Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE...

29
UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica estelar: estrutura e evolução das estrelas

Transcript of Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE...

Page 1: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones

Capítulo 6 Astrofísica estelar: estrutura e evolução das estrelas

Page 2: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A primeira condição que precisa ser cumprida pelo interior estelar é a condição de equilíbrio hidrostático (mecânico): todas as forças atuando em qualquer elemento de volume dentro da estrela têm de ser compensadas exatamente, já que uma força resultante não-nula implicaria movimentos e, portanto, mudanças na estrutura. As únicas forças que precisamos considerar são a força gravitacional, para dentro, e a força de pressão, para fora.

Equilíbrio hidrostático

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

Vamos considerar um elemento de volume cilíndrico, a uma distância r do centro da estrela, com seu eixo na direção do centro, com uma seção t ransversal dA e um comprimento dr:

‣ volume do elemento: dV = dA dr ‣ massa: dm=ρdAdr, onde ρ=ρ(r) é

a densidade do gás no radio r. ‣ seja Mr a massa dentro do raio r

(região cinza na figura)

Page 3: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

A força gravitacional no elemento dm é:

onde G é a constante gravitacional. O sinal negativo indica que a força aponta para o centro da estrela.

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

Se a pressão na superfície inferior do elemento de volume é P, e na superfície superior é P + dP, a força líquida da pressão atuando sobre o elemento é:

Uma vez que a pressão diminui para fora, dP será negativo e a força dFp será positiva.Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

Page 4: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Para termos equilíbrio hidrostático, a força total actuando sobre o elemento de volume deve ser igual a zero, i.e.

Portanto,

Esta é a equação e equilíbrio hidrostático.

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

Page 5: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Equação da massa

Consideremos uma casca esférica de espessura dr, à distância r do centro da estrela.

A massa dessa casca é:

Obtemos então:

Esta é a equação de continuidade da massa.

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)

Hannu Karttunen et al. (Eds.), Stellar Structure.In: Hannu Karttunen et al. (Eds.), Fundamental Astronomy, 5th Edition. pp. 229–242 (2007)DOI: 11685739_10 © Springer-Verlag Berlin Heidelberg 2007

229

10. Stellar Structure

The stars are huge gas spheres, hundreds of thou-sands or millions of times more massive than the

Earth. A star such as the Sun can go on shining steadilyfor thousands of millions of years. This is shown by stud-ies of the prehistory of the Earth, which indicate that theenergyradiatedbytheSunhasnotchangedbymuchdur-ing the last four thousand million years. The equilibriumof a star must remain stable for such periods.

10.1 Internal Equilibrium Conditions

Mathematically the conditions for the internal equilib-rium of a star can be expressed as four differentialequations governing the distribution of mass, gas pres-sure and energy production and transport in the star.These equations will now be derived.

Hydrostatic Equilibrium. The force of gravity pullsthe stellar material towards the centre. It is resisted bythe pressure force due to the thermal motions of the gasmolecules. The first equilibrium condition is that theseforces be in equilibrium.

Consider a cylindrical volume element at the distancer from the centre of the star (Fig. 10.1). Its volume isdV = d A dr, where d A is its base area and dr its height;its mass is dm = ρ d A dr, where ρ = ρ(r) is the gasdensity at the radius r. If the mass inside radius r is Mr ,the gravitational force on the volume element will be

dFg = −G Mr dmr2

= −G Mrρ

r2d A dr ,

where G is the gravitational constant. The minus sign inthis expression means that the force is directed towardsthe centre of the star. If the pressure at the lower surfaceof the volume element is P and at its upper surfaceP +d P, the net force of pressure acting on the elementis

dFp = P d A − (P +d P)d A

= −dP d A .

Fig. 10.1. In hydrostatic equilibrium the sum of the gravi-tational and pressure force acting on a volume element iszero

Since the pressure decreases outwards, dP will benegative and the force dFp positive. The equilibriumcondition is that the total force acting on the volumeelement should be zero, i. e.

0 = dFg +dFp

= −G Mrρ

r2d A dr −d P d A

or

dPdr

= −G Mrρ

r2. (10.1)

This is the equation of hydrostatic equilibrium.

Mass Distribution. The second equation gives the masscontained within a given radius. Consider a sphericalshell of thickness dr at the distance r from the centre(Fig. 10.2). Its mass is

dMr = 4πr2ρ dr ,

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)

Page 6: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Produção de energia

A terceira condição de equilíbrio expressa a conservação da energia, a qual requer que qualquer energia produzida na estrela deve ser transportada para a superfície e irradiada para fora.

Consideremos novamente uma casca esférica de espessura dr e massa dMr localizada no raio r (área cinza na figura).

Seja Lr o fluxo de energia, isto é, a quantidade de energia que passa através da superfície r por unidade de tempo.

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)

Seja ε o coeficiente de produção de energia, i.e. a quantidade de energia liberada na estrela por unidade de tempo e massa. Logo, a energia por unidade de tempo produzida pela casca esférica é:

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)

Page 7: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A partir da equação anterior, obtemos:

Esta é a equação de conservação da energia.

A taxa de produção de energia depende da distância ao centro. Essencialmente, toda a energia irradiada pela estrela é produzida no núcleo quente e denso. Nas camadas exteriores, a produção de energia é negligenciável e Lr é quase constante.

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)

Page 8: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Gradiente de temperatura

A quarta equação de equilíbrio fornece a mudança de temperatura como função do raio, ou seja, o gradiente de temperatura dT/dr. A forma da equação depende de como a energia é transportada: por condução, convecção ou radiação.

No interior de estrelas normais, a condução é bastante ineficiente, uma vez que os elétrons que transportam a energia só podem viajar uma distância muito curta, antes de colidir com outras partículas.

A condução só se torna importante em estrelas compactas, como anãs brancas e estrelas de nêutrons, onde o caminho livre médio dos fótons é extremamente curto, mas o de alguns elétrons podem ser relativamente grande.

Em estrelas normais o transporte de energia por condução pode ser negligenciado.

TRANSPORTE RADIATIVO: No caso do transporte de energia por radiação, os fótons emitidos em partes mais quentes da estrela são absorvidos em regiões mais frias, as quais são aquecidas.

Quando a energia liberada no interior estelar é levada para fora inteiramente por radiação, a gente diz que a estrela está em equilíbrio radiativo.

Page 9: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

O gradiente de temperatura por radiação está relacionado com o fluxo de energia de acordo com Lr

onde a = 4σ/c = 7.564×10−16 J m−3K−4 é a constante de radiação, c é a velocidade da luz, ! a densidade, e " o coeficiente de absorção por unidade de massa (cujo valor depende da temperatura, da densidade e da composição química).

‣ A equação acima é a quarta equação básica de equilíbrio (neste curso não a demonstraremos). Ela é chamada de equação de equilíbrio radiativo, e fixa o valor do fluxo líquido de radiação (Fr = Lr / 4πr2) como uma função do gradiente de temperatura e da opacidade "! dos gases atravessados pela radiação.

‣ A derivada dT/dr é negativa, uma vez que T aumenta para dentro da estrela.

‣ É evidente que deve haver um gradiente de T para que a energia seja transportada por radiação: caso contrário, o campo de radiação seria o mesmo em todas as direcções e o fluxo líquido Fr = Lr / 4πr2, iria desaparecer.

230

10. Stellar Structure

Fig. 10.2. The mass of a thin spherical shell is the product ofits volume and its density

giving the mass continuity equation

dMr

dr= 4πr2ρ . (10.2)

Energy Production. The third equilibrium conditionexpresses the conservation of energy, requiring that anyenergy produced in the star has to be carried to thesurface and radiated away. We again consider a sphericalshell of thickness dr and mass dMr at the radius r(Fig. 10.3). Let Lr be the energy flux, i. e. the amountof energy passing through the surface r per unit time. Ifε is the energy production coefficient, i. e. the amountof energy released in the star per unit time and mass,then

dLr = Lr+dr − Lr = εdMr = 4πr2ρε dr .

Thus the energy conservation equation is

dLr

dr= 4πr2ρε . (10.3)

The rate at which energy is produced depends on thedistance to the centre. Essentially all of the energy ra-diated by the star is produced in the hot and dense core.In the outer layers the energy production is negligibleand Lr is almost constant.

Fig. 10.3. The energy flowing out of a spherical shell is thesum of the energy flowing into it and the energy generatedwithin the shell

The Temperature Gradient. The fourth equilibriumequation gives the temperature change as a functionof the radius, i. e. the temperature gradient dT/dr. Theform of the equation depends on how the energy istransported: by conduction, convection or radiation.

In the interiors of normal stars conduction is veryinefficient, since the electrons carrying the energy canonly travel a short distance without colliding with otherparticles. Conduction only becomes important in com-pact stars, white dwarfs and neutron stars, where themean free path of photons is extremely short, but that ofsome electrons can be relatively large. In normal starsconductive energy transport can be neglected.

In radiative energy transport, photons emitted in hot-ter parts of the star are absorbed in cooler regions, whichthey heat. The star is said to be in radiative equilibrium,when the energy released in the stellar interior is carriedoutwards entirely by radiation.

