Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

112
UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA GISELE PINTO ROCHA BACTÉRIAS ASSOCIATIVAS E SIMBIONTES DOS NÓDULOS DE ARACHIS PINTOI (LEGUMINOSAE) Feira de Santana, BA 2007

Transcript of Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

Page 1: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA

PROGRAMA DE PÓS-GRADUAÇÃO EM BIOTECNOLOGIA

GISELE PINTO ROCHA

BACTÉRIAS ASSOCIATIVAS E SIMBIONTES DOS

NÓDULOS DE ARACHIS PINTOI (LEGUMINOSAE)

Feira de Santana, BA

2007

Page 2: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

ii

GISELE PINTO ROCHA

BACTÉRIAS ASSOCIATIVAS E SIMBIONTES DOS

NÓDULOS DE ARACHIS PINTOI (LEGUMINOSAE)

Dissertação apresentada ao Programa de Pós-graduação em Biotecnologia, da Universidade Estadual de Feira de Santana como requisito parcial para obtenção do título de Mestre em Biotecnologia. Orientador: Dr. Eduardo Gross Co-Orientador: Dr. Luciano Paganucci de Queiroz

Feira de Santana, BA

2007

Page 3: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

iii

Aos

Meus pais, Tietre e Lúcia, que foram o

começo de tudo... e que sempre me apoiaram em minhas decisões, estando sempre comigo.

Ao

Meu querido Alex, esposo, companheiro e

amigo, pelo carinho, amor, incentivo e compreensão em todos os momentos.

Aos

Meus irmãos, Tietre e Marcel, sempre presentes em minha vida.

DEDICO

Page 4: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

iv

AGRADECIMENTOS

O meu primeiro agradecimento é ao Deus da minha vida e provedor de todas

as minhas vitórias. Pai, obrigada por tudo!

Ao orientador, Prof. Dr. Eduardo Gross, pela amizade, pelos ensinamentos

profissionais, éticos e humanos, além da paciente orientação e confiança.

Ao co-orientador, Luciano Paganucci de Queiroz, pelo incentivo.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

pelo apoio financeiro ao projeto.

À Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) pela bolsa

de Desenvolvimento Tecnológico e Regional (DTR-3) concedida.

À Universidade Estadual de Feira de Santana (UEFS) e ao Programa de Pós-

graduação em Biotecnologia (PPGBiotec).

Ao Laboratório de Pesquisa em Microbiologia (LAPEM) pelo apoio ao projeto.

À Universidade Estadual de Santa Cruz (UESC) pela disponibilidade das suas

instalações.

À coordenadora da Estação de Zootecnia do Extremo Sul (CEPLAC), Bahia,

Cláudia de Paula Rezende, pela disposição e incansável ajuda na coleta dos

materiais de pesquisa.

Ao Prof. Dr. Euan K. James pela disponibilização das instalações no “Centre

for High Resolution Imaging and Processing”, Escócia.

À Valentina de Fátima, técnica da Escola Superior de Agricultura Luiz de

Queiróz (ESALQ/USP).

Ao coordenador do PPGBiotec, Prof. Dr. Aristóteles Góes-Neto, foi muito bom

poder contar com o teu incentivo e grande apoio neste projeto.

À Profa. Dra. Ana Paula Trovatti Uetanabaro, obrigada pelo apoio e

colaboração incansável, indispensáveis para uma melhor execução das atividades.

À Profa. Áurea Barreto (LAPEM) e ao Prof. Dr. Milton Roque (LAMASP) pela

atenção dispensada.

Ao Laboratório de Biologia Molecular (LAMOL) e ao Prof. Dr. Cássio Van den

Berg.

Page 5: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

v

Aos amigos e colegas do LAMOL: Ricardo, Reyjane Patrícia, Patrícia, Andréa

Karla, Daiane e Sabrina.

Ao Laboratório de Micologia (LAMIC) e ao Prof. Dr. Luis Fernando P.

Gusmão.

Ao secretário do PPGBiotec, Helton Ricardo, pela pronta disposição.

À bolsista em iniciação científica Hellen Martins (UESC) pela grande

contribuição nas atividades deste projeto e pelos dias de convívio. Valeu muito,

Hellen!

