Circuitos Eletronicos Cap 01

download Circuitos Eletronicos Cap 01

of 49

Transcript of Circuitos Eletronicos Cap 01

  • 7/27/2019 Circuitos Eletronicos Cap 01

    1/49

    Introduo

    REF:Sedra & Smith; M icroelectronic C

  • 7/27/2019 Circuitos Eletronicos Cap 01

    2/49

    Sinais

    O rdio AM utiliza a imagem eltrica de uma fonte de sommodular a amplitude de uma onda portadora (carrier wave). Na do receptor, no processo de deteco, esta imagem separad

    portadora e torna-se novamente som por meio de um autofalante

    Rdio AM

  • 7/27/2019 Circuitos Eletronicos Cap 01

    3/49

    Figure 1.1 Two alternative representations of a signal source: (a) the Thvenin form, and (b) the Norton form.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    4/49

    Figure 1.3 Sine-wave voltage signal of amplitude Va

    and frequencyf = 1/T Hz. The angular frequency v= 2frad/s.

    Sinais Peridicos

  • 7/27/2019 Circuitos Eletronicos Cap 01

    5/49

    0 0 0 0

    4 1 1 1( ) 3 5 7 ..

    3 5 7

    Vv t senw t sen w t sen w t sen w t

    Figure 1.4 A symmetrical square-wave signal of amplitude V.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    6/49

    Figure 1.5 The frequency spectrum (also known as the line spectrum) of the periodic square wave of Fig. 1.4.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    7/49

    Tempo & Frequncia

    Srie de Fourier

  • 7/27/2019 Circuitos Eletronicos Cap 01

    8/49

    ( ) ( )

    1( ) ( )

    2

    j t

    j t

    F f t e dt

    f t F e d

    ( )sV

    Figure 1.2 An arbitrary voltage signal vs(t).

    TransformadadeFourier

    Sinais no Peridicos

  • 7/27/2019 Circuitos Eletronicos Cap 01

    9/49

    Figure 1.6 The frequency spectrum of an arbitrary waveform such as that in Fig. 1.2.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    10/49

    Figure 1.7 Sampling the continuous-time analog signal in (a) results in the discrete-time signal in (b).

    Sinais Discretos

  • 7/27/2019 Circuitos Eletronicos Cap 01

    11/49

    Figure 1.8 Variation of a particular binary digital signal with time.

    Sinais Digitais

  • 7/27/2019 Circuitos Eletronicos Cap 01

    12/49

    Figure 1.9 Block-diagram representation of the analog-to-digital converter (ADC).

  • 7/27/2019 Circuitos Eletronicos Cap 01

    13/49

    Amplificadores de Sinais

    Amplificador: elemento bsico em circuitos analgicos.

    Inversor lgico: elemento bsico em circuitos digitais.

    Necessidade: transdutores fornecem sinais fracos, na escala dou A, e com baixa energia.

    Amplificador linear: sinal de sada possui mesma forma do sinal entrada, contendo as mesmas informaes com um mnimo de d

  • 7/27/2019 Circuitos Eletronicos Cap 01

    14/49

    0 ( ) ( )iv t Av t

    Figure 1.11 (a) A voltage amplifier fed with a signal vI(t) and connected to a load resistanceRL. (b) Transfer characteristic of a linear vo

    with voltage gainAv.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    15/49

    Figure 1.12 An amplifier that requires two dc supplies (shown as batteries) for operation.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    16/49

    EXEMPLO 1.1

    Considere um amplificador operando a partir de fontes de

    alimentao de 10V. Uma tenso senoidal de 1V de pico

    est acoplada na entrada e uma tenso senoidal de 9V

    de pico fornecida na sada, a uma carga de 1K. Oamplificador drena uma corrente de 9,5 mA de cada uma

    das fontes de alimentao. A corrente de entrada do

    amplificador senoidal, tendo 0,1 mA de pico. Calcule o

    ganho de tenso, o ganho de corrente, o ganho de

    potncia, a potncia drenada da fonte CC, a potncia

    dissipada no amplificador e a eficincia.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    17/49

    MAXIv

    MAX

    Iv

    0MAXv

    Figure 1.13a An amplifier transfer characteristic that is linear except for output saturation.

    0MAXv

    Caracterstica Sada x Entrada

  • 7/27/2019 Circuitos Eletronicos Cap 01

    18/49

    Figure 1.13b An amplifier transfer characteristic that is linear except for output saturation.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    19/49

    Figure 1.14 (a) An amplifier transfer characteristic that shows considerable nonlinearity. (b) To obtain linear operation the amplifier is b

    and the signal amplitude is kept small. Observe that this amplifier is operated from a single power supply, VDD.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    20/49

    Figure 1.16 Symbol convention employed throughout the book.