The radiative temperature gradient is related to theenergy flux Lr according to

dTdr

=!

− 34ac

"!κρ

T 3

"!Lr

4πr2

", (10.4)(1)

Page 10: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

TRANSPORTE CONVECTIVO: Se a transferência radiativa de energia se torna ineficiente, o valor absoluto do gradiente de temperatura por radiação pode ficar muito grande.

Nesse caso, podem aparecer movimentos convectivos no gás, que transportam a energia para o exterior de forma mais eficiente do que a radiação. Nestes movimentos convectivos, gás quente sobe para cima até as camadas mais frias, onde ele perde a sua energia e afunda novamente.

Os elementos de gás subindo e afundando também misturam a matéria estelar, de forma que a composição das partes convectivas de uma estrela tende a ficar mais homogénea. Pelo contrário, a radiação e a condução não misturam a matéria uma vez que elas transportam energia, não gás.

Page 11: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A fim de obter o gradiente de temperatura para o caso convectivo, consideremos uma bolha de matéria que sobe. Suponhamos que o gás que constitui a bolha obedece uma equação de estado adiabática

onde P é a pressão do gás e γ o expoente adiabático γ = CP/CV, sendo CP e CV os calores específicos a pressão e volume constante respectivamente.

A suposição de equação de estado adiabática é uma aproximação razoável já que estamos pensando que a convenção acontece porque as transferências de energia por radiação e condução são desprezíveis.

O expoente adiabático γ depende do grau de ionização do gás, e pode ser calculado se conhecemos a temperatura, a densidade e a composição química da matéria. Derivando a equação acima obtemos a equação para o gradiente de temperatura convectivo:

10.1 Internal Equilibrium Conditions

231where a = 4σ/c = 7.564×10−16 J m−3 K−4 is the radi-ation constant, c the speed of light, and ρ the density.The mass absorption coefficient κ gives the amountof absorption per unit mass. Its value depends on thetemperature, density and chemical composition.

In order to derive (10.4), we consider the equation ofradiative transfer (5.44). In terms of the variables usedin the present chapter, it may be written

cos θdIνdr

= −κνρIν + jν .

In this equation κν is replaced with a suitable meanvalue κ. The equation is then multiplied with cos θ andintegrated over all directions and frequencies. On theleft hand side, Iν may be approximated with the Planckfunction Bν. The frequency integral may then be eval-uated by means of (5.16). On the right-hand side, thefirst term can be expressed in terms of the flux densityaccording to (4.2) and the integral over directions of thesecond gives zero, since jν does not depend on θ. Onethus obtains

3ddr

! ac4π

T 4"

= −κρFr .

Finally, using the relation

Fr = Lr

4πr2 ,

between the flux density Fr and the energy flux Lr , oneobtains (10.4).

The derivative dT/dr is negative, since the tem-perature increases inwards. Clearly there has to bea temperature gradient, if energy is to be transportedby radiation: otherwise the radiation field would bethe same in all directions and the net flux Fr wouldvanish.

If the radiative transfer of energy becomes inefficient,the absolute value of the radiative temperature gradientbecomes very large. In that case motions are set up in thegas, which carry the energy outwards more efficientlythan the radiation. In these convective motions, hot gasrises upwards into cooler layers, where it loses its energyand sinks again. The rising and sinking gas elementsalso mix the stellar material, and the composition ofthe convective parts of a star becomes homogeneous.Radiation and conduction, on the other hand, do notmix the material, since they move only energy, not gas.

In order to derive the temperature gradient for theconvective case, consider a rising bubble. Assume that

the gas moving with the bubble obeys the adiabaticequation of state

T ∝ P1− 1γ , (10.5)

where P is the pressure of the gas and γ , the adiabaticexponent

γ = CP/CV , (10.6)

is the ratio of the specific heats in constant pressure andconstant volume. This ratio of the specific heats dependson the ionization of the gas, and can be computed whenthe temperature, density and chemical composition areknown.

Taking the derivative of (10.5) we get the expressionfor the convective temperature gradient

dTdr

=#

1− 1γ

$TP

dPdr

. (10.7)

In the practical computation of stellar structure, oneuses either (10.4) or (10.7), depending on which equa-tion gives a less steep temperature gradient. In theoutermost layers of stars heat exchange with the sur-roundings must be taken into account, and (10.7) is nolonger a good approximation. An often used methodfor calculating the convective temperature gradient inthat case is the mixing-length theory. The theory ofconvection is a difficult and still imperfectly under-stood problem, which is beyond the scope of thispresentation.

The convective motions set in when the radiative tem-perature gradient becomes larger in absolute value thanthe adiabatic gradient, i. e. if either the radiative gradi-ent becomes steep or if the convective gradient becomessmall. From (10.4) it can be seen that a steep radiativegradient is expected, if either the energy flux densityor the mass absorption coefficient becomes large. Theconvective gradient may become small, if the adiabaticexponent approaches 1.

Boundary Conditions. In order to obtain a well-posed problem, some boundary conditions have to beprescribed for the preceding differential equations:

– There are no sources of energy or mass at the centreinside the radius r = 0; thus M0 = 0 and L0 = 0.

– The total mass within the radius R of the star is fixed,MR = M.

10.1 Internal Equilibrium Conditions

231where a = 4σ/c = 7.564×10−16 J m−3 K−4 is the radi-ation constant, c the speed of light, and ρ the density.The mass absorption coefficient κ gives the amountof absorption per unit mass. Its value depends on thetemperature, density and chemical composition.

In order to derive (10.4), we consider the equation ofradiative transfer (5.44). In terms of the variables usedin the present chapter, it may be written

cos θdIνdr

= −κνρIν + jν .

In this equation κν is replaced with a suitable meanvalue κ. The equation is then multiplied with cos θ andintegrated over all directions and frequencies. On theleft hand side, Iν may be approximated with the Planckfunction Bν. The frequency integral may then be eval-uated by means of (5.16). On the right-hand side, thefirst term can be expressed in terms of the flux densityaccording to (4.2) and the integral over directions of thesecond gives zero, since jν does not depend on θ. Onethus obtains

3ddr

! ac4π

T 4"

= −κρFr .

Finally, using the relation

Fr = Lr

4πr2 ,

between the flux density Fr and the energy flux Lr , oneobtains (10.4).

The derivative dT/dr is negative, since the tem-perature increases inwards. Clearly there has to bea temperature gradient, if energy is to be transportedby radiation: otherwise the radiation field would bethe same in all directions and the net flux Fr wouldvanish.

If the radiative transfer of energy becomes inefficient,the absolute value of the radiative temperature gradientbecomes very large. In that case motions are set up in thegas, which carry the energy outwards more efficientlythan the radiation. In these convective motions, hot gasrises upwards into cooler layers, where it loses its energyand sinks again. The rising and sinking gas elementsalso mix the stellar material, and the composition ofthe convective parts of a star becomes homogeneous.Radiation and conduction, on the other hand, do notmix the material, since they move only energy, not gas.

In order to derive the temperature gradient for theconvective case, consider a rising bubble. Assume that

the gas moving with the bubble obeys the adiabaticequation of state

T ∝ P1− 1γ , (10.5)

where P is the pressure of the gas and γ , the adiabaticexponent

γ = CP/CV , (10.6)

is the ratio of the specific heats in constant pressure andconstant volume. This ratio of the specific heats dependson the ionization of the gas, and can be computed whenthe temperature, density and chemical composition areknown.

Taking the derivative of (10.5) we get the expressionfor the convective temperature gradient

dTdr

=#

1− 1γ

$TP

dPdr

. (10.7)

In the practical computation of stellar structure, oneuses either (10.4) or (10.7), depending on which equa-tion gives a less steep temperature gradient. In theoutermost layers of stars heat exchange with the sur-roundings must be taken into account, and (10.7) is nolonger a good approximation. An often used methodfor calculating the convective temperature gradient inthat case is the mixing-length theory. The theory ofconvection is a difficult and still imperfectly under-stood problem, which is beyond the scope of thispresentation.

The convective motions set in when the radiative tem-perature gradient becomes larger in absolute value thanthe adiabatic gradient, i. e. if either the radiative gradi-ent becomes steep or if the convective gradient becomessmall. From (10.4) it can be seen that a steep radiativegradient is expected, if either the energy flux densityor the mass absorption coefficient becomes large. Theconvective gradient may become small, if the adiabaticexponent approaches 1.

Boundary Conditions. In order to obtain a well-posed problem, some boundary conditions have to beprescribed for the preceding differential equations:

– There are no sources of energy or mass at the centreinside the radius r = 0; thus M0 = 0 and L0 = 0.

– The total mass within the radius R of the star is fixed,MR = M.

(2)

Page 12: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Nas camadas mais exteriores da estrela, a troca de calor com o ambiente deve ser levada em conta, e a Eq. (2) não é uma boa aproximação.