À amiga Alinne Ambrósio pela ajuda incansável, valeu o apoio!

À orientanda Jakeline Carvalho pela dedicação a este projeto. Este projeto

passou a ser seu também, Jake!

Às colegas de pós-graduação e amigas, Catinha, Suiki e Lidiane, obrigada

pela contribuição indispensável!

Às lapemnetes: Carla, Suzana, Cissa, Alice e Tai. Meninas, vocês tornaram

tudo muito mais fácil e até divertido! Ah! E tem que entrar nesta lista também o João

Ronaldo e o Cléber, não como lapemnetes, é claro (risos)!

Aos colegas do LAPEM, todos (que não são poucos), valeu turminha!!!

Aos amigos conquistados através da pós-graduação, saibam que vocês

ganharam um lugar na minha vida: Ana Paula, Anderson, Fabrício, Juliana,

Cristiana, Wagner e Irailde!

Aos meus pais e meus irmãos, vocês também tornaram este momento uma

linda realidade.

Ao meu irmão, Tietre, muito obrigada pela ajuda nunca negada e por toda a

sua paciência (risos)!

Ao meu marido, Alex, você foi um grande amigo e incentivador para esta

realização. Obrigada meu amor!

À cada um que fez parte desta história!

Page 6: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

vi

“Pondo de lado todo o impedimento... corramos com

perseverança a carreira que nos está proposta.”

(Hebreus, 12:1.)

Page 7: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

vii

RESUMO

A espécie Arachis pintoi (amendoim forrageiro), é considerada uma

leguminosa de múltiplas utilizações, tais como em pastagens consorciadas, em

bancos de proteína, para cobertura verde em áreas de plantas perenes, em

ornamentação e na proteção do solo. O amendoim forrageiro apresenta relação de

associação e simbiose com diferentes bactérias do solo. As bactérias que se

associam às plantas colonizando suas raízes são denominadas rizobactérias e

dependendo do efeito no metabolismo da planta podem ser denominadas

promotoras de crescimento. As bactérias que formam nódulos nas raízes

catalisando a redução do nitrogênio atmosférico em amônia, tornando-o disponível

para a planta a qual em contrapartida fornece fotossintatos à bactéria, estabelecem

uma relação simbiótica mutualística. Os objetivos do presente trabalho foram o de

analisar diferentes acessos de A. pintoi procedentes do sul da Bahia quanto a sua

nodulação, estudando a morfoanatomia e ultra-estrutura dos seus nódulos, e o de

isolar, caracterizar e identificar as colônias de bactérias associativas e simbiontes

desses nódulos, com intuito de estabelecer um banco de bactérias para essa

espécie vegetal de grande importância agropecuária. Os resultados

morfoanatômicos demonstraram que os nódulos desta planta podem ser

classificados como do tipo asquenomenóide com crescimento determinado. As

análises ultra-estruturais das células infectadas do nódulo evidenciaram a presença

de depósitos elétron-densos no simbiossomo, o qual encerra apenas um bacteróide

em seu interior. O tamanho desses bacteróides variou de 2 a 4 µm. Não foram

encontradas diferenças morfoanatômicas ou ultra-estruturais marcantes entre os

nódulos de A. pintoi coletados nos diferentes locais da região sul baiana. No total

foram isoladas 143 amostras de bactérias dos nódulos de A. pintoi e 11 gêneros

foram identificados utilizando o seqüenciamento parcial do rDNA 16S e comparação

através da ferramenta Blastn do GenBank: Agrobacterium, Rhizobium,

Ochrobactrum, Pseudomonas, Enterobacter, Serratia, Pandorea, Bacillus,

Paenibacillus, Brevibacillus e Corynebacteria. Os gêneros com maior número de

isolados foram Pseudomonas, Bacillus e Paenibacillus. Esses isolados constituíram

um banco de bactérias, o qual fornecerá inóculos para o amendoim forrageiro.

Palavras-chave: Nódulos. Bactérias simbiontes e associativas. Arachis pintoi.

