Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica,...

25
Categorias, ´ algebra homol´ ogica, categorias derivadas slides de aula Sasha Anan 0 in ICMC, USP, S˜ ao Carlos 14/10/2015 – 11/11/2015

Transcript of Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica,...

Page 1: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Categorias,algebra homologica,categorias derivadas

slides de aula

Sasha Anan′in

ICMC, USP, Sao Carlos

14/10/2015 – 11/11/2015

Page 2: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

3. Cohomologias

3.1. Exemplo introdutorio: homologias singulares. Seja k ∈ N e sejame0, . . . , ek ∈ Rn linearmente independentes. Um k-simplexo (padrao) ∆k

e o envelope convexo dos e0, . . . , ek , isto e, o menor subconjunto con-vexo de Rn que contem os e0, . . . , ek . O simplexo ∆k pode ser descritousando coordenadas baricentricas ∆k = {

∑ki=0 xiei |

∑ki=0 xi = 1,

x0, . . . , xk > 0}. Sejam 0 6 i 6 k com k > 1. Denotemos por∂ ik : ∆k−1 → ∆k a funcao da i-esima face dada pela formula∂ ik : (x0, . . . , xk−1) 7→ (x0, . . . , xi−1, 0, xi , . . . , xk−1) em termos de coorde-

nadas baricentricas. E obvio que ∂jk+1∂ik = ∂ ik+1∂

j−1k se k > 1 e

0 6 i < j 6 k + 1.Seja X um espaco topologico. Um k-simplexo singular em X e umafuncao contınua σ : ∆k → X . Denotamos por SkX :=

{∑σ cσσ | σ ∈

Esp(∆k ,X ), cσ ∈ Z}

o grupo abeliano livremente gerado por todos osk-simplexos singulares em X . Se f : X → X ′ e uma seta em Esp, podemos

definir (Sk f )(∑

σ cσσ) :=∑

σ cσf σ, obtendo assim um funtor EspSk→ Ab.

Em seguida, frequentemente escrevemos f no lugar de Sk f . Os elementosde SkX sao ditos k-cadeias. Por definicao, Sk := 0 para k < 0.

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 2 / 1

Page 3: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

A regra ∂kσ :=∑k

i=0(−1)iσ∂ik define a transformacao natural∂k : Sk → Sk−1, chamada operador de bordo (por definicao, ∂k := 0 sek 6 0). Verifiquemos que ∂k∂k+1 = 0. Seja σ : ∆k+1 → X um(k + 1)-simplexo singular, entao

∂k∂k+1σ = ∂k

k+1∑j=0

(−1)jσ∂jk+1 =∑

06i6k06j6k+1

(−1)i+jσ∂jk+1∂ik =

=∑

06i<j6k+1

(−1)i+jσ∂jk+1∂ik +

∑06j6i6k

(−1)i+jσ∂jk+1∂ik

e, em vista de ∂jk+1∂ik = ∂ ik+1∂

j−1k ,∑

06i<j6k+1

(−1)i+jσ∂jk+1∂ik =

∑06i<j6k+1

(−1)i+jσ∂ik+1∂j−1k =

= −∑

06i6j6k

(−1)i+jσ∂ik+1∂jk ,

mostrando que ∂2 = 0 (em seguida, frequentemente omitimos ındices casoisto nao cause confusoes).

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 3 / 1

Page 4: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Temos tambem uma transformacao natural deg : S0 → ∆Z, chamada graue dada por σ 7→ 1, onde ∆Z : Esp→ Ab denota o funtor constante:∆ZX := Z e ∆Zf := 1Z.

3.1.1. Lema. Seja c ∈ X um ponto num conjunto convexo X ⊂ Rn.Entao existem homomorfismos ck : SkX → Sk+1X , k ∈ Z, tais que∂ck + ck−1∂ = 1SkX para todo 0 6= k ∈ Z e ∂c0 = 1S0X − degX ·c. Emparticular, Im ∂k+1 = Ker ∂k para todo 0 6= k ∈ Z.