Os movimentos convectivos acontecem quando o gradiente de temperatura radiativa se torna maior em valor absoluto do que o gradiente adiabático, i.e. tanto se o gradiente de radiação fica grande ou se o gradiente de convecção fica pequeno.

‣ A partir de (1) vemos que um gradiente radiativo grande pode ocorrer se o fluxo de energia é grande e/ou se o coeficiente de absorção de massa fica grande (matéria opaca).

‣ A partir de (2) vemos que o gradiente convectivo pode ficar pequeno se o expoente adiabático se aproxima de 1.

A teoria da convecção é difícil e ainda não é completamente entendida, mas uma abordagem mais detalhada está atém do escopo desta disciplina.

Page 13: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Condições de Contorno

A fim de obtermos um problema bem posto, algumas condições de contorno devem ser prescritas para as equações diferenciais anteriores. Estas são:

‣ Não há fontes de energia ou massa no centro da estrela (r = 0); i.e. M0 = 0 e L0 = 0.‣ A massa total dentro do raio R da estrela é fixa, MR = M.‣ A temperatura e a pressão na superfície estelar têm valores determinados, TR e PR.

Estes são muito pequenos em comparação com aqueles no interior, i.e. em geral é suficiente considerar TR = 0 e PR = 0.

Para completar o sistema de equações, precisamos de uma equação de estado que relacione a pressão com a densidade e a temperatura. Também precisamos de expressões para o coeficiente de absorção e a taxa de geração de energia, que serão apresentadas mais adiante.

A solução das equações diferenciais básicas permite obter a massa, a temperatura, a densidade e o fluxo de energia como funções da coordenada radial r. O raio e luminosidade estelar podem então ser calculados e comparados com as observações.

Page 14: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Equação de estado da matéria estelarDevido à elevada temperatura, o gás nas estrelas está quase totalmente ionizado. As interações entre as partículas individuais são pequenas em relação à energia cinética das mesmas, i.e. é uma boa aproximação considerar que o gás obedece a equação do gás ideal:

onde k é a constante de Boltzmann, # é o peso molecular médio em unidades de mH, sendo mH a massa do átomo de hidrogénio.

O peso molecular médio pode ser aproximadamente calculado assumindo ionização completa. Um átomo com carga nuclear Z produz então Z+1 partículas livres (o núcleo e Z elétrons).

‣ O hidrogénio dá origem a duas partículas por unidade de massa atómica; ‣ O hélio dá origem a três partículas por quatro unidades de massa atómica. ‣ Para todos os elementos mais pesados que H e He é suficiente tomar Z+1 como

sendo a metade do peso atômico. (Valores exatos podem ser facilmente calculados, mas a abundância de elementos pesados é tão pequena que isso não é necessário prática.)

232

10. Stellar Structure

– The temperature and pressure at the stellar surfacehave some determinate values, TR and PR. Thesewill be very small compared to those in the interior,and thus it is usually sufficient to take TR = 0 andPR = 0.

In addition to these boundary conditions one needsan expression for the pressure, which is given by theequation of state as well as expressions for the massabsorption coefficient and the energy generation rate,which will be considered later. The solution of the ba-sic differential equations give the mass, temperature,density and energy flux as functions of the radius. Thestellar radius and luminosity can then be calculated andcompared with the observations.

The properties of a stellar equilibrium model are es-sentially determined once the mass and the chemicalcomposition have been given. This result is known asthe Vogt–Russell theorem.

10.2 Physical State of the GasDue to the high temperature the gas in the stars is almostcompletely ionized. The interactions between individualparticles are small, so that, to a good approximation, thegas obeys the perfect gas equation of state,

P = kµmH

ρT , (10.8)

where k is Boltzmann’s constant, µ the mean molecularweight in units of mH, and mH the mass of the hydrogenatom.

The mean molecular weight can be approximatelycalculated assuming complete ionization. An atom withnuclear charge Z then produces Z +1 free particles (thenucleus and Z electrons). Hydrogen gives rise to twoparticles per atomic mass unit; helium gives rise to threeparticles per four atomic mass units. For all elementsheavier than hydrogen and helium it is usually sufficientto take Z +1 to be half the atomic weight. (Exact valuescould easily be calculated, but the abundance of heavyelements is so small that this is usually not necessary.)In astrophysics the relative mass fraction of hydrogen isconventionally denoted by X, that of helium by Y andthat of all heavier elements by Z, so that

X +Y + Z = 1 . (10.9)

(The Z occuring in this equation should not be confusedwith the nuclear charge, which is unfortunately denotedby the same letter.) Thus the mean molecular weightwill be

µ = 1

2X + 34 Y + 1

2 Z. (10.10)

At high temperatures the radiation pressure has tobe added to the gas pressure described by the perfectgas equation. The pressure exerted by radiation is (seep. 239)

Prad = 13

aT 4 , (10.11)

where a is the radiation constant. Thus the total pressureis

P = kµmH

ρT + 13

aT 4 . (10.12)

The perfect gas law does not apply at very highdensities.

The Pauli exclusion principle states that an atom withseveral electrons cannot have more than one electronwith all four quantum numbers equal. This can also begeneralized to a gas consisting of electrons (or otherfermions). A phase space can be used to describe theelectrons. The phase space is a 6-dimensional space,three coordinates of which give the position of the par-ticle and the other three coordinates the momenta in x,y and z directions. A volume element of the phase spaceis

∆V = ∆x∆y∆z∆px∆py∆pz . (10.13)

From the uncertainty principle it follows that the small-est meaningful volume element is of the order of h3.According to the exclusion principle there can be onlytwo electrons with opposite spins in such a volume ele-ment. When density becomes high enough, all volumeelements of the phase space will be filled up to a certainlimiting momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the densityis of the order 107 kg/m3. In ordinary stars the gasis usually nondegenerate, but in white dwarfs and inneutron stars, degeneracy is of central importance. Thepressure of a degenerate electron gas is (see p. 239)

P ≈!

h2

me

"!NV

"5/3

, (10.14)

Page 15: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Em astrofísica a fracção relativa de massa de hidrogénio é indicada por X, a do hélio por Y e a de todos os elementos mais pesados (metais) por Z, de modo que

X + Y + Z = 1

(A grandeza Z nesta equação não deve ser confundida com a carga nuclear, que, infelizmente, é denotada pela mesma letra.)

Assim, o peso molecular médio será

A altas temperaturas, a pressão de radiação deve ser adicionada à pressão do gás descrita pela equação do gás ideal. A pressão exercida pela radiação é

onde a = 4σ/c é a constante de radiação. Portanto, a pressão total fica:

232

10. Stellar Structure

– The temperature and pressure at the stellar surfacehave some determinate values, TR and PR. Thesewill be very small compared to those in the interior,and thus it is usually sufficient to take TR = 0 andPR = 0.

In addition to these boundary conditions one needsan expression for the pressure, which is given by theequation of state as well as expressions for the massabsorption coefficient and the energy generation rate,which will be considered later. The solution of the ba-sic differential equations give the mass, temperature,density and energy flux as functions of the radius. Thestellar radius and luminosity can then be calculated andcompared with the observations.

The properties of a stellar equilibrium model are es-sentially determined once the mass and the chemicalcomposition have been given. This result is known asthe Vogt–Russell theorem.

10.2 Physical State of the GasDue to the high temperature the gas in the stars is almostcompletely ionized. The interactions between individualparticles are small, so that, to a good approximation, thegas obeys the perfect gas equation of state,

P = kµmH

ρT , (10.8)

where k is Boltzmann’s constant, µ the mean molecularweight in units of mH, and mH the mass of the hydrogenatom.

The mean molecular weight can be approximatelycalculated assuming complete ionization. An atom withnuclear charge Z then produces Z +1 free particles (thenucleus and Z electrons). Hydrogen gives rise to twoparticles per atomic mass unit; helium gives rise to threeparticles per four atomic mass units. For all elementsheavier than hydrogen and helium it is usually sufficientto take Z +1 to be half the atomic weight. (Exact valuescould easily be calculated, but the abundance of heavyelements is so small that this is usually not necessary.)In astrophysics the relative mass fraction of hydrogen isconventionally denoted by X, that of helium by Y andthat of all heavier elements by Z, so that

X +Y + Z = 1 . (10.9)

(The Z occuring in this equation should not be confusedwith the nuclear charge, which is unfortunately denotedby the same letter.) Thus the mean molecular weightwill be

µ = 1

2X + 34 Y + 1

2 Z. (10.10)

At high temperatures the radiation pressure has tobe added to the gas pressure described by the perfectgas equation. The pressure exerted by radiation is (seep. 239)

Prad = 13

aT 4 , (10.11)

where a is the radiation constant. Thus the total pressureis

P = kµmH

ρT + 13

aT 4 . (10.12)

The perfect gas law does not apply at very highdensities.

