uma areia natural

quartzosa. Para este material determinou-se a distribuição granulométrica segundo a

NBR NM 248 (2003), módulo de finura e diâmetro máximo característico de acordo

com a NBR 7211 (2009). Os ensaios de massa específica e massa unitária foram

realizados conforme as normas NBR NM 52 (2009) e NBR NM 45 (2006),

respectivamente. O ensaio de absorção de água seguiu os preceitos da NBR NM 30

(2001).

2.1.3 Brita

A Figura 1 identifica a brita, sendo a mesma classificada visualmente como

basáltica, cuja origem está ligada às rochas ígneas (FRASCÁ, 2007). Por meio das

normas NBR NM 248 (2003) e NBR 7211 (2009) o agregado foi caracterizado

quanto à composição granulométrica, módulo de finura e diâmetro máximo

característico. Para a determinação da massa específica e absorção de água,

seguiu-se as instruções da NBR NM 53 (2009). Através da NBR NM 45 (2006),

determinou-se a massa unitária.

Page 5: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

5 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Figura 1 – Brita basáltica empregada nos traços

Fonte: Do Autor, 2016

2.1.4 Argila Expandida

O agregado leve de argila expandida está apresentado na Figura 2-a. Os ensaios

realizados foram massa unitária conforme NBR NM 45 (2006), distribuição

granulométrica segundo NBR NM 248 (2003), módulo de finura e diâmetro máximo

de acordo com a norma NBR NM 7211 (2009). Além disso, determinou-se a

absorção de água e massa específica, segundo recomendações da NBR NM 53

(2009). No entanto, houve certa dificuldade em realizar na íntegra o procedimento

desta norma para a determinação da massa específica, pelo fato de os agregados

boiarem quando submersos (Figura 2-b). Desta forma, a metodologia proposta

incorporou conceitos da NBR NM 52 (2009) – sendo a substituição do recipiente

submerso por um recipiente de volume conhecido.

Para o uso da argila expandida nos traços, a mesma foi previamente seca em estufa

105±5°C, peneirada em malha 2,36mm para a retirada de material fino e preparada

na condição de saturada superfície seca.

Page 6: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

6 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Figura 2 – Argila expandida utilizada como agregado leve

Fonte: Do Autor, 2016

2.1.5 EPS Moído

O poliestireno expandido moído foi adicionado como agregado leve, assim como a

argila expandida. A massa específica aparente pode variar de 10 a 32,5 kg/m³, de

acordo com NBR 11752 (2007), justamente por ser uma mistura de várias classes do

material (Figura 3). Para este agregado determinou-se apenas a massa unitária,

segundo a NBR NM 45 (2006).

Figura 3 – Poliestireno expandido moído

Fonte: Do Autor, 2016

a) b)

Page 7: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

7 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

2.2 METODOLOGIA

O procedimento experimental foi divido em três etapas seguindo o fluxograma

apresentado na Figura 4.

Figura 4 – Fluxograma do procedimento experimental

Fonte: Do Autor, 2016

Na primeira etapa, descrita no tópico materiais, realizou-se a caracterização da brita,

areia, cimento, poliestireno expandido e argila expandida.

A segunda etapa baseou-se na determinação de um traço de referência com teor de

argamassa (α) de 50% constituído por cimento, areia e brita. De acordo com Recena

(2015) o teor de argamassa seca para um concreto convencional fica compreendido

entre 49 e 60%, com poucas variações inerentes ao tipo de material utilizado. O

agregado graúdo foi parcial e totalmente substituído em volume pelos agregados

leves de argila expandida e EPS moído, desta forma o traço em volume permanece

constante, variando apenas as massas.

Elaboração de três traços

com mesmo percentual deagregado. Variando-secimento/areia e água/cimento

Ensaios realizados

Consistência; Resistência à compressão 7 dias;

Massa específica seca; Índice de vazios; Absorção de água.

ETAPA 1

Caracterização dos materiais

Areia, Brita e Argila expandida

Composição granulométrica e módulo de finura;

Absorção de água;

Massa específica; Massa unitária.

Cimento

Massa específica.

EPS

Massa unitária.

ETAPA 2

Confecção do traço de

referência e substituições

Traço 1:2:3 α 50%

(cimento:areia:brita) comsubstituições em volume porargila expandida e EPS

moído.

ETAPA 3

Confecção dos traços de

concreto leve

Ensaios realizados

Consistência; Resistência à compressão e tração 28 dias;

Módulo de elasticidade; Massa específica seca;

Índice de vazios; Absorção de água; Confecção do diagrama de

dosagem; Microestrutura.

Page 8: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

8 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Com o intuito de verificar a influência da argila expandida e poliestireno expandido

sobre o traço de referência foram elaborados cinco traços com substituições de 50%

e 100% de cada agregado, como expresso na Tabela 1.