Demonstracao. Seja σ : ∆k → X um simplexo singular. Definamosck · σ : ∆k+1 → X pela formula

(ck · σ)(x0, . . . , xk+1) :=

{x0c + (1− x0)σ( x1

1−x0, . . . , xk+1

1−x0) se x0 6= 1

c se x0 = 1

E facil ver que (ck · σ)∂ i+1k+1 = ck−1 · (σ∂ik) se k > 0 e 0 6 i 6 k , que

(ck · σ)∂0k+1 = σ se k > 0 e que (c0 · σ)∂1

1 = c , onde c denota o simplexosingular ∆0 → X com a imagem c . Daı segue a primeira afirmacao.A segunda e um fato geral: se ∂kx = 0, entaox = ∂ckx + ck−1∂x = ∂ckx �

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 4 / 1

Page 5: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

3.1.2. Lema. Sejam fk : Sk → Sk(∆1 ×−), k ∈ Z, transformacoes natu-rais tais que deg f0 = 0 e ∂fk = fk−1∂ para todo k ∈ Z. Entao existemtransformacoes naturais sk : Sk → Sk+1(∆1 ×−), k ∈ Z, tais quefk = ∂sk + sk−1∂ para todo k ∈ Z.

Demonstracao. Para i < 0, definamos si := 0. Por inducao sobre k,ja construımos transformacoes naturais si : Si → Si+1(∆1 ×−) tais quefi = ∂si + si−1∂ para todo i < k.Para o simplexo singular 1∆k

∈ Sk∆k , temos

∂(fk1∆k− sk−1∂1∆k

) = fk−1∂1∆k− (∂sk−1)∂1∆k

=

= fk−1∂1∆k− (fk−1 − sk−2∂)∂1∆k

= 0

devido a ∂2 = 0 e pela hipotese de inducao. Claro que ∆1 ×∆k e convexoem Rn.Consideremos o caso k = 0. De deg f0 = 0 e ∂c0 = 1S0∆0 − deg ·c paraqualquer c ∈ ∆1 ×∆0 ' ∆1 (vide o Lema 3.1.1), obtemos

f01∆0−s−1∂1∆0 = f01∆0 = f0∂c01∆0 +deg(f01∆0)c = f0∂c01∆0 = ∂f1c01∆0

e definamos b0 := f1c01∆0 ∈ S1(∆1×∆0). Temos f01∆0 = ∂b0 + s−1∂1∆0 .S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 5 / 1

Page 6: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Caso k 6= 0, pelo Lema 3.1.1, existe bk ∈ Sk+1(∆1 ×∆k) tal que∂bk = fk1∆k

− sk−1∂1∆k, ou seja, fk1∆k

= ∂bk + sk−1∂1∆knovamente.

Definamos sk : SkX → Sk+1(∆1 × X ) pela formula skσ := (1∆1 × σ)bk ,onde σ : ∆k → X e um k-simplexo singular em X . Entao, para quaisquerseta f : X → X ′ em Esp e k-simplexo singular σ : ∆k → X em X , temos(1∆1 × f )skσ = (1∆1 × f )(1∆1 × σ)bk = (1∆1 × f σ)bk = sk(f σ),mostrando assim a naturalidade de sk .Finalmente, pela naturalidade de fk e de sk−1, obtemos fkσ = (1∆1 × σ)fke (1∆1 × σ)sk−1 = sk−1σ para qualquer funcao contınua σ : ∆k → X (quee nada mais do que um k-simplexo singular em X ). Agora,

fkσ = fkσ1∆k= (1∆1 × σ)fk1∆k

= (1∆1 × σ)(∂bk + sk−1∂1∆k) =

= ∂(1∆1×σ)bk+(1∆1×σ)sk−1∂1∆k= ∂skσ+sk−1σ∂1∆k

= ∂skσ+sk−1∂σ,

pois (1∆1 × σ)∂ = ∂(1∆1 × σ) e σ∂ = ∂σ (usamos aqui o fato que ∂ euma transformacao natural) �

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 6 / 1

Page 7: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Introduzimos a categoria Esp(2) de pares “espaco topologico e seu subes-paco”. Os objetos de Esp(2) sao pares (X ,S), onde X ∈ Esp e um espaco

topologico e Si↪→ X e um subespaco em X . Uma seta (X ,S)

f−→ (X ′,S ′)

em Esp(2) e simplesmente uma seta Xf−→ X ′ em Esp tal que fS ⊂ S ′.