Page 8: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

viii

ABSTRACT

Arachis pintoi (perennial peanut) is considered a multiple use legume, like

consortiated pasture, protein bank, cover crop for perennial plants, ornamentation

and soil protection. Perennial peanut presents association and symbiosis

relationships with different soil bacteria. Bacteria that associated with plants

colonizing their roots are called rizobacteria and in according of effect on plant

metabolism are denominated growth promoters. Bacteria that form nodules on roots

converting atmospheric nitrogen on ammonia and transferring to the plant, which on

counterpart give photosyntates to bacteria, establish a mutualistic symbiosis

relationship. The goals of present study were to analyze different access of A. pintoi

from south of Bahia state on their nodulation, studying morphoanatomy and

ultrastructure of their nodules, and to isolate, to characterize and to identify bacteria

colonies associated and symbiont of these nodules, with aim to establish a bacteria

bank to this important agronomic plant species. The morphoanatomic results

demonstrated that the nodules of this plant could be classified as aeschynomenoid

type with determined growth. Ultrastructural analysis of nodule infection cells

evidenced the presence of eletron dense deposits on symbiosome, which surround

only one bacteroid in its interior. Bacteroid size was between 2 - 4 µm.

Morphoanatomic and ultrastructural differences were not found among A. pintoi

nodules collected on different localities from south of Bahia. On total were isolated

143 samples of A. pintoi nodule bacteria and 11 genera were identified using 16S

rDNA sequencing comparing by Blastn tool of GenBank: Agrobacterium, Rhizobium,

Ochrobactrum, Pseudomonas, Enterobacter, Serratia, Pandorea, Bacillus,

Paenibacillus, Brevibacillus and Corynebacteria. Genera with most number of

isolates were: Pseudomonas, Bacillus and Paenibacillus. These isolates has

constituted a bacterial bank, which will provide inocula to test their effect on perennial

peanut.

Keywords: Nodules. Associatives and symbionts bacterias. Arachis pintoi.

Page 9: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

ix

LISTA DE FIGURAS

Figura 1: Características de A. pintoi. 06

Figura 2: Esquema da reação de fixação de nitrogênio, com ação da

nitrogenase, nas condições normais de temperatura e pressão. 08

Figura 3: Fases de formação da simbiose entre leguminosas e rizóbios. 13

Figura 4: Esquema da invasão de Bradyrhizobium através das múltiplas

camadas de células de pelos da raiz. 14

Figura 5: Mapa da Bahia. Municípios em que foram coletadas amostras de

nódulos de A. pintoi. 20

Figura 6: Áreas de coleta dos nódulos de A. pintoi. 24

Figura 7: Fotomicrografias de microscopia de luz dos nódulos radiculares de

A. pintoi. 33

Figura 8: Fotomicrografias de microscopia de luz dos nódulos radiculares de

A. pintoi. 34

Figura 9: Fotomicrografias de microscopia eletrônica de varredura dos

nódulos radiculares de A. pintoi. 35

Figura 10: Fotomicrografias de microscopia eletrônica de transmissão dos

nódulos radiculares de A. pintoi. 37

Figura 11: Aspectos morfológicos de colônias e de células de estirpes tipo e

isolados representativos dos nódulos de A. pintoi. 41

Figura 12: Resultados da amplificação do fragmento rDNA 16S, via

eletroforese em gel de agarose 1%. 42

Figura 13: Esquema de um nódulo tipo asquenomenóide. 68

Page 10: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

x

LISTA DE TABELAS

Tabela 1: Resultados analíticos da fertilidade completa + matéria orgânica dos

solos nos locais de coleta de nódulos de A. pintoi. 22

Tabela 2: Resultados da composição granulométrica (g/kg) dos solos nos

locais de coleta de nódulos de A. pintoi. Dispersão com NaOH. 22

Tabela 3: Primers utilizados para amplificação e seqüenciamento do rDNA

16S. 29

Tabela 4: Quantidade de isolados obtidos dos diferentes cultivares de A. pintoi

nos diferentes locais de coleta. 38

Tabela 5: Características culturais dos isolados provenientes dos nódulos de

A. pintoi. 88

Tabela 6: Caracterização morfológica das colônias selecionadas para extração

de DNA e seqüenciamento do rDNA 16S. 40

Tabela 7: Quantidade de isolados obtidos e seqüenciados dos diferentes

cultivares de A. pintoi nos diferentes locais de coleta. 42

Tabela 8: Grupos obtidos através das análises de similaridade do GenBank. 44

Tabela 9: Dados obtidos das comparações da seqüência do isolado I07 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 46

Tabela 10: Dados obtidos das comparações da seqüência do isolado I22 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 48

Tabela 11: Dados obtidos das comparações da seqüência do isolado I30 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 49

Tabela 12: Dados obtidos das comparações da seqüência do isolado I67 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 50

Tabela 13: Dados obtidos das comparações da seqüência do isolado I68 do

rDNA 16S com os primeiros resultados mais similares disponíveis 51

Page 11: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

xi

no GenBank.