Avaliaram-se os parâmetros de consistência (NBR NM 67:1998), resistência à

compressão aos 7 dias (NBR 5739:2007), massa específica, absorção de água e

índice de vazios (NBR 9778:2005). Os corpos de prova foram moldados segundo

instruções da norma NBR 5738 (2015).

Tabela 1 – Traços confeccionados na Etapa 2 Traço unitário em volume 1:2,26:2,88

Composições Ref. T1 T2 T3 T4 T5

B100 B50/A50 A100 B50/E50 E100 A50/E50

Traço unitário em massa: cimento:areia:agregado variável

1:2:3 1:2:2,05 1:2:1,11 1:2:1,51 1:2:0,02 1:2:0,56

Cimento (kg) 1,00 1,00 1,00 1,00 1,00 1,00

Areia (kg) 2,00 2,00 2,00 2,00 2,00 2,00

Brita (kg) 3,00 1,50 - 1,50 - -

Argila expandida (kg) - 0,55 1,11 - - 0,55

EPS moído (kg) - - - 8,05E-03 1,61E-02 8,05E-03

Relação a/c 0,48 0,48 0,48 0,48 0,48 0,48

Fonte: Do Autor, 2016

A utilização do traço em volume foi necessária devido às diferenças nas massas

unitárias de cada material, pois não seria comparável substituir diretamente em

massa. O cálculo do traço em volume é feito a partir da divisão do traço em massa

pela massa específica do material correspondente, dividindo-se o resultado pelo

volume de cimento, segundo exemplificado na Tabela 2.

Tabela 2 – Conversão do traço em massa para volume

Traço em massa - A Massa específica -

B (kg/m³) (A/B)*1000 (L)

Traço em volume

Cimento (kg) 1,00 2789 Cimento (L) 0,36 1,00

Areia (kg) 2,00 2472 Areia (L) 0,81 2,26

Brita (kg) 3,00 2909 Brita (L) 1,03 2,88

Água (kg) 0,48 1000 Água (L) 0,48 1,34

Fonte: Do Autor, 2016

Na terceira etapa foram elaborados três traços (TA, TB, TC – Tabela 3), a fim de

compor um diagrama de dosagem a partir da composição com maior fator de

eficiência obtida na Etapa 2. Portanto, o traço T2 foi escolhido para esta etapa, pois

Page 9: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

9 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

apresentou resistência à compressão acima de 17 MPa e redução da massa

específica, gerando o maior fator de eficiência comparado com as outras amostras.

Tabela 3 – Traços confeccionados na Etapa 3

Traço Materiais Proporção em massa

(%)Cimento(%)

Areia(%)

Agregado leve (%)

Consumo materiais (kg)

por m³ de concreto

1:2,5 1:1,52 (TA)

Cimento 1,00

77,32 39,65 37,67 29,33

618,89

Areia 0,95 587,95

Argila exp. 0,57 354,01

Água 0,35 216,61

1:4 1:2,61 (TB)

Cimento 1,00

77,30 27,75 49,54 29,37

445,32

Areia 1,79 794,90

Argila exp. 0,82 364,27

Água 0,41 182,58

1:5 1:3,10 (T2)

Cimento 1,00

73,17 24,39 48,78 36,67

376,32

Areia 2,00 752,64

Argila exp. 1,10 413,95

Água 0,48 180,63

1:5,5 1:3,68 (TC)

Cimento 1,00

77,31 21,35 55,96 29,36

342,96

Areia média 2,62 898,90

Argila exp. 1,06 364,57

Água 0,52 178,34

Fonte: Do Autor, 2016

A primeira coluna da Tabela 3 indica os traços convencional e de concreto leve.

Exemplificando o traço TA, se o concreto fosse composto por brita apresentaria a

proporção em massa de 1:2,5. No entanto, por utilizar argila expandida seu traço em

massa é de 1:1,52.

Segundo Giacomin (2005 apud SCHWANTES, 2012) para que um concreto leve

seja trabalhável o teor de argamassa deve ser maior ou igual a 65%. Nesta etapa

buscou-se manter o teor de argamassa acima desse número, seguindo a tendência

do traço produzido na etapa anterior, cujo valor foi de 73,17%. O incremento do teor

de argamassa foi em função da diminuição do percentual de agregado leve, com o

propósito de aumentar a resistência à compressão. Além disso, Pereira (2008)

afirma que, para um concreto leve, é necessária uma quantidade maior de cimento a

fim de atingir uma mesma resistência de um concreto convencional.

O percentual de agregado leve é medido em função do somatório das massas secas

de cimento e areia.

Page 10: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

10 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

O ensaio analisado no estado fresco foi consistência das composições por meio da

NBR NM 67 (1998).