Seja (X ,S) ∈ Esp(2). Entao temos SkSi↪→ SkX e definimos

Sk(X ,S) := SkX/SkS . Sendo ∂ uma transformacao natural, obtemos umhomomorfismo induzido ∂k : Sk(X , S)→ Sk−1(X ,S). E facil ver quetal ∂k (que e mais geral do que o anterior: tome S = ∅) e umatransformacao natural entre funtores do tipo Esp(2) → Ab.Definamos Hk(X , S ; Z) := Ker ∂k/ Im ∂k+1. E imediato que

Hk : Esp(2) → Ab e um funtor, chamado k-homologia singular de par.

3.1.3. Proposicao. Sejam (X ,S), (X ′, S ′) ∈ Esp(2) e sejah : ∆1 × (X ,S)→ (X ′,S ′) uma homotopia em Esp(2) (isto e, uma setah : ∆1 ×X → X ′ em Esp tal que h(∆1 × S) ⊂ S ′). Entao Hk h0 = Hk h1,onde ht : (X , S)→ (X ′,S ′) e dado por htx := h(t, x).

Demonstracao. Seja t ∈ ∆1. A funcao contınua g t : X → ∆1 × X ,definida pela regra g t : x 7→ (t, x), e uma transformacao natural em X talque hg t = ht . Temos transformacoes naturais induzidas

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 7 / 1

Page 8: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

g tk : Sk → Sk(∆1 ×−), k ∈ Z, tais que ∂g t

k = g tk−1∂. Ja que deg g t

0 inde-pende de t, definindo fk := g 1

k − g 0k , obtemos transformacoes naturais

fk : Sk → Sk(∆1 ×−), k ∈ Z, satisfazendo deg f0 = 0 e ∂fk = fk−1∂ paratodo k ∈ Z. Pelo Lema 3.1.2, existem transformacoes naturaissk : Sk → Sk+1(∆1 ×−), k ∈ Z, tais que fk = ∂sk + sk−1∂ para todok ∈ Z.De g tS ⊂ ∆1 × S segue g t

k(SkS) ⊂ Sk(∆1 × S) ⊂ Sk(∆1 × X ) para oshomomorfismos g t

k : SkX → Sk(∆1 × X ), k ∈ Z. Pela naturalidade dos

sk ’s aplicada ao morfismo Si↪→ X , concluımos que

sk(SkS) ⊂ Sk+1(∆1 × S) ⊂ Sk+1(∆1 × X ) para os homomorfismossk : SkX → Sk+1(∆1 × X ), k ∈ Z. Portanto, temos homomorfismosinduzidos g t

k : Sk(X ,S)→ Sk(∆1 × X ,∆1 × S), fk = g 1k − g 0

k esk : Sk(X ,S)→ Sk+1(∆1 × X ,∆1 × S) e permanece validofk = ∂sk + sk−1∂, isto e, g 1

k − g 0k = ∂sk + sk−1∂, k ∈ Z.

O morfismo h : (∆1 × X ,∆1 × S)→ (X ′, S ′) induz os homomorfismoshk : Sk(∆1 × X ,∆1 × S)→ Sk(X ′, S ′), k ∈ Z. De hg t = ht seguehkg t

k = htk . Logo, h1

k − h0k = hk∂sk + hksk−1∂ = ∂hk+1sk + hksk−1∂. Seja

z ∈ Ker ∂k . Entao (h1k − h0

k)z = ∂hk+1skz ∈ Im ∂k+1. Isto implica

Hk h0 = Hk h1�

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 8 / 1

Page 9: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

3.2. Complexos, cobordos, cociclos e cohomologias. Seja C umacategoria abeliana. Denotamos por Kom∗ C, onde ∗ ∈ {∅,+,−, b},a categoria cujos objetos sao os ∗-complexos, isto e, sequenciassemiexatas em C

C • : . . . -d i−1C• C i -

d iC• C i+1 -

d i+1C• . . .

com a condicao:

∅ nada.+ existe um i0 tal que C i = 0 para todo i < i0.− existe um i1 tal que C i = 0 para todo i > i1.b existem i0 e i1 tais que C i = 0 se i < i0 ou i > i1.

Os morfismos d iC•’s chamam-se operadores de bordo do complexo.