Tabela 14: Dados obtidos das comparações da seqüência do isolado I82 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 52

Tabela 15: Dados obtidos das comparações da seqüência do isolado I84 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 53

Tabela 16: Dados obtidos das comparações da seqüência do isolado I85 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 54

Tabela 17: Dados obtidos das comparações da seqüência do isolado I116 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 55

Tabela 18: Dados obtidos das comparações da seqüência do isolado IB13 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 56

Tabela 19: Dados obtidos das comparações da seqüência do isolado O01 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 57

Tabela 20: Dados obtidos das comparações da seqüência do isolado O21 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 58

Tabela 21: Dados obtidos das comparações da seqüência do isolado SF04 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 59

Tabela 22: Dados obtidos das comparações da seqüência do isolado SF14 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 60

Tabela 23: Dados obtidos das comparações da seqüência do isolado SF21 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 61

Tabela 24: Dados obtidos das comparações da seqüência do isolado SF23 do 62

Page 12: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

xii

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank.

Tabela 25: Dados obtidos das comparações da seqüência do isolado B08 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 63

Tabela 26: Dados obtidos das comparações da seqüência do isolado B18 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 64

Tabela 27: Dados obtidos das comparações da seqüência do isolado B34 do

rDNA 16S com os primeiros resultados mais similares disponíveis

no GenBank. 65

Page 13: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

xiii

LISTA DE ABREVIATURAS E SIGLAS

%

µL

CEPLAC

cv

DNA

dNTP

EDTA

Embrapa

FAA

h

HUEFS

ILDIS

M

min

mL

mm

mM

NCBI

Percentagem

Microlitros

Estação de Zootecnia do

Extremo Sul

Cultivar

Ácido desoxirribonucléico

Desoxirribonucleotídeo

Ácido

etilenodiaminotetracético

Empresa Brasileira de

pesquisa Agropecuária

Formol álcool ácido

acético glacial

Hora

Herbário da Universidade

Estadual de Feira de

Santana

International Legume

Database & Information

Service

Molar

Minutos

Mililitros

Milímetros

Milimolar

National Center for

Biotechnology Information

ºC

pb

PCR

pH

pmol

q.s.p.

RPM

SDS

seg

TAE

TE

Tris

UESC

UEFS

YMA

Graus centígrados

Pares de bases

Reação em cadeia da

polimerase

Potencial

hidrogeniônico

Picomoles

Quantidade suficiente

para

Rotações por minuto

Sódio dodecil sulfato

Segundos

Tampão Tris Acetato e

EDTA

Tris - EDTA

Tri (hidroximetil)