Os corpos de prova confeccionados de acordo com as instruções da NBR 5738

(2015) foram ensaiados quanto à resistência à compressão aos 28 dias (NBR

5739:2007), massa específica, absorção de água e índice de vazios segundo a

norma NBR 9778 (2005), resistência à tração por compressão diametral (NBR

7222:2011) e determinação do módulo de elasticidade à compressão (NBR

8522:2008). Para os ensaios de resistência à compressão e resistência à tração por

compressão diametral foi utilizada a prensa hidráulica EMIC modelo 200I. O

equipamento usado para o ensaio de módulo de elasticidade foi a prensa hidráulica

EMIC modelo PC200CS.

Conjuntamente foi feita análise da interface agregado/matriz de cimento por meio da

microscopia eletrônica de varredura com o equipamento modelo EVO-MA-10 da

marca Zeiss.

3 RESULTADOS E DISCUSSÕES

3.1 ANÁLISE DOS RESULTADOS ETAPA 1

Os primeiros resultados obtidos foram referentes à caracterização das matérias

primas para a elaboração dos traços de concreto.

3.1.1 Cimento

Para o cimento realizou-se apenas o ensaio de massa específica, resultando em um

valor de 2789 kg/m³.

3.1.2 Areia

Através da análise da Figura 5, percebe-se que a distribuição do tamanho de

partículas oscila entre as zonas de utilização ótima superior/inferior e utilizável

inferior, determinadas pela norma NBR 7211 (2009). O módulo de finura obtido foi

de 2,05 e dimensão máxima característica de 2,4 mm. A massa específica e massa

Page 11: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

11 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

unitária foram de 2472 kg/m³ e 1590 kg/m³, respectivamente. O ensaio de absorção

de água resultou em 0,23%.

Figura 5 – Distribuição granulométrica do agregado miúdo

Fonte: Do Autor, 2016

3.1.3 Brita

Apresenta-se na Tabela 4 os resultados da caracterização quanto à distribuição

granulométrica. O módulo de finura encontrado foi de 6,8 e dimensão máxima

característica de 19 mm. Os valores resultantes para massa específica, massa

unitária e absorção de água foram, respectivamente, de 2909 kg/m³, 1490 kg/m³ e

1,11%.

Tabela 4 – Composição granulométrica da brita

Abertura da peneira (mm)

BRITA

Retido (%) Retido acumulado (%)

31,5 0,0 0,0

25 0,0 0,0

19 2,8 2,8

12,5 37,0 39,8

9,5 38,0 77,7

6,3 21,4 99,1

4,75 0,5 99,7

2,36 0,1 99,8

Fundo 0,2 100,0 Fonte: Do Autor, 2016

0

20

40

60

80

100

0,15 0,3 0,6 1,18 2,36 4,75 6,3 9,5

Re

tid

o a

cu

mu

lad

o (

%)

Abertura das peneiras (mm)

Areia natural quartzosa

Zona utilizável inferior

Zona ótima inferior

Zona ótima superior

Zona utilizável superior

Page 12: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

12 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

3.1.4 Argila Expandida

A argila expandida apresentou massa unitária de 550 kg/m³, massa específica de

1104 kg/m³ e absorção de água de 13,16%.

Na Tabela 5 é exibida a composição granulométrica, sendo que o diâmetro máximo

característico foi de 12,5 mm e módulo de finura de 6,5.

Por meio da análise da Figura 6, percebe-se que ambos os agregados estão

contidos dentro dos limites das faixas 1 e 2, conforme classificação disposta na

norma NBR 7211 (2009).

Tabela 5 – Composição granulométrica da argila expandida

Abertura da peneira (mm)

ARGILA EXPANDIDA

Retido (%) Retido acumulado (%)

25 0,0 0,0

19 0,0 0,0

12,5 1,0 1,0

9,5 60,7 61,7

6,3 21,8 83,5

4,75 11,0 94,5

2,36 2,6 97,2

Fundo 2,8 100,0 Fonte: Do Autor, 2016

Figura 6 – Distribuição granulométrica brita e argila expandida

Fonte: Do Autor, 2016

0,0

20,0

40,0

60,0

80,0

100,0

2,36 4,75 6,3 9,5 12,5 19 25

Reti

do

ac

um

ula

do

(%

)

Abertura das peneiras (mm)

Brita

Argila expandida

Limite inferior faixa 1

Limite superior faixa 2

Page 13: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

13 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

(1) Média e desvio padrão de 2 corpos de prova cilíndricos de 100 cm de diâmetro e 200 cm de altura

(2) Média e desvio padrão de 3 corpos de prova cilíndricos de 100 cm de diâmetro e 200 cm de altura

(3) Relação entre valores médios de resistência à compressão e massa específica

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

3.1.5 EPS Moído

O ensaio de massa unitária do poliestireno expandido moído resultou em um valor

de 8,0 kg/m³.