The Pauli exclusion principle states that an atom withseveral electrons cannot have more than one electronwith all four quantum numbers equal. This can also begeneralized to a gas consisting of electrons (or otherfermions). A phase space can be used to describe theelectrons. The phase space is a 6-dimensional space,three coordinates of which give the position of the par-ticle and the other three coordinates the momenta in x,y and z directions. A volume element of the phase spaceis

∆V = ∆x∆y∆z∆px∆py∆pz . (10.13)

From the uncertainty principle it follows that the small-est meaningful volume element is of the order of h3.According to the exclusion principle there can be onlytwo electrons with opposite spins in such a volume ele-ment. When density becomes high enough, all volumeelements of the phase space will be filled up to a certainlimiting momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the densityis of the order 107 kg/m3. In ordinary stars the gasis usually nondegenerate, but in white dwarfs and inneutron stars, degeneracy is of central importance. Thepressure of a degenerate electron gas is (see p. 239)

P ≈!

h2

me

"!NV

"5/3

, (10.14)

232

10. Stellar Structure

– The temperature and pressure at the stellar surfacehave some determinate values, TR and PR. Thesewill be very small compared to those in the interior,and thus it is usually sufficient to take TR = 0 andPR = 0.

In addition to these boundary conditions one needsan expression for the pressure, which is given by theequation of state as well as expressions for the massabsorption coefficient and the energy generation rate,which will be considered later. The solution of the ba-sic differential equations give the mass, temperature,density and energy flux as functions of the radius. Thestellar radius and luminosity can then be calculated andcompared with the observations.

The properties of a stellar equilibrium model are es-sentially determined once the mass and the chemicalcomposition have been given. This result is known asthe Vogt–Russell theorem.

10.2 Physical State of the GasDue to the high temperature the gas in the stars is almostcompletely ionized. The interactions between individualparticles are small, so that, to a good approximation, thegas obeys the perfect gas equation of state,

P = kµmH

ρT , (10.8)

where k is Boltzmann’s constant, µ the mean molecularweight in units of mH, and mH the mass of the hydrogenatom.

The mean molecular weight can be approximatelycalculated assuming complete ionization. An atom withnuclear charge Z then produces Z +1 free particles (thenucleus and Z electrons). Hydrogen gives rise to twoparticles per atomic mass unit; helium gives rise to threeparticles per four atomic mass units. For all elementsheavier than hydrogen and helium it is usually sufficientto take Z +1 to be half the atomic weight. (Exact valuescould easily be calculated, but the abundance of heavyelements is so small that this is usually not necessary.)In astrophysics the relative mass fraction of hydrogen isconventionally denoted by X, that of helium by Y andthat of all heavier elements by Z, so that

X +Y + Z = 1 . (10.9)

(The Z occuring in this equation should not be confusedwith the nuclear charge, which is unfortunately denotedby the same letter.) Thus the mean molecular weightwill be

µ = 1

2X + 34 Y + 1

2 Z. (10.10)

At high temperatures the radiation pressure has tobe added to the gas pressure described by the perfectgas equation. The pressure exerted by radiation is (seep. 239)

Prad = 13

aT 4 , (10.11)

where a is the radiation constant. Thus the total pressureis

P = kµmH

ρT + 13

aT 4 . (10.12)

The perfect gas law does not apply at very highdensities.

The Pauli exclusion principle states that an atom withseveral electrons cannot have more than one electronwith all four quantum numbers equal. This can also begeneralized to a gas consisting of electrons (or otherfermions). A phase space can be used to describe theelectrons. The phase space is a 6-dimensional space,three coordinates of which give the position of the par-ticle and the other three coordinates the momenta in x,y and z directions. A volume element of the phase spaceis

∆V = ∆x∆y∆z∆px∆py∆pz . (10.13)

From the uncertainty principle it follows that the small-est meaningful volume element is of the order of h3.According to the exclusion principle there can be onlytwo electrons with opposite spins in such a volume ele-ment. When density becomes high enough, all volumeelements of the phase space will be filled up to a certainlimiting momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the densityis of the order 107 kg/m3. In ordinary stars the gasis usually nondegenerate, but in white dwarfs and inneutron stars, degeneracy is of central importance. Thepressure of a degenerate electron gas is (see p. 239)

P ≈!

h2

me

"!NV

"5/3

, (10.14)

232

10. Stellar Structure

– The temperature and pressure at the stellar surfacehave some determinate values, TR and PR. Thesewill be very small compared to those in the interior,and thus it is usually sufficient to take TR = 0 andPR = 0.

In addition to these boundary conditions one needsan expression for the pressure, which is given by theequation of state as well as expressions for the massabsorption coefficient and the energy generation rate,which will be considered later. The solution of the ba-sic differential equations give the mass, temperature,density and energy flux as functions of the radius. Thestellar radius and luminosity can then be calculated andcompared with the observations.

The properties of a stellar equilibrium model are es-sentially determined once the mass and the chemicalcomposition have been given. This result is known asthe Vogt–Russell theorem.

10.2 Physical State of the GasDue to the high temperature the gas in the stars is almostcompletely ionized. The interactions between individualparticles are small, so that, to a good approximation, thegas obeys the perfect gas equation of state,

P = kµmH

ρT , (10.8)

where k is Boltzmann’s constant, µ the mean molecularweight in units of mH, and mH the mass of the hydrogenatom.

The mean molecular weight can be approximatelycalculated assuming complete ionization. An atom withnuclear charge Z then produces Z +1 free particles (thenucleus and Z electrons). Hydrogen gives rise to twoparticles per atomic mass unit; helium gives rise to threeparticles per four atomic mass units. For all elementsheavier than hydrogen and helium it is usually sufficientto take Z +1 to be half the atomic weight. (Exact valuescould easily be calculated, but the abundance of heavyelements is so small that this is usually not necessary.)In astrophysics the relative mass fraction of hydrogen isconventionally denoted by X, that of helium by Y andthat of all heavier elements by Z, so that

X +Y + Z = 1 . (10.9)

(The Z occuring in this equation should not be confusedwith the nuclear charge, which is unfortunately denotedby the same letter.) Thus the mean molecular weightwill be

µ = 1

2X + 34 Y + 1

2 Z. (10.10)

At high temperatures the radiation pressure has tobe added to the gas pressure described by the perfectgas equation. The pressure exerted by radiation is (seep. 239)

Prad = 13

aT 4 , (10.11)

where a is the radiation constant. Thus the total pressureis

P = kµmH

ρT + 13

aT 4 . (10.12)

The perfect gas law does not apply at very highdensities.

The Pauli exclusion principle states that an atom withseveral electrons cannot have more than one electronwith all four quantum numbers equal. This can also begeneralized to a gas consisting of electrons (or otherfermions). A phase space can be used to describe theelectrons. The phase space is a 6-dimensional space,three coordinates of which give the position of the par-ticle and the other three coordinates the momenta in x,y and z directions. A volume element of the phase spaceis

∆V = ∆x∆y∆z∆px∆py∆pz . (10.13)

From the uncertainty principle it follows that the small-est meaningful volume element is of the order of h3.According to the exclusion principle there can be onlytwo electrons with opposite spins in such a volume ele-ment. When density becomes high enough, all volumeelements of the phase space will be filled up to a certainlimiting momentum. Such matter is called degenerate.

Electron gas begins to degenerate when the densityis of the order 107 kg/m3. In ordinary stars the gasis usually nondegenerate, but in white dwarfs and inneutron stars, degeneracy is of central importance. Thepressure of a degenerate electron gas is (see p. 239)

P ≈!

h2

me

"!NV

"5/3

, (10.14)

Page 16: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Opacidade

A opacidade descreve quão difícil é para a radiação se propagar através do gás. A mudança dI da intensidade ao se propagar uma distância dr pode ser expressa como

dI = −Iαdr,

onde α é a opacidade. A opacidade depende da composição química, da temperatura e da densidade do gás. Ele é geralmente escrita como α = "!, onde ! é a densidade do gás e " o coeficiente de absorção por unidade de massa (["] = m2 / kg).

O inverso da opacidade representa o livre caminho médio da radiação no meio, isto é, a distância que pode se propagar sem ser dispersa ou absorvida: $ = 1/"ρ.

No núcleo das estrelas, três mecanismos geram a opacidade: absorção, espalhamento e reflexão. Vamos listar os vários mecanismos:

Page 17: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

1. absorção verdadeira (a)  transições ligado-ligado (absorção em linhas, excitação) (b)  transições ligado-livre (ionização) (c)  transições livre-livre (bremstrahlung: um elétron livre no campo de um íon pode absorver uma quantidade arbitrária de energia, e aumentar sua energia cinética).

2. espalhamento Thomson de fótons por elétrons livres — se o elétron não adquirir velocidade relativística, chama-se efeito Compton coerente. O termo coerente implica que a reemissão é na mesma frequência da radiação incidente. Se os elétrons forem relativísticos, a reemissão é incoerente. Esse processo, embora não seja uma absorção real, atenua o feixe de radiação, porque o elétron re-irradia, ou espalha, a luz em outra direção.

3. absorção por íons negativos

4. absorção molecular;

5. espalhamento Rayleigh (absorção da radiação por uma molécula, indo para um estado excitado e subsequente reemissão em qualquer direção);

Page 18: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

6. espalhamento Raman (absorção da radiação por uma molécula, indo para um estado excitado e subsequente emissão de radiação em outra frequência, pois a molécula passa para um outro estado vibracional ou rotacional).