aminometano

Universidade Estadual

de Santa Cruz

Universidade Estadual

de Feira de Santana

Yeast Mannitol Agar

Page 14: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

xiv

SUMÁRIO

1 INTRODUÇÃO 01

2

REVISÃO DA LITERATURA 07

2.1 FIXAÇÃO BIOLÓGICA DO NITROGÊNIO 07

2.2 BACTÉRIAS ASSOCIATIVAS 08

2.3 SIMBIOSE RIZÓBIO - LEGUMINOSA 11

2.4 NÓDULOS 12

2.5 RIZÓBIOS 15

2.6 RNA RIBOSSÔMICO 16S 18

3

MATERIAIS E MÉTODOS 20

3.1 LOCAIS DE COLETA DOS NÓDULOS, MATERIAL BOTÂNICO E SOLO 20

3.2 ISOLAMENTO DAS BACTÉRIAS 25

3.3 CARACTERIZAÇÃO MORFOLÓGICA DAS COLÔNIAS DE RIZÓBIOS 25

3.4 PRESERVAÇÃO DAS BACTÉRIAS 26

3.5 MORFOANATOMIA E ULTRA-ESTRUTURA DOS NÓDULOS 26

3.5.1 Microscopia de luz 26

3.5.2 Microscopia eletrônica de varredura 27

3.5.3 Microscopia eletrônica de transmissão 27

3.6 EXTRAÇÃO DE DNA GENÔMICO 28

3.7 AMPLIFICAÇÃO POR PCR DO FRAGMENTO rDNA 16S E

PURIFICAÇÃO 29

3.8 REAÇÃO DE SEQÜENCIAMENTO 30

3.9 ANÁLISE DAS SEQÜÊNCIAS OBTIDAS 30

4 RESULTADOS 31

4.1 MORFOLOGIA DOS NÓDULOS 31

4.2 ANATOMIA DOS NÓDULOS 31

4.3 ULTRA-ESTRUTURA DOS NÓDULOS 36

4.4 CARACTERIZAÇÃO DAS COLÔNIAS 38

Page 15: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

xv

4.5 CARACTERIZAÇÃO MOLECULAR DOS ISOLADOS 42

5 DISCUSSÃO 67

5.1 MORFOLOGIA, ANATOMIA E ULTRA-ESTRUTURA DOS NÓDULOS 67

5.2 CARACTERIZAÇÃO DAS COLÔNIAS 70

5.3 CARACTERIZAÇÃO DO rDNA 16S 71

6 CONCLUSÕES 75

REFERÊNCIAS 76

APÊNDICE 88

ANEXO 95

Page 16: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

1

1 INTRODUÇÃO

A introdução de leguminosa na pastagem promove incrementos na produção

animal, pelo aumento da qualidade e da quantidade da forragem em oferta,

resultante não só da participação da leguminosa na dieta do animal, mas também

dos efeitos indiretos relacionados com a fixação biológica de nitrogênio e seu

repasse ao ecossistema de pastagem (PEREIRA, 2007a).

Segundo Pereira (2007a), nas últimas duas décadas as pesquisas com

leguminosas forrageiras no Brasil ganharam impulso nunca antes registrado.

Centenas de novos acessos de leguminosas, de diferentes origens, foram avaliados

em ensaios individuais ou em redes nacionais ou internacionais.

A baixa persistência das leguminosas na pastagem tem sido citada como a

principal limitação à sua inclusão nos sistemas de produção ou até mesmo à

continuidade das pesquisas necessárias ao lançamento de novos materiais. Alguns

casos de sucesso são suficientes para estimular produtores e técnicos na

recomendação do uso de leguminosas e melhorar a produtividade e a

sustentabilidade da pastagem (PEREIRA, 2007a).

Praticamente todas as espécies do gênero Arachis produzem forragem de

boa qualidade e em quantidade razoável, quando comparadas com espécies de

outros gêneros de leguminosas utilizadas comercialmente (VALLS; SIMPSON,

1994). Dentre as várias espécies do gênero que apresentam potencial para

utilização em pastagens destaca-se Arachis pintoi Krapov. & W.C. Greg.

(KRAPOVICKAS; GREGORY, 1994) (Figura 1), conhecida como amendoim

forrageiro (VALLS, 1992).

As espécies do gênero Arachis ocorrem naturalmente em cinco países da

América do Sul: Argentina, Bolívia, Brasil, Paraguai e Uruguai. Existem

aproximadamente 80 espécies neste gênero e 64 destas ocorrem no Brasil, sendo

48 restritas ao território brasileiro; 15 estão distribuídas na Bolívia, 14 no Paraguai,

seis na Argentina e duas no Uruguai (VALLS; SIMPSON, 1994).

A família Leguminosae possui 727 gêneros e 19.327 espécies conhecidas e

está dividida em três subfamílias: Caesalpinioideae (4 tribos e 2250 espécies),

Mimosoideae (4 tribos e 3270 espécies) e Papilionoideae (28 tribos e 13800

espécies) (LEWIS et al., 2005). Arachis pintoi (amendoim forrageiro) é uma

Page 17: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

2

Papilionoideae que pertence à Tribo Aeschynomeneae, seção Caulorrhizae, e o

gênero, que é sul-americano e que inclui também o amendoim (A. hypogaea),

apresenta 72 taxa aceitos pelo ILDIS (International Legume Database & Information

Service) atualmente (INTERNATIONAL..., 2007).