3.2 ANÁLISE DOS RESULTADOS ETAPA 2

Os resultados da Etapa 2, referente a confecção do traço de referência e dos traços

com substituições, estão resumidos na Tabela 6.

Tabela 6 – Características traços Etapa 2

Traços Agregados

(%) Slump (cm)

Absorção de água (%)

(1)

Índice de vazios (%)

(1)

Resistência compressão

aos 7dias (MPa)

(2)

Massa específica

seca (kg/m³)

(1)

Fator de eficiência

(MPa.dm³/kg) (3)

Ref. B100 8,5 5,2 ± 0,2 12,3 ± 0,4 21,6 ± 0,5 2373 ± 14 9,1

T1 B50/A50 12,0 6,7 ± 0,3 13,1 ± 0,5 17,5 ± 0,9 1965 ± 11 8,9

T2 A100 14,0 8,6 ± 0,1 13,4 ± 0,2 20,9 ± 0,2 1556 ± 5 13,4

T3 B50/E50 13,0 7,6 ± 0,5 14,5 ± 0,6 10,3 ± 0,7 1896 ± 38 5,4

T4 E100 7,0 12,6 ± 0,1 16,7 ± 0,1 4,6 ± 0,3 1325 ± 6 3,5

T5 A50/E50 4,5 11,8 ± 0,1 16,4 ± 0,1 6,0 ± 0,5 1388 ± 14 4,3

Fonte: Do Autor, 2016

3.2.1 Consistência

A medida da consistência, indicada pelo ensaio de Slump, demonstrou que os traços

com substituição de brita por argila expandida apresentaram um abatimento maior

com a mesma quantidade de água na mistura. O aumento da fluidez está associado

ao formato esférico do agregado e à condição de saturado superfície seca. O maior

Slump do traço T3 pode estar relacionado com o efeito deslizante provocado pelas

partículas de EPS (GUIMARÃES, 2005). No entanto, os traços T4 e T5 mostraram

um comportamento oposto, que pode ser explicado devido à maior coesão destas

misturas e menor quantidade em massa de agregado.

Page 14: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

14 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

3.2.2 Absorção de água, massa específica e índice de vazios

Figura 7 – Massa específica x A.A x I.V.

Fonte: Do Autor, 2016

Observa-se na Figura 7 que a absorção de água variou entre valores de 5,2%, para

o traço de referência, a 12,6% para o traço T4. A massa específica apresentou uma

redução de 2373 kg/m³, representado pelo traço de referência, para valores de 1556

kg/m³ no traço T2 e 1325 kg/m³ no traço T4. Os resultados para essas duas

propriedades indicam que são inversamente proporcionais, ou seja, na medida em

que se reduz a massa específica, aumenta-se a absorção de água. Esse

comportamento é explicado pelo índice de vazios, que indica a relação entre o

volume de poros permeáveis e o volume total da amostra. Esta propriedade está

associada à absorção de água, uma vez que a água tende a ocupar os poros

permeáveis do concreto. Portanto, um aumento do índice de vazios corresponde a

um aumento na absorção de água.

3.2.3 Resistência à compressão aos 7 dias e massa específica

Através da Figura 8, pode-se perceber a redução da massa específica para as

diferentes composições, na medida em que se aumenta o percentual de agregados

leves.

500

700

900

1100

1300

1500

1700

1900

2100

2300

2500

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

Ref T1 B50/A50 T2 A100 T3 B50/E50 T4 E100 T5 A50/E50

Ma

ss

a e

sp

ec

ífic

a s

ec

a (

kg

/m³)

Ab

so

rçã

o d

e á

gu

a (

%)

Ín

dic

e d

e v

azio

s (

%)

Traços

Massa específica Absorção de água Índice de vazios

Page 15: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

15 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Figura 8 – Massa específica x resistência à compressão

Fonte: Do Autor, 2016

Os traços T2, T4 e T5 são os únicos que, segundo a NBR NM 35 (1995), podem ser

considerados leves. No entanto, apenas o traço T2 apresentou resistência à

compressão acima da marca de 17 MPa, também sendo considerado como aquele

com maior fator de eficiência.

As composições com EPS apresentaram resistência à compressão abaixo de 17

MPa e não devem ser utilizadas como concreto estrutural. O valor reduzido de

resistência foi ocasionado por dois fatores. Primeiro, pela baixa resistência do

poliestireno expandido e, segundo, pela quantidade de vazios incorporada à mistura

através do uso deste agregado.

3.3 ANÁLISE DOS RESULTADOS ETAPA 3

Na Tabela 7 e nas Figuras 9 e 11 estão dispostos os resultados da Etapa 3, na qual

foram feitas composições de concreto leve. A principal diferença entre os três traços

está na proporção cimento/areia e na relação água/cimento.