    Conveno de Notao

  • 7/27/2019 Circuitos Eletronicos Cap 01

    21/49

    Modelos de Circuitos para Amplificadores

    Amplificador de Tenso

  • 7/27/2019 Circuitos Eletronicos Cap 01

    22/49

    010

    1

    1

    v

    in

    out

    A

    R M

    R K

    0100

    100

    1

    v

    in

    out

    A

    R K

    R K

    01

    10

    10

    v

    in

    out

    A

    R K

    R

    EXEMPLO 1.3

    Um amplificador composto de trs estgios em cascata. O amplificador

    excitado por uma fonte de sinal com uma renitncia de sada de 100K.

    carga na sada do amplificador de 100. Determine o ganho de tenso tota

    o ganho de corrente e o ganho de potncia.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    23/49

    Soluo

    010

    1

    1

    v

    in

    out

    A

    R M

    R K

    0100

    100

    1

    v

    in

    out

    A

    R K

    R K

    01

    10

    10

    v

    in

    out

    A

    R K

    R

  • 7/27/2019 Circuitos Eletronicos Cap 01

    24/49

    Table 1.1 The Four Amplifier Types

    Modelos de Circuitos para Amplificadores

    Amplificador de Tenso Amplificador de Corrente

    Amplificador deTranscondutncia

    Amplificador deTransresistncia

  • 7/27/2019 Circuitos Eletronicos Cap 01

    25/49

    Exemplo: Ganho de Tenso

  • 7/27/2019 Circuitos Eletronicos Cap 01

    26/49

    Figure E1.20

    Exemplo: Impedncia de Entrada

  • 7/27/2019 Circuitos Eletronicos Cap 01

    27/49

    Figure 1.20 Measuring the frequency response of a linear amplifier. At the test frequency v, the amplifier gain is characterized by its mag

    and phasef.

    Resposta em Freqncia dos Amplificadores

    Pode-se caracterizar o desempenho de um amplificador etermos de sua resposta a entradas senoidais de diferentefrequncias.

    Vo/ Vimagnitude do ganho do ana frequncia de teste

    f fase do ganho do amplificadona frequncia de teste

    Largura de Banda

  • 7/27/2019 Circuitos Eletronicos Cap 01

    28/49

    Largura deBanda

    Largura de banda (bandwidth): faixa de valores na qual o ganamplificador praticamente constante, limitado a um decrscimo de

    Deve-se projetar o amplificador de modo que sua largura de band

    maior ou igual a largura de banda do espectro dos sinais que dser amplificados.

    3dB

  • 7/27/2019 Circuitos Eletronicos Cap 01

    29/49

    Figure 1.22 Two examples of STC networks: (a) a low-pass network and (b) a high-pass network.

    Circuitos Passa Baixas e Passa Altas

  • 7/27/2019 Circuitos Eletronicos Cap 01

    30/49

    Figure 1.23 (a) Magnitude and (b) phase response of STC networks of the low-pass type.

    Diagrama deBode

  • 7/27/2019 Circuitos Eletronicos Cap 01

    31/49

    Figure 1.24 (a) Magnitude and (b) phase response of STC networks of the high-pass type.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    32/49

    Figure 1.25 Circuit for Example 1.5.

    Exemplo: Determine a Resposta em Frequncia...

  • 7/27/2019 Circuitos Eletronicos Cap 01

    33/49

    Figure 1.26 Frequency response for(a) a capacitively coupled amplifier, (b) a direct-coupled amplifier, and (c) a tuned or bandpass amp

  • 7/27/2019 Circuitos Eletronicos Cap 01

    34/49

    Figure 1.27 Use of a capacitor to couple amplifier stages.

    Inversor Lgico Digital

  • 7/27/2019 Circuitos Eletronicos Cap 01

    35/49

    Figure 1.29 Voltage transfer characteristic of an inverter. The VTC is approximated by three straightline segments. Note the four param

    (VOH, VOL, VIL, and VIH) and their use in determining the noise margins (NMHandNML).

    NMH Margem de rudo para o nvel alt

    NML Margem de rudo para o nvel ba

    Inversor Lgico Digital

  • 7/27/2019 Circuitos Eletronicos Cap 01

    36/49

    Figure 1.30 The VTC of an ideal inverter.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    37/49

    Figure 1.31 (a) The simplest implementation of a logic inverter using a voltage-controlled switch; (b) equivalent circuit when vIis low;

    equivalent circuit when vIis high. Note that the switch is assumed to close when vIis high.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    38/49

    Figure 1.32 A more elaborate implementation of the logic inverter utilizing two complementary switches. This is the basis of the CMOS

    in Section 4.10.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    39/49

    Figure 1.33 Another inverter implementation utilizing a double-throw switch to steer the constant currentIEE toRC1 (when vIis high) or

    low). This is the basis of the emitter-coupled logic (ECL) studied in Chapters 7 and 11.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    40/49

    Figure 1.34 Example 1.6: (a) The inverter circuit after the switch opens (i.e., fort 0). (b) Waveforms ofvIand vO. Observe that the sw

    to operate instantaneously. vO rises exponentially, starting at VOL and heading toward VOH.

  • 7/27/2019 Circuitos Eletronicos Cap 01

    41/49

    Figure 1.35 Definitions of propagation delays and transition times of the logic inverter.

    Exerccios Propostos

  • 7/27/2019 Circuitos Eletronicos Cap 01

    42/49

    Figure P1.58

    Exerccios Propostos

  • 7/27/2019 Circuitos Eletronicos Cap 01

    43/49

    Figure P1.63

  • 7/27/2019 Circuitos Eletronicos Cap 01

    44/49

    Figure P1.65

  • 7/27/2019 Circuitos Eletronicos Cap 01

    45/49

    Figure P1.67

  • 7/27/2019 Circuitos Eletronicos Cap 01

    46/49

    Figure P1.68

  • 7/27/2019 Circuitos Eletronicos Cap 01

    47/49

    Figure P1.72

  • 7/27/2019 Circuitos Eletronicos Cap 01

    48/49

    Figure P1.77

  • 7/27/2019 Circuitos Eletronicos Cap 01

    49/49

    Figure P1.79