7. produção de pares;

8. espalhamento Compton incoerente (freqüência diferente) por elétrons relativísticos;

9. absorção nuclear;

10. espalhamento fóton-fóton;

11. processos fóton-neutrinos.

12. etc….

Page 19: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A fonte de energia das estrelas são as reações de fusão termonuclear que acontecem no interior estelar.

Nas reações de fusão, elementos leves são transformados em elementos mais pesados. Os produtos finais da reacção têm massa total menor que os núcleos iniciais. Esta diferença de massa é liberada como energia de acordo com a relação E = mc2.

O núcleo atómico é formado por prótons e nêutrons, colectivamente denominados núcleons. Definimos:

mp = massa do próton, mn = massa do nêutron, Z = carga nuclear = número atómico, N = número de nêutrons, A = Z + N = peso atómico, m(Z, N) = massa do núcleo.

A massa do núcleo é menor do que a soma das massas de todos os seus núcleons. A diferença é chamada de energia de ligação (energia de binding). A energia de binding por núcleon é:

Fontes de energia estelar

234

10. Stellar Structure

Fig. 10.4. The nuclear bind-ing energy per nucleon asa function of the atomicweight. Among isotopeswith the same atomicweight the one with thelargest binding energy isshown. The points cor-respond to nuclei witheven proton and neutronnumbers, the crosses tonuclei with odd massnumbers. Preston, M.A.(1962): Physics of theNucleus (Addison-WesleyPublishing Company, Inc.,Reading, Mass.)

high enough for thermonuclear fusion reactions to takeplace.

In fusion reactions light elements are transformedinto heavier ones. The final reaction products havea smaller total mass than the initial nuclei. This massdifference is released as energy according to Einstein’srelation E = mc2. Thermonuclear reactions are com-monly referred to as burning, although they have norelation to the chemical burning of ordinary fuels.

The atomic nucleus consists of protons and neutrons,together referred to as nucleons. We define

mp = proton mass ,

mn = neutron mass ,

Z = nuclear charge = atomic number ,

N = neutron number ,

A = Z + N = atomic weight ,

m(Z, N) = mass of the nucleus .

The mass of the nucleus is smaller than the sum ofthe masses of all its nucleons. The difference is calledthe binding energy. The binding energy per nucleon is

Q = 1A

(Zmp + Nmn −m(Z, N))c2 . (10.19)

It turns out that Q increases towards heavier elementsup to iron (Z = 26). Beyond iron the binding energyagain begins to decrease (Fig. 10.4).

It is known that the stars consist mostly of hydrogen.Let us consider how much energy would be releasedby the fusion of four hydrogen nuclei into a helium nu-cleus. The mass of a proton is 1.672×10−27 kg andthat of a helium nucleus is 6.644×10−27 kg. The massdifference, 4.6×10−29 kg, corresponds to an energydifference E = 4.1×10−12 J. Thus 0.7% of the massis turned into energy in the reaction, corresponding toan energy release of 6.4×1014 J per one kilogram ofhydrogen. This should be compared with our previousestimate that 3×1013 J/kg is needed.

Already in the 1930’s it was generally acceptedthat stellar energy had to be produced by nuclear fu-sion. In 1938 Hans Bethe and independently CarlFriedrich von Weizsäcker put forward the first de-tailed mechanism for energy production in the stars, thecarbon–nitrogen–oxygen (CNO) cycle. The other im-portant energy generation processes (the proton–protonchain and the triple-alpha reaction) were not proposeduntil the 1950’s.

The Proton–Proton Chain (Fig. 10.5). In stars withmasses of about that of the Sun or smaller, the energy

Page 20: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A energia de binding Q aumenta no sentido de elementos mais pesados até ao ferro (Z = 26). Além ferro a energia de binding novamente começa a diminuir.234

10. Stellar Structure

Fig. 10.4. The nuclear bind-ing energy per nucleon asa function of the atomicweight. Among isotopeswith the same atomicweight the one with thelargest binding energy isshown. The points cor-respond to nuclei witheven proton and neutronnumbers, the crosses tonuclei with odd massnumbers. Preston, M.A.(1962): Physics of theNucleus (Addison-WesleyPublishing Company, Inc.,Reading, Mass.)

high enough for thermonuclear fusion reactions to takeplace.

In fusion reactions light elements are transformedinto heavier ones. The final reaction products havea smaller total mass than the initial nuclei. This massdifference is released as energy according to Einstein’srelation E = mc2. Thermonuclear reactions are com-monly referred to as burning, although they have norelation to the chemical burning of ordinary fuels.

The atomic nucleus consists of protons and neutrons,together referred to as nucleons. We define

mp = proton mass ,

mn = neutron mass ,

Z = nuclear charge = atomic number ,

N = neutron number ,

A = Z + N = atomic weight ,

m(Z, N) = mass of the nucleus .

The mass of the nucleus is smaller than the sum ofthe masses of all its nucleons. The difference is calledthe binding energy. The binding energy per nucleon is

Q = 1A

(Zmp + Nmn −m(Z, N))c2 . (10.19)

It turns out that Q increases towards heavier elementsup to iron (Z = 26). Beyond iron the binding energyagain begins to decrease (Fig. 10.4).

It is known that the stars consist mostly of hydrogen.Let us consider how much energy would be releasedby the fusion of four hydrogen nuclei into a helium nu-cleus. The mass of a proton is 1.672×10−27 kg andthat of a helium nucleus is 6.644×10−27 kg. The massdifference, 4.6×10−29 kg, corresponds to an energydifference E = 4.1×10−12 J. Thus 0.7% of the massis turned into energy in the reaction, corresponding toan energy release of 6.4×1014 J per one kilogram ofhydrogen. This should be compared with our previousestimate that 3×1013 J/kg is needed.

Already in the 1930’s it was generally acceptedthat stellar energy had to be produced by nuclear fu-sion. In 1938 Hans Bethe and independently CarlFriedrich von Weizsäcker put forward the first de-tailed mechanism for energy production in the stars, thecarbon–nitrogen–oxygen (CNO) cycle. The other im-portant energy generation processes (the proton–protonchain and the triple-alpha reaction) were not proposeduntil the 1950’s.

The Proton–Proton Chain (Fig. 10.5). In stars withmasses of about that of the Sun or smaller, the energy

Page 21: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Já na década de 1930, era geralmente aceito que a energia estelar era produzida por fusão nuclear. Em 1938, Hans Bethe apresentou o primeiro mecanismo para a produção de energia nas estrelas, o ciclo carbono-nitrogénio-oxigénio (CNO). Os outros processos importantes de geração de energia (a cadeia próton-próton e a reação triplo-alfa) não foram propostas até a década de 1950.

Page 22: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

O CICLO PRÓTON-PRÓTON

Em estrelas com massas de aproximadamente a do Sol ou menor, a energia é produzida pelo ciclo próton-próton (pp). Ele consiste nos seguintes passos:

Para cada reacção (3) as reacções (1) e (2) devem acontecer duas vezes. O neutrino %e produzido em (1) pode escapar livremente da estrela e leva parte da energia liberada. O pósitron e+ é aniquilado com um elétron, dando origem a dois fótons gama.

A segunda reacção, onde um deutério e um próton formam o isótopo do hélio, 3He, é muito rápida em comparação com a anterior. Assim, a abundância de deutério no interior das estrelas é muito pequena.

O último passo no ciclo pp pode assumir três formas diferentes. O ciclo PPI, acima, é o mais provável. No Sol, 91% da energia é produzida pelo ciclo PPI. É também possível para núcleos 3He para unir em núcleos 4He em dois ramos adicionais da cadeia pp.

10.3 Stellar Energy Sources

235Fig. 10.5. The proton–proton chain. In theppI branch, four pro-tons are transformed intoone helium nucleus, twopositrons, two neutrinosand radiation. The relativeweights of the reactionsare given for conditions inthe Sun. The pp chain isthe most important energysource in stars with massbelow 1.5 M⊙

is produced by the proton–proton (pp) chain. It consistsof the following steps:

ppI: (1) 1H + 1H → 2H + e+ +νe ,

1H + 1H + e− → 2H +νe ,

(2) 2H + 1H → 3He +γ ,

(3) 3He + 3He → 4He +2 1H .

For each reaction (3) the reactions (1) and (2) haveto take place twice. The first reaction step has a verysmall probability, which has not been measured in the

laboratory. At the central density and temperature ofthe Sun, the expected time for a proton to collide withanother one to form a deuteron is 1010 years on theaverage. It is only thanks to the slowness of this reactionthat the Sun is still shining. If it were faster, the Sunwould have burnt out long ago. The neutrino producedin the reaction (1) can escape freely from the star andcarries away some of the energy released. The positrone+ is immediately annihilated together with an electron,giving rise to two gamma quanta.