0

5

10

15

20

25

0

500

1000

1500

2000

2500

Ref T1 B50/A50 T2 A100 T3 B50/E50 T4 E100 T5 A50/E50

Re

sis

tên

cia

à c

om

pre

ss

ão

7 d

ias

(M

Pa

)

Ma

ss

a e

sp

ec

ífic

a (

kg

/m³)

Traços

Massa específica Limite NM 35 (1680 kg/m³) Resistência

Page 16: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

16 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

(1) Média e desvio padrão de 2 corpos de prova cilíndricos de 100 cm de diâmetro e 200 cm de altura

(2) Média e desvio padrão de 3 corpos de prova cilíndricos de 100 cm de diâmetro e 200 cm de altura

(3) Relação entre valores médios de resistência à compressão e massa específica

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Tabela 7 – Resultados da Etapa 3

Parâmetros analisados Composições

TA TB TC

Slump (cm) 10,5 16,5 18,5

Resistência à compressão aos 28 dias (MPa) (2) 32,6 29,7 24,7

Resistência à tração aos 28 dias (MPa) (2) 2,8 2,1 2,2

Módulo de elasticidade (GPa) (2) 15,5 15,7 18,1

Massa específica seca (kg/m³) (1) 1565 1595 1579

Índice de vazios (%) (1) 12,7 13,6 13,5

Absorção de água (%) (1) 8,1 8,5 8,6

Fator de eficiência (MPa.dm³/kg) (3) 20,8 18,6 15,6

Fonte: Do Autor, 2016

Os resultados de Slump apontam a influência da relação água/cimento sobre a

consistência, sendo que quanto maior a relação, maior o abatimento encontrado.

3.3.1 Módulo de elasticidade, resistência à compressão e à tração aos 28 dias

Figura 9 – Módulo de elasticidade x resistência à compressão e à tração

Fonte: Do Autor, 2016

Os resultados obtidos para resistência à compressão indicam que essa propriedade

sofre mais influência dos agregados leves do que da quantidade de cimento

1

1,5

2

2,5

3

3,5

4

10

15

20

25

30

35

TA TB TC

Res

istê

nc

ia à

tra

çã

o (

MP

a)

Res

istê

nc

ia à

co

mp

res

o (

MP

a)

du

lo d

e e

las

tic

ida

de

(G

Pa

)

Traços

Módulo de elasticidade Resistência à compressão Resistência à tração

Page 17: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

17 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

adicionada. Do traço TC para o traço TB houve um aumento no consumo de cimento

de aproximadamente 103 kg/m³, o que correspondeu a um incremento de 16,8% na

resistência à compressão. Do traço TB para o traço TA um aumento de 174 kg/m³ no

consumo de cimento conferiu apenas um acréscimo de 8,9%.

A ruptura dos corpos de prova ilustrada na Figura 10-a foi classificada como colunar

segundo a NBR 5739 (2007), sendo este comportamento também observado por

Pereira (2008), Sim et al (2013) e Angelin (2014). De acordo com os autores, em um

concreto leve a propagação de fissuras ocorre, geralmente, nos agregados devido a

sua fragilidade. Em um concreto convencional a ruptura por compressão ocorre na

matriz de cimento ou na interface agregado/matriz, devido a maior resistência do

agregado, que absorve uma quantidade significativa de energia.

Figura 10 – Rompimento por compressão (a) e rompimento por tração (b)

Fonte: Do Autor, 2016

Quanto à resistência à tração houve pouca variação entre os traços, sendo que a

média representou cerca de 8,2% do valor da resistência à compressão. Resultados

semelhantes foram obtidos por Rossignolo (2003), Pereira (2008) e Angelin (2014).

Observa-se na Figura 10-b que o plano de ruptura do ensaio de resistência à tração

por compressão diametral passa exatamente pelos agregados.

a) b)

Page 18: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

18 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

O módulo de elasticidade de um agregado leve é função de sua porosidade e pode

variar de 7 GPa até 28 GPa, enquanto que um agregado basáltico pode atingir até

138 GPa (MEHTA; MONTEIRO, 2008). Ainda, conforme os autores, o módulo de

deformação de um concreto leve fica compreendido entre 14 e 21 GPa. Os

resultados obtidos estão em concordância com a literatura. Embora o traço TC tenha

apresentado o menor valor de resistência à compressão, foi o traço com o maior

módulo de elasticidade. Dados próximos a este foram obtidos por Schwantes (2012),

sendo uma possível explicação o aumento da quantidade de areia, que possui um

módulo de elasticidade superior ao da argila expandida e da pasta de cimento.