O amendoim forrageiro é uma leguminosa perene de hábito herbáceo, de

crescimento rasteiro e altura de 20 cm a 40 cm. A floração é indeterminada e

contínua, cálice bilabiado pubescente com um lábio inferior simples e um lábio

superior amplo com quatro dentes pequenos no ápice, provenientes da fusão de

quatro sépalas. A corola é formada por um estandarte de cor amarela, com asas

também amarelas e delgadas (Figura 1A e 1B). A quilha é pontiaguda, curvada e

aberta ventralmente na base, muito delgada e de cor amarelo claro. O caule é

ramificado, cilíndrico, com entrenós. Os nódulos geralmente encontram-se na raiz

(Figura 1C), podendo estar presente também no caule. As folhas são alternas,

glabras e apresentam pêlos sedosos nas margens (Figura 1D). Possui raiz pivotante

e é uma espécie geocárpica (PEREIRA, 2007b), ou seja, o fruto se desenvolve

dentro do solo (Figura 1E e 1F).

A principal expectativa do uso de leguminosas em pastagens é a melhoria da

produção animal em relação à pastagem de gramínea exclusiva com redução dos

custos de produção, quando comparados com estas mesmas pastagens submetidas

à adubação com nitrogênio mineral. Este benefício é reportado como sendo efeito da

participação direta da leguminosa melhorando e diversificando a dieta do animal e

também do aumento da disponibilidade de forragem pelo aporte de nitrogênio ao

sistema, através da sua reciclagem e transferência para a gramínea acompanhante

(PEREIRA, 2007a).

O melhor desempenho animal em pastagens consorciadas é explicado por

apresentarem em geral melhor valor alimentício em relação às gramíneas. Maiores

níveis de proteína bruta (PB) e de digestibilidade são os atributos mais marcantes.

Verifica-se ainda que, de uma maneira geral, a presença de leguminosa promove

melhoria nos níveis de PB da gramínea acompanhante, mesmo quando comparada

à adubação nitrogenada (PEREIRA et al., 1990 apud PEREIRA, 2007a).

Segundo LADEIRA et al. (2002) esta leguminosa forrageira de alta qualidade

possui valores médios de proteína bruta variando de 12,2% a 21,8% nas folhas

durante o período seco e chuvoso, respectivamente, e 9,3% e 13,5% nos ramos

durante os mesmos períodos (ARGEL; PIZARRO, 1992). Em experimento conduzido

Page 18: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

3

em Itabela (BA) os valores de proteína bruta de dez genótipos de amendoim

forrageiro avaliados variaram de 23,29% a 26,99% (OLIVEIRA et al., 2005). A

digestibilidade média encontrada na época da seca foi de 67%, e na época chuvosa

de 62% (RINCÓN et al., 1992), além de apresentar grande aceitabilidade pelos

animais (LASCANO; THOMAS, 1988; CARULLA; LASCANO; WARD, 1991).

A. pintoi tem sido utilizada como cobertura do solo (“cover crop”) e adubo

verde (PERIN et al., 2003). Vários estudos corroboram a grande importância desta

espécie na cobertura do solo, não afetando a produção, o crescimento e o

desenvolvimento dos sistemas agroflorestais e silvipastoris, e auxiliando na

manutenção e mesmo melhoramento das características físicas, químicas e

biológicas edáficas (PÉREZ, 1996; PÉREZ-JIMÉNEZ et al., 1996; ANDRADE;

VALENTIM, 1997).

O amendoim forrageiro apresenta excelentes características agronômicas,

como adaptação a solos ácidos, resistência e tolerância a pestes e doenças, e é

prolífera na produção de sementes em alguns acessos (ARGEL; PIZARRO, 1992).

Persiste ao pastoreio, devido ao hábito de crescimento reptante e habilidade de

enraizar nos estolhos que protegem o solo dos efeitos erosivos das águas das

chuvas fortes, conferindo a alta resistência à desfolha e reserva de sementes no solo

(JONES, 1993; MIRANDA; VIEIRA; CADISCH, 2003; LIMA et al., 2006). A. pintoi

possui seus pontos de crescimento protegidos, permitindo que uma área foliar

residual satisfatória seja mantida, mesmo quando submetido a um pastejo contínuo

(GROF, 1985).