The second reaction, where a deuteron and a pro-ton unite to form the helium isotope 3He, is very fast

Page 23: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

É também possível que núcleos 3He produzam núcleos 4He através dois ramos adicionais da cadeia pp.

‣ O ciclo PPI tem ∑Q = 26,20 MeV, com dois neutrinos de energia média de 0,263 MeV cada (0,42 MeV máxima).

‣ O ciclo PPII tem ∑Q = 25,67 MeV, correspondendo a uma perda por neutrinos de 4%, com neutrinos de 0,80 MeV, além dos dois de 0,263 MeV.

‣ O ciclo PPIII, com ∑Q = 19,2 MeV, corresponde a uma perda por neutrinos de 28%, com neutrinos carregando 7,2 MeV, além dos dois de 0,263 MeV.

‣ No Sol, o PPI contribui com 85% da luminosidade, PPII com 15% e PPIII com 0,015%.

236

10. Stellar Structure

compared to the preceding one. Thus the abundance ofdeuterons inside stars is very small.

The last step in the pp chain can take three differentforms. The ppI chain shown above is the most probableone. In the Sun 91% of the energy is produced by theppI chain. It is also possible for 3He nuclei to unite into4He nuclei in two additional branches of the pp chain.

ppII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + e− → 7Li +νe ,

(5) 7Li + 1H → 4He + 4He ,

ppIII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + 1H → 8B +γ ,

(5) 8B → 8Be + e+ +νe ,

(6) 8Be → 4He + 4He .

The Carbon Cycle (Fig. 10.6). At temperatures below20 million degrees the pp chain is the main energyproduction mechanism. At higher temperatures corre-sponding to stars with masses above 1.5 M⊙, the carbon(CNO) cycle becomes dominant, because its reactionrate increases more rapidly with temperature. In theCNO cycle carbon, oxygen and nitrogen act as catalysts.The reaction cycle is the following:

(1) 12C + 1H → 13N +γ ,

(2) 13N → 13C + e+ +νe ,

(3) 13C + 1H → 14N +γ ,

(4) 14N + 1H → 15O +γ ,

(5) 15O → 15N +γ+νe ,

(6) 15N + 1H → 12C + 4He .

Reaction (4) is the slowest, and thus determines therate of the CNO cycle. At a temperature of 20 milliondegrees the reaction time for the reaction (4) is a millionyears.

The fraction of energy released as radiation in theCNO cycle is slightly smaller than in the pp chain,because more energy is carried away by neutrinos.

The Triple Alpha Reaction. As a result of the pre-ceding reactions, the abundance of helium in the stellarinterior increases. At a temperature above 108 degrees

Fig. 10.6. The CNO cycle is catalysed by 12C. It transformsfour protons into a helium nucleus, two positrons, two neutri-nos and radiation. It is the dominant energy source for starsmore massive than 1.5 M⊙

the helium can be transformed into carbon in the triplealpha reaction:

(1) 4He + 4He ↔ 8Be ,

(2) 8Be + 4He → 12C +γ .

Here 8Be is unstable and decays into two heliumnuclei or alpha particles in 2.6×10−16 seconds. Theproduction of carbon thus requires the almost simulta-neous collision of three particles. The reaction is oftenwritten

3 4He → 12C +γ .

Once helium burning has been completed, at highertemperatures other reactions become possible, in whichheavier elements up to iron and nickel are built up.Examples of such reactions are various alpha reactionsand oxygen, carbon and silicon burning.

Alpha Reactions. During helium burning some of thecarbon nuclei produced react with helium nuclei to form

Page 24: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

O CICLO CNO

A temperaturas inferiores a 20 milhões de graus a cadeia pp é o mecanismo principal de produção de energia.

A temperaturas mais elevadas, correspondentes a estrelas com massas acima de 1.5 M⊙, o ciclo de carbono (CNO) torna-se dominante, porque as suas taxas de reacção aumentam mais rapidamente com a temperatura. No ciclo CNO, o carbono, o oxigênio e o nitrogênio atuam como catalisadores. O ciclo é o seguinte:

A fração da energia liberada como radiação no ciclo CNO é ligeiramente menor do que na cadeia pp, porque mais energia é levada embora por neutrinos.

Figura 24.5: O espectro de energia dos neutrinos produzidos no Sol, deacordo com o modelo padrao de John N. Bahcall e Marc H. Pinsonneault1998, Review of Modern Physics. O fluxo esta dado em contagens por cm2.O ciclo p-p e responsavel por 98% da taxa de geracao de energia no modelopadrao do Sol. As flechas no topo do grafico indicam a energia detectavelnos experimentos em andamento.

24.9.4 Ciclo CNO

O ciclo CNO domina a queima de hidrogenio para Tc ∏ 18£ 106 K, isto e,para estrelas com massa maior do 1,2 MØ, usando o C e N como catalisa-dores, com ≤CNO / T 20.

12C + p! 13N + ∞ (Q = 1, 944 MeV)13N! 13C + e+ + ∫e (0, 710 MeV) (Q = 1, 511 MeV)

13C + p! 14N + ∞ (Q = 7, 550 MeV)

310

14N + p! 15O + ∞ (Q = 7, 290 MeV)15O! 15N + e+ + ∫e (1, 000 MeV) (Q = 1, 761 MeV)

15N + p! 12C + 4He (Q = 4, 965 MeV)

XQ = 25, 02 MeV

ou, com menor probabilidade:

15N + p! 16O + ∞ (Q = 12, 126 MeV)16O + p! 17F + ∞ (Q = 0, 601 MeV)

17F! 17O + e+ + ∫e (0, 94 MeV) (Q = 2, 762 MeV)17O + p! 14N + 4He (Q = 1, 193 MeV)

Figura 24.6: Evolucao das abundancias com a temperatura do nucleo parauma estrela com massa inicial de aproximadamente 25 MØ. T8 = T/108 K.

311

Page 25: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

A REAÇÃO TRIPLO ALFA

Como resultado das reacções de prEcedentes, a abundância de hélio nos interiores estelares aumenta. A uma temperatura acima de 108 graus, o hélio pode ser transformado em carbono na reacção triplo alfa:

O 8Be é instável e decai em dois núcleos de hélio ou partículas alfa em 2,6 × 10-16 s. A produção de carbono requer, portanto, a colisão quase simultânea de três partículas. A reacção é muitas vezes escrita

Uma vez que a queima de hélio foi completada, a temperaturas mais elevadas se tornam possíveis outras reacções, em que os elementos mais pesados até ao ferro e níquel são produzidos.

Exemplos de tais reacções são: várias reacções reações alfa, queima de oxigénio, queima de carbono e queima de silício.

236

10. Stellar Structure

compared to the preceding one. Thus the abundance ofdeuterons inside stars is very small.

The last step in the pp chain can take three differentforms. The ppI chain shown above is the most probableone. In the Sun 91% of the energy is produced by theppI chain. It is also possible for 3He nuclei to unite into4He nuclei in two additional branches of the pp chain.

ppII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + e− → 7Li +νe ,

(5) 7Li + 1H → 4He + 4He ,

ppIII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + 1H → 8B +γ ,

(5) 8B → 8Be + e+ +νe ,

(6) 8Be → 4He + 4He .

The Carbon Cycle (Fig. 10.6). At temperatures below20 million degrees the pp chain is the main energyproduction mechanism. At higher temperatures corre-sponding to stars with masses above 1.5 M⊙, the carbon(CNO) cycle becomes dominant, because its reactionrate increases more rapidly with temperature. In theCNO cycle carbon, oxygen and nitrogen act as catalysts.The reaction cycle is the following:

(1) 12C + 1H → 13N +γ ,

(2) 13N → 13C + e+ +νe ,

(3) 13C + 1H → 14N +γ ,

(4) 14N + 1H → 15O +γ ,

(5) 15O → 15N +γ+νe ,

(6) 15N + 1H → 12C + 4He .

Reaction (4) is the slowest, and thus determines therate of the CNO cycle. At a temperature of 20 milliondegrees the reaction time for the reaction (4) is a millionyears.

The fraction of energy released as radiation in theCNO cycle is slightly smaller than in the pp chain,because more energy is carried away by neutrinos.

The Triple Alpha Reaction. As a result of the pre-ceding reactions, the abundance of helium in the stellarinterior increases. At a temperature above 108 degrees

Fig. 10.6. The CNO cycle is catalysed by 12C. It transformsfour protons into a helium nucleus, two positrons, two neutri-nos and radiation. It is the dominant energy source for starsmore massive than 1.5 M⊙

the helium can be transformed into carbon in the triplealpha reaction:

(1) 4He + 4He ↔ 8Be ,

(2) 8Be + 4He → 12C +γ .

Here 8Be is unstable and decays into two heliumnuclei or alpha particles in 2.6×10−16 seconds. Theproduction of carbon thus requires the almost simulta-neous collision of three particles. The reaction is oftenwritten

3 4He → 12C +γ .

Once helium burning has been completed, at highertemperatures other reactions become possible, in whichheavier elements up to iron and nickel are built up.Examples of such reactions are various alpha reactionsand oxygen, carbon and silicon burning.