3.3.2 Absorção de água, índice de vazios, massa específica e fator de eficiência

Através da análise da Tabela 7, percebe-se que o índice de vazios e a absorção de

água não sofreram mudanças significativas entre os traços, o que sugere que o

consumo de cimento tem pouca influência sobre essas propriedades. Esse

comportamento foi observado por Rossignolo (2003) e Angelin (2014).

Figura 11 – Massa específica x fator de eficiência

Fonte: Do Autor, 2016

A comparação entre os traços demonstra que a maior variação entre as massas

específicas representa menos de 2% sobre a menor massa. O traço TA apresentou

um fator de eficiência de 20,8 MPa.dm³/kg, mas para a sua produção são

necessários, aproximadamente, 619 kg de cimento por metro cúbico de concreto.

10,0

12,0

14,0

16,0

18,0

20,0

22,0

1550

1560

1570

1580

1590

1600

TA TB TC Fa

tor

de

efi

cie

nc

ên

cia

(M

Pa

.dm

³/k

g)

Ma

ss

a e

sp

ec

ífic

a s

ec

a (

kg

/m³)

Traços

Massa específica Fator de eficiência

Page 19: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

19 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

Para uma melhor visualização, elaborou-se um diagrama de dosagem, expresso na

Figura 12.

Figura 12 – Diagrama de dosagem

Fonte: Do Autor, 2016

Por meio do diagrama de dosagem é possível obter qualquer composição

intermediária. Por exemplo, para produzir um concreto com resistência de 27 MPa

seria necessária uma relação água/cimento de 0,47, uma proporção de

cimento/agregados de 1:3,15 e um consumo de cimento de 390 kg/m³.

Para o primeiro quadrante, sugere-se trabalhar entre os traços TB e TC, pois a maior

inclinação da reta indica que é necessária uma menor quantidade de cimento para

elevar a resistência à compressão.

3.3.3 Microscopia eletrônica de varredura (MEV)

Observa-se na Figura 13 a zona de transição entre agregado/matriz para os

concretos de referência e leve. Comparando-se “a” e “b”, percebe-se que o concreto

de referência apresentou microfissuras na interface agregado/matriz, enquanto que

no concreto leve essas fissuras não foram perceptíveis em uma mesma escala de

aproximação. Rossignolo (2003) e Moravia (2007) destacam que a interface entre a

650 600 550 500 450 400 350 300 0,30 0,400,35 0,45 0,550,50

40

35

30

25

20

15

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

Resistência à compressão (MPa)

Re

laç

ão

a/c

Proporção 1:m

Co

ns

um

o d

e c

ime

nto

(k

g/m

³)

R² = 0,9174

R² = 0,9818R² = 0,9808

R² = 0,9997

Page 20: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

20 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

argila expandida e a matriz de cimento possui melhor aderência mecânica, pois

existe uma penetração da pasta de cimento no interior dos poros da superfície do

agregado, devido a sua alta absorção. Segundo Moravia (2007), os poros tendem a

absorver parte da água da mistura, o que causa um efeito de filtração da pasta de

cimento. A fração viscosa tende a se depositar na superfície e a água absorvida

poderá realizar hidratações adicionais na zona de transição. Esse fenômeno pode

contribuir para uma menor incidência de microfissuras.

Figura 13 – MEV 1000x concreto referência (a) e concreto leve (b)

Fonte: Do Autor, 2016

a)

b)

Page 21: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

21 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

4 CONCLUSÕES

Os resultados da Etapa 2 mostram que as composições com EPS, embora tenham

uma massa específica reduzida, apresentaram resistência à compressão abaixo de

17 MPa. Nesta etapa o traço com melhor desempenho foi o T2 A100, com

resistência à compressão de 20,9 ± 0,2 MPa, massa específica de 1556 ± 5 kg/m³ e

fator de eficiência de 13,4 MPa.dm³/kg.

Os concretos analisados na Etapa 3 podem ser classificados como leves e

estruturais segundo a norma ACI 213R (2003), pois apresentaram valores de massa

específica entre 1565 kg/m³ e 1595 kg/m³, e resistência à compressão aos 28 dias

de idade entre 24,7 MPa e 32,6 MPa, estando dentro dos limites da referida norma.

Esta propriedade mecânica é influenciada pelo consumo de cimento e tende a ser

limitada pela resistência do agregado. Um aumento de 28% na quantidade de

cimento corresponde a apenas 8,9% no aumento de resistência à compressão.

Os valores de módulo de elasticidade estático do concreto leve estão na faixa entre

15 GPa e 18 GPa, o que corresponde entre 50 e 75% do módulo de um concreto de

massa específica normal, considerando-se a mesma classe de resistência.