Um morfismo h• : C •→ D• entre complexos e uma colecao de setashi : C i → D i compatıveis com os d•• ’s, isto e, hi+1d i

C•= d iD•h

i paratodo i . Podemos escrever as ultimas igualdades sem ındices: hd = dh(os ındices se sabem). A composicao de morfismos e obvia. A categoriaKom∗ C e uma Ab-categoria se definirmos (h•+ f •)i := hi + f i . Ela possuibiprodutos (C •⊕D•)i := C i ⊕D i com projecoes e injecoes obvias. Ela temobjeto nulo 0i := 0. Possui nucleos e conucleos:

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 9 / 1

Page 10: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

por exemplo, (Ker h•)i := Ker hi com o morfismo ker h• : Ker h•→ C • feitode morfismos ker hi e com d i

Ker h• induzido por d iC• e d i

D•. Obviamente, h•

e mono (epi, iso) se e so se cada um hi e mono (epi, iso). E facil verificaragora que Kom∗ C e uma categoria abeliana.

Bi C • -j iC•

Zi C •

πiC•6

ker d iC•

?C i−1 -d i−1

C• C i

Seja C • um complexo. Denotemos Bi C • := Im d i−1C• e

Zi C • := Ker d iC•. Temos a decomposicao de d i−1

C• nodiagrama a direita com j iC• mono (vide a Definicao 2.18).Facamos Hi C • := Co j iC•. Em outras palavras, a sequencia

0→ Bi C •j iC•−→ Zi C •

co j iC•−→ Hi C •→ 0

e exata.Seja h• : C •→ D• um morfismo entre complexos. Entao temos o diagramacomutativo

C i−2 -d i−2C• C i−1 -π

iC•

Bi C • -j iC•Zi C • -ker d i

C•C i -d iC• C i+1

hi−2

?hi−1

?hi

?hi+1

?D i−2 -d i−2

D• D i−1 -πiD•

Bi D• -j iD•Zi D• -ker d i

D•D i -d iD• D i+1

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 10 / 1

Page 11: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

C i−1 -πiC•

Bi C • -mi

C• C i -co d i−1

C• Co d i−1C•- 0

hi−1

?g?

hi

?D i−1 -

πiD•Bi D• -

miD• D i -

co d i−1D• Co d i−1

D•- 0

Zi C • -ker d iC•C i -d i

C• C i+1

Zi h•

?hi

?hi+1

?

Zi D• -ker d iD•D i -d i

D• D i+1

As setas hi e hi+1 induzem o morfismo Zi h• :

Zi C •→ Z iD• que faz o diagrama a direitacomutativo. As setas hi−1 e hi induzem omorfismo g : Co d i−1

C• → Co d i−1D• que faz o

diagrama acima comutativo, ondemi

C•= ker(co d i−1C• ) : Bi C •= Im d i−1

C• = Ker(co d i−1C• )→ C i e

miD• = ker(co d i−1

D• ) : Bi D•= Im d i−1D• = Ker(co d i−1

D• )→ D i sao os mono-

morfismos participando nas decomposicoes dos morfismos d i−1C• e d i−1

D• (videa Definicao 2.17). Assim, as setas hi e g induzem o morfismo

Bi C • -mi

C• C i -co d i−1

C• Co d i−1C•- 0

Bi h•

?hi

?g?

Bi D• -mi

D• D i -co d i−1

D• Co d i−1D•- 0

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 11 / 1

Page 12: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Bi h• : Bi C •→ Bi D• que faz o diagrama acima comutativo.

C i−1 -πiC•

Bi C • -miC• C i

hi−1

?Bi h•

?hi

?D i−1 -

πiD•Bi D• -

miD• D i

Consequentemente, no diagrama a direita te-mos mi

D•(Bi h•)πiC•= himi

C•πiC•= mi

D•πiD•h

i−1.Sendo mi

D• mono, concluımos que πiD•hi−1 =

(Bi h•)πiC•, isto e, o primeiro quadrado nestediagrama tambem e comutativo. Resumindo,obtemos o diagrama comutativo

(3.2.1)

C i−2 -d i−2C• C i−1 -π

iC•

Bi C • -j iC•Zi C • -ker d i

C•C i -d iC• C i+1

hi−2

?hi−1

?Bi h•

?Zi h•

?hi

?hi+1

?D i−2 -d i−2

D• D i−1 -πiD•

Bi D• -j iD•

Zi D• -ker d iD•D i -d i

D• D i+1

O quadrado central e comutativo, pois ker d iD•(Z

ih•)j iC•πiC•=

= hi (ker d iC•)j iC•π

iC•= (ker d i

D•)j iD•πiD•h

i−1 = (ker d iD•)j iD•(B

ih•)πiC• com

(3.2.2)