Alpha Reactions. During helium burning some of thecarbon nuclei produced react with helium nuclei to form

236

10. Stellar Structure

compared to the preceding one. Thus the abundance ofdeuterons inside stars is very small.

The last step in the pp chain can take three differentforms. The ppI chain shown above is the most probableone. In the Sun 91% of the energy is produced by theppI chain. It is also possible for 3He nuclei to unite into4He nuclei in two additional branches of the pp chain.

ppII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + e− → 7Li +νe ,

(5) 7Li + 1H → 4He + 4He ,

ppIII: (3) 3He + 4He → 7Be +γ ,

(4) 7Be + 1H → 8B +γ ,

(5) 8B → 8Be + e+ +νe ,

(6) 8Be → 4He + 4He .

The Carbon Cycle (Fig. 10.6). At temperatures below20 million degrees the pp chain is the main energyproduction mechanism. At higher temperatures corre-sponding to stars with masses above 1.5 M⊙, the carbon(CNO) cycle becomes dominant, because its reactionrate increases more rapidly with temperature. In theCNO cycle carbon, oxygen and nitrogen act as catalysts.The reaction cycle is the following:

(1) 12C + 1H → 13N +γ ,

(2) 13N → 13C + e+ +νe ,

(3) 13C + 1H → 14N +γ ,

(4) 14N + 1H → 15O +γ ,

(5) 15O → 15N +γ+νe ,

(6) 15N + 1H → 12C + 4He .

Reaction (4) is the slowest, and thus determines therate of the CNO cycle. At a temperature of 20 milliondegrees the reaction time for the reaction (4) is a millionyears.

The fraction of energy released as radiation in theCNO cycle is slightly smaller than in the pp chain,because more energy is carried away by neutrinos.

The Triple Alpha Reaction. As a result of the pre-ceding reactions, the abundance of helium in the stellarinterior increases. At a temperature above 108 degrees

Fig. 10.6. The CNO cycle is catalysed by 12C. It transformsfour protons into a helium nucleus, two positrons, two neutri-nos and radiation. It is the dominant energy source for starsmore massive than 1.5 M⊙

the helium can be transformed into carbon in the triplealpha reaction:

(1) 4He + 4He ↔ 8Be ,

(2) 8Be + 4He → 12C +γ .

Here 8Be is unstable and decays into two heliumnuclei or alpha particles in 2.6×10−16 seconds. Theproduction of carbon thus requires the almost simulta-neous collision of three particles. The reaction is oftenwritten

3 4He → 12C +γ .

Once helium burning has been completed, at highertemperatures other reactions become possible, in whichheavier elements up to iron and nickel are built up.Examples of such reactions are various alpha reactionsand oxygen, carbon and silicon burning.

Alpha Reactions. During helium burning some of thecarbon nuclei produced react with helium nuclei to form

Page 26: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Reações alfa. Durante a queima de hélio alguns dos núcleos de carbono produzidos reagem com núcleos de hélio para formar oxigénio, que por sua vez reage para formar néon, etc. Estas reacções são bastante raras e, portanto, não são importantes como fontes de energia estelar. Exemplos são:

Queima de carbono. Depois que o hélio se esgota, a queima carbono começa a uma temperatura (5-8) × 1010 K:

10.4 Stellar Models

237oxygen, which in turn reacts to form neon, etc. Thesereactions are fairly rare and thus are not important asstellar energy sources. Examples are

12C + 4He → 16O +γ ,

16O + 4He → 20Ne +γ ,

20Ne + 4He → 24Mg +γ .

Carbon Burning. After the helium is exhausted, carbonburning sets in at the temperature (5–8)×1010 K:

12C + 12C → 24Mg +γ

→ 23Na + 1H

→ 20Ne + 4He

→ 23Mg +n

→ 16O +2 4He .

Oxygen Burning. Oxygen is consumed at slightlyhigher temperatures in the reactions

16O + 16O → 32S +γ

→ 31P + 1H

→ 28Si + 4He

→ 31S +n

→ 24Mg +2 4He .

Silicon Burning. After several intermediate steps theburning of silicon produces nickel and iron. The totalprocess may be expressed as

28Si + 28Si → 56Ni +γ ,

56Ni → 56Fe +2 e+ +2 νe .

When the temperature becomes higher than about109 K, the energy of the photons becomes large enoughto destroy certain nuclei. Such reactions are calledphotonuclear reactions or photodissociations.

The production of elements heavier than iron requiresan input of energy, and therefore such elements can-not be produced by thermonuclear reactions. Elementsheavier than iron are almost exclusively produced byneutron capture during the final violent stages of stellarevolution (Sect. 11.5).

The rates of the reactions presented above can bedetermined by laboratory experiments or by theoreti-cal calculations. Knowing them, one can calculate therate at which energy is released per unit mass and timeas a function of the density, temperature and chemicalcomposition:

ε = ε(T, ρ, X, Y, Z) . (10.20)

In reality the relative abundance of each of the heav-ier nuclei needs to be known, not just their totalabundance Z.

10.4 Stellar ModelsA theoretical stellar model is obtained if one solves thedifferential equations for stellar structure. As we havealready noted, the model is uniquely defined once thechemical composition and the mass of the star have beengiven.

Stars just formed out of the interstellar medium arechemically homogeneous. When stellar models for ho-mogeneous stars are plotted in the HR diagram, they fallalong the lower edge of the main sequence. The theo-retical sequence obtained in this way is called the zeroage main sequence, ZAMS. The exact position of theZAMS depends on the initial chemical composition. Forstars with an initial abundance of heavy elements likethat in the Sun, the computed ZAMS is in good agree-ment with the observations. If the initial value of Z issmaller, the theoretical ZAMS falls below the main se-quence in the subdwarf region of the HR diagram. Thisis related to the classification of stars into populations Iand II, which is discussed in Sect. 17.2.

The theoretical models also provide an explanationfor the mass–luminosity relation. The computed proper-ties of zero age main sequence stars of different massesare given in Table 10.1. The chemical composition as-sumed is X = 0.71 (hydrogen mass fraction), Y = 0.27(helium) and Z = 0.02 (heavier elements), except forthe 30 M⊙ star, which has X = 0.70 and Y = 0.28. Theluminosity of a one solar mass star is 0.74 L⊙ and theradius 0.87 R⊙. Thus the Sun has brightened and ex-panded to some extent during its evolution. However,these changes are small and do not conflict with the ev-idence for a steady solar energy output. In addition the

10.4 Stellar Models

237oxygen, which in turn reacts to form neon, etc. Thesereactions are fairly rare and thus are not important asstellar energy sources. Examples are

12C + 4He → 16O +γ ,

16O + 4He → 20Ne +γ ,

20Ne + 4He → 24Mg +γ .

Carbon Burning. After the helium is exhausted, carbonburning sets in at the temperature (5–8)×1010 K:

12C + 12C → 24Mg +γ

→ 23Na + 1H

→ 20Ne + 4He

→ 23Mg +n

→ 16O +2 4He .

Oxygen Burning. Oxygen is consumed at slightlyhigher temperatures in the reactions

16O + 16O → 32S +γ

→ 31P + 1H

→ 28Si + 4He

→ 31S +n

→ 24Mg +2 4He .

Silicon Burning. After several intermediate steps theburning of silicon produces nickel and iron. The totalprocess may be expressed as

28Si + 28Si → 56Ni +γ ,

56Ni → 56Fe +2 e+ +2 νe .

When the temperature becomes higher than about109 K, the energy of the photons becomes large enoughto destroy certain nuclei. Such reactions are calledphotonuclear reactions or photodissociations.

The production of elements heavier than iron requiresan input of energy, and therefore such elements can-not be produced by thermonuclear reactions. Elementsheavier than iron are almost exclusively produced byneutron capture during the final violent stages of stellarevolution (Sect. 11.5).

The rates of the reactions presented above can bedetermined by laboratory experiments or by theoreti-cal calculations. Knowing them, one can calculate therate at which energy is released per unit mass and timeas a function of the density, temperature and chemicalcomposition:

ε = ε(T, ρ, X, Y, Z) . (10.20)

In reality the relative abundance of each of the heav-ier nuclei needs to be known, not just their totalabundance Z.

10.4 Stellar ModelsA theoretical stellar model is obtained if one solves thedifferential equations for stellar structure. As we havealready noted, the model is uniquely defined once thechemical composition and the mass of the star have beengiven.

Stars just formed out of the interstellar medium arechemically homogeneous. When stellar models for ho-mogeneous stars are plotted in the HR diagram, they fallalong the lower edge of the main sequence. The theo-retical sequence obtained in this way is called the zeroage main sequence, ZAMS. The exact position of theZAMS depends on the initial chemical composition. Forstars with an initial abundance of heavy elements likethat in the Sun, the computed ZAMS is in good agree-ment with the observations. If the initial value of Z issmaller, the theoretical ZAMS falls below the main se-quence in the subdwarf region of the HR diagram. Thisis related to the classification of stars into populations Iand II, which is discussed in Sect. 17.2.