Os resultados obtidos possibilitaram a confecção do diagrama de dosagem, por

meio do qual se obtém traços intermediários àqueles confeccionados no estudo,

tornando-se um importante instrumento na dosagem de concretos.

O concreto leve produzido não apresentou microfissuras na interface

agregado/matriz tal como verificadas no concreto de referência, para uma mesma

escala de aproximação.

5 SUGESTÕES PARA TRABALHOS FUTUROS

Como sugestões para novas pesquisas citam-se (a) melhoria dos traços através de

adições minerais e aditivos, (b) testar diferentes percentuais de argila expandida, (c)

testar outros tipos de cimentos, (d) adição de polímeros ao concreto leve, (e)

realização de ensaios de absorção de água por capilaridade, condutividade e

resistência térmica, resistência a agentes químicos e medição da zona de transição

por espectrografia por dispersão de energias (EDS).

Page 22: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

22 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

6 REFERÊNCIAS

AMERICAN CONCRETE INSTITUTE. ACI 213R-03: Guide for structural lightweight aggregate concrete. Farmington Hills, 2003. 38 p; ANGELIN, Fernanda Alessandra. Concreto leve estrutural - Desempenhos físicos, térmicos, mecânicos e microestruturais. 2014. 98 f. Dissertação (Mestrado) - Curso de Tecnologia de Materiais, Universidade Estadual de Campinas, Limeira, 2014. Disponível em: <http://www.bibliotecadigital.unicamp.br/document/?code=000928526&fd=y>. Acesso em: 15 maio 2016; ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 11752: Materiais celulares de poliestireno para isolamento térmico na construção civil e refrigeração industrial. Rio de Janeiro, 2007. 11 p; ______. NBR 5738: Concreto - Procedimento para moldagem e cura de corpos de prova. Rio de Janeiro, 2015. 9 p; ______. NBR 5739: Concreto - Ensaios de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 2007. 9 p; ______. NBR 7211: Agregados para concreto – Especificação. Rio de Janeiro, 2009. 9 p; ______. NBR 7222: Concreto e argamassa — Determinação da resistência à tração por compressão diametral de corpos de prova cilíndricos. Rio de Janeiro, 2011. 5 p; ______. NBR 8522: Concreto - Determinação do módulo estático de elasticidade à compressão. Rio de Janeiro, 2008. 16 p; ______. NBR 8953: Concreto para fins estruturais - classificação pela massa específica, por grupos de resistência e consistência. Rio de Janeiro, 2015. 3 p; ______. NBR 9778: Argamassa e concreto endurecidos - Determinação da absorção de água, índice de vazios e massa específica. Rio de Janeiro, 2005. 4 p; ______. NBR NM 248: Agregados - Determinação da composição granulométrica. Rio de Janeiro, 2003. 6 p; ______. NBR NM 30: Agregado miúdo – Determinação da absorção de água. Rio de Janeiro, 2001. 3 p; ______. NBR NM 35: Agregados leves para concreto estrutural – Especificação. Rio de Janeiro, 1995. 8 p; ______. NBR NM 45: Agregados – Determinação da massa unitária e volume de vazios. Rio de Janeiro, 2006. 8 p;

Page 23: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

23 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

______. NBR NM 52: Agregado miúdo - Determinação da massa específica e massa específica aparente. Rio de Janeiro, 2009. 6 p; ______. NBR NM 53: Agregado graúdo - Determinação da massa específica, massa específica aparente e absorção de água. Rio de Janeiro, 2009. 8 p; ______. NBR NM 67: Concreto - Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1998. 8 p; CATOIA, Thiago. Concreto ultraleve estrutural com pérolas de EPS: caracterização do material e estudo de sua aplicação em lajes. 2012. 154 f. Tese (Doutorado) - Curso de Engenharia de Estruturas, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Carlos, 2012. Disponível em: <http://www.teses.usp.br/teses/disponiveis/18/18134/tde-19122012-104222/pt-br.php>. Acesso em: 15 maio 2016; CHANDRA, Satish; BERNTSSON, Leif. Lightweight aggregate concrete: Science, technology and applications. Norwich: Noyes, 2003. 430 p; FRASCÁ, Maria Heloisa Barros de Oliveira. Rocha como material de construção. In: ISAIA, Geraldo Cechella (Ed.). Materiais de Construção Civil: e Princípios de Ciência e Engenharia de Materiais. São Paulo: IBRACON, 2007. Cap. 15. p. 437-479. GUIMARÃES, André Tavares da Cunha. Propriedades do concreto fresco. In: ISAIA, Geraldo Cechella (Ed.). Concreto: Ensino, Pesquisa e Realizações. São Paulo: IBRACON, 2005. Cap. 16. p. 473-494. HOLM, T.A.; BREMNER, T.W. High Strength Lightweight Aggregate Concrete. In: High performance concrete: properties and aplications. Ed. SHAH, S.P. and HAMAD. S.H.Great Britain, McGraw-Hill, 1994. p. 341-374. ISAIA, Geraldo Cechella (Ed.). Concreto: Ciência e Tecnologia. São Paulo: IBRACON, 2011. 931 p. 1 v. MEHTA, Povindar Kumar; MONTEIRO, Paulo J. M.. Concreto: Microestrutura, propriedades e materiais. 3. ed. São Paulo: PINI, 2008. 574 p; MORAVIA, Weber Guadagnin. Influência de parâmetros microestruturais na durabilidade do concreto leve produzido com argila expandida. 170 f. Tese (Doutorado) - Curso de Ciência e Engenharia de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, 2007. Disponível em: <http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/MAPO-7RENKT/weber_moravia.pdf?sequence=1>. Acesso em: 05 ago. 2016. MORAVIA, Weber Guadagnin. et al. Caracterização microestrutural da argila expandida para aplicação como agregado em concreto estrutural leve. Cerâmica, São Paulo, v. 52, n. 322, p.193-199, jun. 2006. Bimestral. Disponível em: <http://www.scielo.br/pdf/ce/v52n322/30586.pdf>. Acesso em: 05 jul. 2016.