0 - Bi C • -j iC•Zi C • -co j iC•

Hi C • - 0

Bi h•

?Zi h•

?Hi h•

?0 - Bi D• -

j iD•Zi D• -

co j iD•Hi D• - 0

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 12 / 1

Page 13: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

πiC• epi e ker d iD• mono. Finalmente, obtemos o diagrama comutativo

acima e vemos que Bi , Zi e Hi sao funtores. Chamaremos Hi de i-coho-mologia de complexo.

3.2.3. Lema. Os funtores Bi , Zi e Hi sao aditivos.

Demonstracao. Sejam dados dois morfismos entre complexosh•, f • : C •→ D•. O morfismo h•+ f • determina, para todo i , o diagrama

C i−1 -πiC•Bi C • -j iC•

Zi C • -ker d iC• C i

hi−1 + f i−1

?Bi (h•+ f •)

?Zi (h•+ f •)

?hi + f i

?D i−1 -πiD•

Bi D• -j iD•

Zi D• -ker d iD• D i

comutativo, onde Zi (h•+ f •) e o unico morfismo que faz comutativo oquadrado a direita. Como (hi + f i ) ker d i

C•= hi ker d iC•+ f i ker d i

C•=(ker d i

D•)Zih•+ (ker d i

D•)Zi f •= ker d i

D•(Zih•+ Zi f •), pela unicidade, temos

Zi (h•+ f •) = Zi h•+ Zi f •. Daı, Zi e aditivo. Analogamente,πiD•(hi−1 + f i−1) = πiD•h

i−1 + πiD•fi−1 = (Bih•)πiC•+ (Bi f •)πiC•=

(Bih•+ Bi f •)πiC•. Logo, pela unicidade de Bi (h•+ f •), concluımos que

Bi (h•+ f •) = Bi h•+ Bi f •. Daı, Bi e aditivo. Da unicidade do morfismoinduzidoS. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 13 / 1

Page 14: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

entre conucleos segue a aditividade de Hi(vide (3.2.2)

)�

3.2.4. Lema. Seja C •∈ Kom∗ C. Entao, para todo i , existem dois unicosmorfismos αi

C• e βiC• que fazem o diagrama

0 0 06 ? ?

0 - Bi C • -j iC•Zi C • -co j iC•

Hi C • - 0

πiC•6

ker d iC•

?αiC•

?C i−1 -d i−1

C• C i -co d i−1C• Co d i−1

C•- 0

d iC•

?βiC•?

C i+1 -1C i+1

C i+1

comutativo. Neste diagrama, as linhas e colunas sao exatas. Alem disso,o diagrama e funtorial (isto e, todos os morfismos no diagrama saotransformacoes naturais).

Demonstracao. Sendo d iC•d

i−1C• = 0, obtemos d i

C•= βiC•(co d i−1C• ) para

um unico βiC•. De 0 = (co d i−1C• )(d i−1

C• ) = (co d i−1C• )(ker d i

C•) j iC•πiC• e de

πiC• ser epi, concluımos que (co d i−1C• )(ker d i

C•)j iC•= 0.S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 14 / 1

Page 15: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Logo, existe um unico αiC• que faz o diagrama do lema comutativo.

Por caca em diagrama, e facil provar queαiC• e mono e que αi

C•= kerβiC•.

C i−1 -d i−1C• C i -

co d i−1C• Co d i−1

C•-

βiC• C i+1

hi−1

?hi

?hi

?hi+1

?D i−1 -

d i−1D• D i -

co d i−1D• Co d i−1

D•-

βiD• D i+1

ZiC • -co j iC• HiC •

?

αiC•

Co d i−1C•

?

ker d iC•

C i -co d i−1C•

����Zi h•

����hi

����

Hi h•

����hi

ZiD• -co j iD• HiD•

?