The theoretical models also provide an explanationfor the mass–luminosity relation. The computed proper-ties of zero age main sequence stars of different massesare given in Table 10.1. The chemical composition as-sumed is X = 0.71 (hydrogen mass fraction), Y = 0.27(helium) and Z = 0.02 (heavier elements), except forthe 30 M⊙ star, which has X = 0.70 and Y = 0.28. Theluminosity of a one solar mass star is 0.74 L⊙ and theradius 0.87 R⊙. Thus the Sun has brightened and ex-panded to some extent during its evolution. However,these changes are small and do not conflict with the ev-idence for a steady solar energy output. In addition the

Page 27: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Queima de oxigênio. O oxigênio é consumido em temperaturas ligeiramente mais elevadas nas reações

Queima de silício. Após várias etapas intermediárias, a queima de silício produz níquel e ferro. O processo total pode ser expresso como

10.4 Stellar Models

237oxygen, which in turn reacts to form neon, etc. Thesereactions are fairly rare and thus are not important asstellar energy sources. Examples are

12C + 4He → 16O +γ ,

16O + 4He → 20Ne +γ ,

20Ne + 4He → 24Mg +γ .

Carbon Burning. After the helium is exhausted, carbonburning sets in at the temperature (5–8)×1010 K:

12C + 12C → 24Mg +γ

→ 23Na + 1H

→ 20Ne + 4He

→ 23Mg +n

→ 16O +2 4He .

Oxygen Burning. Oxygen is consumed at slightlyhigher temperatures in the reactions

16O + 16O → 32S +γ

→ 31P + 1H

→ 28Si + 4He

→ 31S +n

→ 24Mg +2 4He .

Silicon Burning. After several intermediate steps theburning of silicon produces nickel and iron. The totalprocess may be expressed as

28Si + 28Si → 56Ni +γ ,

56Ni → 56Fe +2 e+ +2 νe .

When the temperature becomes higher than about109 K, the energy of the photons becomes large enoughto destroy certain nuclei. Such reactions are calledphotonuclear reactions or photodissociations.

The production of elements heavier than iron requiresan input of energy, and therefore such elements can-not be produced by thermonuclear reactions. Elementsheavier than iron are almost exclusively produced byneutron capture during the final violent stages of stellarevolution (Sect. 11.5).

The rates of the reactions presented above can bedetermined by laboratory experiments or by theoreti-cal calculations. Knowing them, one can calculate therate at which energy is released per unit mass and timeas a function of the density, temperature and chemicalcomposition:

ε = ε(T, ρ, X, Y, Z) . (10.20)

In reality the relative abundance of each of the heav-ier nuclei needs to be known, not just their totalabundance Z.

10.4 Stellar ModelsA theoretical stellar model is obtained if one solves thedifferential equations for stellar structure. As we havealready noted, the model is uniquely defined once thechemical composition and the mass of the star have beengiven.

Stars just formed out of the interstellar medium arechemically homogeneous. When stellar models for ho-mogeneous stars are plotted in the HR diagram, they fallalong the lower edge of the main sequence. The theo-retical sequence obtained in this way is called the zeroage main sequence, ZAMS. The exact position of theZAMS depends on the initial chemical composition. Forstars with an initial abundance of heavy elements likethat in the Sun, the computed ZAMS is in good agree-ment with the observations. If the initial value of Z issmaller, the theoretical ZAMS falls below the main se-quence in the subdwarf region of the HR diagram. Thisis related to the classification of stars into populations Iand II, which is discussed in Sect. 17.2.

The theoretical models also provide an explanationfor the mass–luminosity relation. The computed proper-ties of zero age main sequence stars of different massesare given in Table 10.1. The chemical composition as-sumed is X = 0.71 (hydrogen mass fraction), Y = 0.27(helium) and Z = 0.02 (heavier elements), except forthe 30 M⊙ star, which has X = 0.70 and Y = 0.28. Theluminosity of a one solar mass star is 0.74 L⊙ and theradius 0.87 R⊙. Thus the Sun has brightened and ex-panded to some extent during its evolution. However,these changes are small and do not conflict with the ev-idence for a steady solar energy output. In addition the

10.4 Stellar Models

237oxygen, which in turn reacts to form neon, etc. Thesereactions are fairly rare and thus are not important asstellar energy sources. Examples are

12C + 4He → 16O +γ ,

16O + 4He → 20Ne +γ ,

20Ne + 4He → 24Mg +γ .

Carbon Burning. After the helium is exhausted, carbonburning sets in at the temperature (5–8)×1010 K:

12C + 12C → 24Mg +γ

→ 23Na + 1H

→ 20Ne + 4He

→ 23Mg +n

→ 16O +2 4He .

Oxygen Burning. Oxygen is consumed at slightlyhigher temperatures in the reactions

16O + 16O → 32S +γ

→ 31P + 1H

→ 28Si + 4He

→ 31S +n

→ 24Mg +2 4He .

Silicon Burning. After several intermediate steps theburning of silicon produces nickel and iron. The totalprocess may be expressed as

28Si + 28Si → 56Ni +γ ,

56Ni → 56Fe +2 e+ +2 νe .

When the temperature becomes higher than about109 K, the energy of the photons becomes large enoughto destroy certain nuclei. Such reactions are calledphotonuclear reactions or photodissociations.

The production of elements heavier than iron requiresan input of energy, and therefore such elements can-not be produced by thermonuclear reactions. Elementsheavier than iron are almost exclusively produced byneutron capture during the final violent stages of stellarevolution (Sect. 11.5).

The rates of the reactions presented above can bedetermined by laboratory experiments or by theoreti-cal calculations. Knowing them, one can calculate therate at which energy is released per unit mass and timeas a function of the density, temperature and chemicalcomposition:

ε = ε(T, ρ, X, Y, Z) . (10.20)

In reality the relative abundance of each of the heav-ier nuclei needs to be known, not just their totalabundance Z.

10.4 Stellar ModelsA theoretical stellar model is obtained if one solves thedifferential equations for stellar structure. As we havealready noted, the model is uniquely defined once thechemical composition and the mass of the star have beengiven.

Stars just formed out of the interstellar medium arechemically homogeneous. When stellar models for ho-mogeneous stars are plotted in the HR diagram, they fallalong the lower edge of the main sequence. The theo-retical sequence obtained in this way is called the zeroage main sequence, ZAMS. The exact position of theZAMS depends on the initial chemical composition. Forstars with an initial abundance of heavy elements likethat in the Sun, the computed ZAMS is in good agree-ment with the observations. If the initial value of Z issmaller, the theoretical ZAMS falls below the main se-quence in the subdwarf region of the HR diagram. Thisis related to the classification of stars into populations Iand II, which is discussed in Sect. 17.2.

The theoretical models also provide an explanationfor the mass–luminosity relation. The computed proper-ties of zero age main sequence stars of different massesare given in Table 10.1. The chemical composition as-sumed is X = 0.71 (hydrogen mass fraction), Y = 0.27(helium) and Z = 0.02 (heavier elements), except forthe 30 M⊙ star, which has X = 0.70 and Y = 0.28. Theluminosity of a one solar mass star is 0.74 L⊙ and theradius 0.87 R⊙. Thus the Sun has brightened and ex-panded to some extent during its evolution. However,these changes are small and do not conflict with the ev-idence for a steady solar energy output. In addition the

Page 28: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

Quando a temperatura se torna superior a cerca de 109 K, a energia dos fótons se torna grande o suficiente para destruir certos núcleos. Tais reacções são chamadas de reacções fotonucleares ou fotodissociações.

A produção de elementos mais pesados do que o ferro requer a adição de energia (reações endotérmicas). Portanto, tais elementos não podem ser produzidos através de reacções termonucleares. Elementos mais pesados que o ferro são produzidos quase exclusivamente por captura de nêutrons durante as fases finais violentas da evolução estelar (veremos isso mais adiante).

Page 29: Capítulo 6 Astrofísica estelar: estrutura e evolução das ...UFABC – NHZ3043 – NOÇÕES DE ASTRONOMIA E COSMOLOGIA – Curso 2016.2 Prof. Germán Lugones Capítulo 6 Astrofísica

As taxas das reacções apresentadas antes podem ser determinadas por experiências de laboratório ou por cálculos teóricos. Conhecendo essas taxas, pode-se calcular a taxa na qual a energia é libertada por unidade de massa e de tempo como uma função da densidade, da composição químicas, e da temperatura:

ε = ε (t, !, X, Y, Z).

Na realidade, a abundância relativa de cada um dos núcleos mais pesados tem que ser conhecida, não apenas a sua abundância total Z.

Tipicamente, as taxas de reação termonucleares possuem uma dependência muito forte com a temperatura. Por exemplo:

εPPI ~ T4

εCNO ~ T20

ε3& ~ T41

Com uma dependência tao forte, um aumento pequeno da temperatura produz um aumento enorme na energia gerada por segundo. Por exemplo, no caso do processo 3&, um aumento de 10% na temperatura leva a um aumento de 50 vezes na taxa de produção de energia!