Page 24: CONCRETO LEVE: ESTUDO DE DOSAGENS COM ARGILA …repositorio.unesc.net/bitstream/1/4999/1/RosielenLeopoldoGrassi.pdf · os resultantes da aplicação de calor para a expansão de argilas,

24 Artigo submetido ao Curso de Engenharia Civil da UNESC – como requisito parcial para obtenção do Título de Engenheiro Civil

UNESC – Universidade do Extremo Sul Catarinense – 2016/02

ENGENHARIA CIVIL

PEDROSO, Fábio Luiz. Concreto: as origens e a evolução do material construtivo mais usado pelo homem. Concreto e Construções, São Paulo, v. 53, n. 27, p.14-19, jan. 2009. Trimestral. Disponível em: <http://www.ibracon.org.br/publicacoes/revistas_ibracon/rev_construcao/pdf/Revista_Concreto_53.pdf>. Acesso em: 15 jan. 2016; PEREIRA, Maurício Rodrigues. Estudo da adição de argila expandida na formulação de concretos leves. 82 f. Dissertação (Mestrado) - Curso de Ciência e Engenharia de Materiais, Universidade Federal do Rio Grande do Norte, Natal, 2008. Disponível em: <http://repositorio.ufrn.br:8080/jspui/bitstream/123456789/12669/1/MauricioRP.pdf>. Acesso em: 05 ago. 2016. RECENA, Fernando Antonio Piazza. Dosagem e Controle da Qualidade de Concretos Convencionais de Cimento Portland. 3. ed. Porto Alegre: EDIPUCRS, 2015. 120 p. ROSSIGNOLO, João Adriano. Concreto leve de alto desempenho modificado com SB para pré-fabricados esbeltos - dosagem, produção, propriedades e microestrutura. 211 f. Tese (Doutorado) - Curso de Ciência e Engenharia de Materiais, Universidade de São Paulo, São Carlos, 2003. Disponível em: <http://www.teses.usp.br/teses/disponiveis/88/88131/tde-25102005-104002/publico/teserossignolo.pdf>. Acesso em: 17 jan. 2016; SCHWANTES, Caetano Guilherme Gottlieb. Concreto estrutural leve: Resistência à compressão e módulo de elasticidade usando argila expandida como agregado graúdo. 2012. 72 f. TCC (Graduação) - Curso de Engenharia Civil, Universidade Federal do Rio Grande do Sul, Porto Alegre. Disponível em: <https://www.lume.ufrgs.br/bitstream/handle/10183/63166/000861222.pdf?sequence=1>. Acesso em: 25 jun. 2016. SILVA, Bruno Miguel Martins. Betão Leve Estrutural Com Agregados de Argila Expandida. 2007. 161 f. Dissertação (Mestrado) - Curso de Estruturas de Engenharia Civil, Faculdade de Engenharia da Universidade do Porto, Porto, 2007. Disponível em: <https://repositorio-aberto.up.pt/bitstream/10216/12131/2/Texto integral.pdf>. Acesso em: 05 jun. 2016; SIM, Jae-il et al. Size and shape effects on compressive strength of lightweight concrete. Construction And Building Materials, [S.l.], v. 38, p.854-864, jan. 2013. Disponível em: <http://ac.els-cdn.com/S0950061812007350/1-s2.0-S0950061812007350-main.pdf?_tid=f3b90078-a1c3-11e6-a045-00000aab0f6b&acdnat=1478177546_5cd782d38d97d29d2ca6b31d6b79d2e6>. Acesso em: 20 out. 2016.