αiD•

Co d i−1D•

?

ker d iD•

D i -co d i−1

D•

Para provar que o diagrama do lema e funtorial, tomemos um morfismoh• : C •→ D• entre complexos. Entao o diagrama acima a esquerda ecomutativo, onde o quadrado a direita e comutativo, pois co d i−1

C• e epi.Utilizando as comutatividades obtidas anteriormente, constatamos queresta provar a comutatividade da face direita no diagrama acima a direita.As comutatividades das faces de cima, de baixo, frontal, do fundo e daesquerda sao ja conhecidas (vide a primeira parte do lema). A comutativi-dade da face direita segue da comutatividade das outras faces e de co j iC•ser epi �

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 15 / 1

Page 16: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

3.3. Sequencia longa exata. Seja E : 0→ C •1ε•−→ C •2

p•−→ C •3 → 0 umasequencia exata de complexos. Pelo Lema 2.22 (da serpente), obtemos odiagrama comutativo (3.3.1) abaixo a esquerda com linhas exatas. Usandoa definicao (2.22.2) de δi−1, vemos que βi

C•1

δi−1 = 0 e δi−1j i−1C•3

= 0 (pois

πi−1C•3

e pi−2 sao epis). Sendo, pelo Lema 3.2.4, αiC•1

= kerβiC•1

, obtemos

δi−1 = αiC•1

∆i−1 para algum ∆i−1 : Zi−1 C •3 → Hi C •1. Sendo αiC•1

mono,

concluımos que ∆i−1j i−1C•3

= 0. Assim, obtemos δi−1E : Hi−1 C •3 → Hi C •1 tal

que ∆i−1 = δi−1E (co j i−1

C•3

) (vide o diagrama (3.3.1) abaixo a direita; note

que δi−1E e o unico morfismo que faz este diagrama comutativo).

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 16 / 1

Page 17: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

(3.3.1)

C i−22

-pi−2

C i−23

- 0

πi−1C•2 ?

πi−1C•3 ?

Bi−1 C •2-Bi−1 p•

Bi−1 C •3j i−1C•2 ?

j i−1C•3 ?

0 - Zi−1 C •1-Zi−1 ε•

Zi−1 C •2-Zi−1 p•

Zi−1 C •3-δ

i−1

ker d i−1C•1 ?

ker d i−1C•2 ?

ker d i−1C•3 ?

0 - C i−11

-εi−1C i−1

2-pi−1

C i−13

- 0

d i−1C•1 ?

d i−1C•2 ?

d i−1C•3 ?

0 - C i1

-εiC i

2-pi

C i3

- 0

co d i−1C•1 ?

co d i−1C•2 ?

co d i−1C•3 ?

-δi−1

Co d i−1C•1

-εi

Co d i−1C•2

-pi

Co d i−1C•3

- 0

βiC•1 ?

βiC•2 ?

0 - C i+11

-εi+1C i+1

2

Bi−1 C •3

6j i−1C•3

Zi−1 C •3

6co j i−1

C•3

Hi−1 C •3 -δi−1E Hi C •1

?αiC•1

Co d i−1C•1

?βiC•1

C i+11

����

∆i−1

-δi−1

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 17 / 1

Page 18: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Mostremos que a sequencia

. . . -δi−2E Hi−1 C •1

-Hi−1 ε•Hi−1 C •2

-Hi−1 p•Hi−1 C •3

-δi−1E Hi C •1

-Hi ε•. . .

e exata. Para isto, consideremos o diagrama comutativo0 0 0 0 06 6 6 ? ?

Hi−1 C •1-Hi−1 ε•

Hi−1 C •2-Hi−1 p•

Hi−1 C •3-δ

i−1E Hi C •1

-Hi ε•Hi C •2

co j i−1C•1

6co j i−1

C•2

6co j i−1

C•3

6αiC•1 ?

αiC•2 ?

Zi−1 C •1-Zi−1 ε•

Zi−1 C •2-Zi−1 p•

Zi−1 C •3-δi−1

Co d i−1C•1

-εiCo d i−1

C•2

j i−1C•2

6j i−1C•3

6

Bi−1 C •2-Bi−1 p•

Bi−1 C •3- 0

onde a sequencia na segunda linha e exata pela exatidao de Ker-Coker-sequencia (2.22.1) e as colunas sao exatas. Observemos que a terceiralinha e exata. Com efeito,(Bi−1 p•)πi−1

C•2

= πi−1C•3

pi−2 (vide o segundo quad-

rado comutativo em (3.2.1)). Sendo Bi−1 p• divisor a esquerda de umepimorfismo, ele e epi. Por caca usual em diagrama, podemos provar quea primeira linha do diagrama e exata nos termos Hi−1 C •2, Hi−1 C •3 e Hi C •1.

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 18 / 1

Page 19: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Seja C uma categoria abeliana. Consideremos a categoria Esc C, cujosobjetos sao sequencias curtas exatas de complexosE : 0→ C •1 → C •2 → C •3 → 0, com C •1,C

•2,C

•3 ∈ Kom∗ C, e cujos

morfismos sao dados por diagramas comutativos do tipo

E : 0 - C •1-ε•

C •2-p•

C •3- 0

h?

h•1?

h•2?

h•3?

E ′ : 0 - C ′1• -ε′•

C ′2• -p

′•C ′3• - 0

Obviamente, temos tres funtoresFk : Esc C → Kom∗ C, k = 1, 2, 3, onde,para E : 0→ C •1 → C •2 → C •3 → 0,definimos FkE = C •k .

Hi C •3-δiE

Hi+1 C •1

Hi h•3?

Hi+1 h•1?

Hi C ′3• -δ

iE ′

Hi+1 C ′1•

Zi C •3-

co j iC•3 Hi C •3

?Hi h•3

Hi C ′3•

?

Zi h•3

Zi C ′3• -

co j iC ′3•

����δi

����δ′i

����δiE

����δiE ′

Co d iC•1

�αi+1C•1 Hi+1 C •1

?

Hi+1 h•1

Hi+1 C ′1•

?

hi1

Co d iC ′1•�

αi+1C ′1•

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 19 / 1

Page 20: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Vamos mostrar que o δi• obtido acima define uma transformacao natural

δi• : Hi F3 → Hi+1 F1. Isto e, para todo morfismo h : E → E ′ em Esc C,como acima, o quadrado acima a esquerda e comutativo. De fato, este

quadrado e a face direita do cubo acima a direita, onde hi1 e induzido por

h•1 e as comutatividades das faces de cima, de baixo, de frente e do fundoja sao conhecidas. Pela Observacao 2.23, temos a comutatividade da faceesquerda. Sendo co j i

C•3

epi e sendo αi+1C ′1• mono, pela comutatividade destas

cinco faces obtemos a comutatividade da face direita.

3.4. Homotopias. No exemplo introdutorio 3.1, vimos como umahomotopia de funcoes contınuas entre espacos topologicos se transformoupara uma homotopia entre os complexos S• de simplexos singulares.

-d iC•

C i+1

��

��

hi+1

��

��

hi

C i

?f i − g i

D iD i−1 -d i−1D•

3.4.1. Definicao. Seja C uma categoriaabeliana e sejam C •,D•∈ Kom∗ C complexos.Dizemos que morfismos f •, g • : C • → D•

sao homotopicos se existe uma colecao demorfismos hi : C i → D i−1 em C, chamadahomotopia (os morfismos hi ’s nao precisamcomutar com d), tais que f i − g i = d i−1

D• hi + hi+1d iC• para todo i .

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 20 / 1

Page 21: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Podemos escrever as ultimas igualdades sem ındices: f − g = dh + hd(os ındices se sabem).Denotamos f •∼ g • se f • e g • forem homotopicos. E facil ver que “serhomotopico” e uma relacao de equivalencia e que os morfismoshomotopicos a zero formam em Kom∗ C(C •,D•) um subgrupo. Aindamais, estes subgrupos formam um “ideal”, isto e, a composicao commorfismo homotopicamente nulo e homotopicamente nula.

3.4.2. Lema. Se f •, g • : C •→ D• sao homotopicos, entao Hi f •= Hi g •

para todo i .

Demonstracao. Pela aditividade de Hi podemos supor que g = 0. Temoso diagrama abaixo a esquerda (que nao e necessariamente comutativo).Pela hipotese, f i = hi+1d i

C•+ d i−1D• hi . Logo,

f i (ker d iC•) = hi+1d i

C•(ker d iC•) + d i−1

D• hi (ker d iC•) = d i−1

D• hi (ker d iC•) =

(ker d iD•)j iD•π

iD•h

i (ker d iC•). Sendo Zi f • o unico morfismo que faz a

comutatividade f i (ker d iC•) = (ker d i

D•)(Zi f •), concluımos que

Zi f •= j iD•πiD•h

i (ker d iC•). Obtemos o diagrama comutativo abaixo a

direita, onde ϕ = πiD•hi (ker d i

C•). Agora,(Hi f •)(co j iC•) = (co j iD•)j iD•ϕ = 0. Sendo co j iC• epi, Hi f •= 0 �

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 21 / 1

Page 22: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Bi C •

6πiC•

C i−1

?f i−1

D i−1

?πiD•

Bi D•

-j iC•

-d i−1C•

-d i−1D•

-jiD•

���

hi

Zi C •

?ker d i

C•

C i

?f i

D i

6ker d iD•

Zi D•

-d iC•

-d iD•

���

hi+1

C i+1

?f i+1

D i+1

0 -Bi C • -j iC•

Zi C • -co j iC•Hi C • - 0

Bi f •

?

ϕ ��� ?

Zi f •

?Hi f •

0 -Bi D• -j iD•

Zi D• -co j iD•Hi D• - 0

Fazendo um “quociente” pelo “ideal” daDefinicao 3.4.1, obtemos a categoria K∗ Ccujos objetos sao os de Kom∗ C e cujosmorfismos sao classes homotopicas demorfismos de Kom∗ C, isto e,

K∗ C(C •,D•) := Kom∗ C(C •,D•)/ ∼. Claramente, obtemos o funtor“canonico de quociente” π : Kom∗ C → K∗ C. (Note que K∗ C e umaAb-categoria, mas, em geral, nao e uma categoria abeliana.)Denotamos por Kom∗0 C a subcategoria completa de Kom∗ C formada portodos os complexos cujos operadores de bordo sao nulos. Assim, paraqualquer C •∈ Kom∗ C, obtemos B•C •,Z•C •,H•C •∈ Kom∗0 C e podemosconsiderar B•, Z• e H• como funtores, B•,Z•,H• : Kom∗ C → Kom∗0 C.

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 22 / 1

Page 23: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Kom∗ C -π K∗ C

?H• �

�h

Kom∗0 C -I Kom∗ C

3.5. Teorema. Seja C uma categoria abeliana. Entaoos funtores B•,Z•,H• : Kom∗ C → Kom∗0 C sao adi-tivos e formam a sequencia exata 0→B•→Z•→H•→0.O funtor H• passa por K∗ C, isto e, o diagrama adireita e comutativo, onde h e um funtor aditivo e I e a inclusao.Seja E ∈ Esc C uma sequencia curta exata de complexos,

E : 0→ C •1ε•−→ C •2

p•−→ C •3 → 0. Entao a sequencia

. . . -δi−2E Hi−1 C •1

-Hi−1 ε•Hi−1 C •2

-Hi−1 p•Hi−1 C •3

-δi−1E Hi C •1

-Hi ε•. . .

e exata, onde, para todo i , δi• e uma transformacao natural. Isto significaque, para qualquer morfismo h : E → E ′ em Esc C,

E : 0 - C •1-ε•

C •2-p•

C •3- 0

h?

h•1?

h•2?

h•3?

E ′ : 0 - C ′1• -ε′•

C ′2• -p

′•C ′3• - 0

o diagrama

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 23 / 1

Page 24: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

. . . -δi−2E Hi−1 C •1

-Hi−1 ε•Hi−1 C •2

-Hi−1 p•Hi−1 C •3

-δi−1E Hi C •1

-Hi ε•. . .

Hi−1 h•1?

Hi−1 h•2?

Hi−1 h•3?

Hi h•1?

. . . -δi−2E ′ Hi−1 C ′1

• -Hi−1 ε′•

Hi−1 C ′2• -Hi−1 p′•

Hi−1 C ′3• -δ

i−1E ′ Hi C ′1

• -Hi ε′•. . .

e comutativo �

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 24 / 1

Page 25: Categorias, algebra homol ogica, categorias derivadas · Categorias, algebra homol ogica, categorias derivadas slides de aula Sasha Anan0in ICMC, USP, S~ao Carlos 14/10/2015 { 11/11/2015

Exercıcios

S. Anan′ in (ICMC) categorias 14/10/2015 – 11/11/2015 25 / 1