A habilidade das leguminosas em simbiose com rizóbios de fixar o N2 tem

grande importância tanto do ponto de vista ecológico como agronômico. De maneira

geral, as folhas das leguminosas apresentam maior conteúdo em nitrogênio que as

das demais plantas que crescem no mesmo local (SPRENT, 2001). Essa

característica tem importantes implicações práticas na ciclagem de nutrientes devido

à rápida mineralização das suas folhas ricas em nitrogênio (SPRENT, 2001) e no

uso como forrageira devido ao alto conteúdo de compostos nitrogenados (ALLEN;

ALLEN, 1981).

Segundo Evans e Burris (1992), as bactérias fixadoras de nitrogênio,

diazotróficas, tão importantes para o processo de ciclagem de nutrientes, podem ser

caracterizadas em três grupos: bactérias diazotróficas de vida livre, que fixam o

nitrogênio para o seu próprio uso; diazotrofos associativos, que contribuem para o

Page 19: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

4

crescimento da planta sem a formação de estruturas diferenciadas, não

estabelecendo uma simbiose, e os diazotrofos simbiontes que estabelecem relação

com o macrossimbionte onde são formadas estruturas diferenciadas, os nódulos.

O amendoim forrageiro apresenta relação simbiótica com determinadas

bactérias fixadoras de nitrogênio atmosférico, conhecidas e aqui doravante

chamadas de rizóbios. A fixação biológica do nitrogênio (FBN) é um processo que

consome ATP ao invés de derivados de petróleo para a produção de amônia, sendo,

portanto, renovável e de baixo custo, não provocando impactos ambientais. Nos

nódulos localizados nas raízes e formados pela associação mutualística, a bactéria

reduz o nitrogênio atmosférico (N2) em amônia, tornando-o disponível para a planta,

a qual, em contrapartida, fornece fotossintatos ao rizóbio (ALLEN; ALLEN, 1981).

As bactérias fixadoras de nitrogênio, conforme a segunda edição do Manual

Bergey´s de Sistemática em Bacteriologia® (GARRITY; WINTERS; SEARLES,

2001), pertencem ao Filo Proteobacteria e às Classes Alfaproteobacteria,

Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria e

Epsilonproteobacteria. O amendoim forrageiro geralmente forma associações com

alfaproteobactérias de crescimento lento e produtoras de álcalis do gênero

Bradyrhizobium. Entretanto, algumas bactérias do gênero Rhizobium (de

crescimento rápido e produtoras de ácidos) já foram isoladas dos nódulos dessa

planta (PINTO et al., 2004). Essa simbiose é muito importante por poder dispensar

parcial ou totalmente a utilização de fertilizantes nitrogenados, contribuindo assim

para viabilizar programas de reflorestamento e minimizar possíveis impactos

ambientais (CHEN et al., 2003). Pesquisas que visam o isolamento e identificação

de estirpes de rizóbio eficientes no processo de fixação de nitrogênio podem

subsidiar a melhoria do estado nutricional da planta aumentando sua produtividade.

Vale ressaltar a presença de outros microrganismos no solo rizosférico que

podem contribuir para a decomposição e mineralização da matéria orgânica,

nitrificação, amonificação, agregação e estabilidade de agregados do solo, produção

de substâncias reguladoras de crescimento, de enzimas, vitaminas e co-fatores e

diferentes tipos de simbioses (MOREIRA; SIQUEIRA, 2006).

Os objetivos do presente trabalho foram o de analisar diferentes acessos de

A. pintoi procedentes do sul da Bahia quanto à sua nodulação, estudando a

morfoanatomia e ultra-estrutura dos seus nódulos, e o de isolar, caracterizar e

identificar as colônias de bactérias associativas e simbiontes desses nódulos, com

Page 20: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

5

intuito de estabelecer um banco de bactérias para essa espécie vegetal de grande

importância agropecuária.

Page 21: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

6

D

E F

A

C D

B

C

Figura 1: Características de Arachis pintoi. A. Flor em vista frontal. B. Vista geral do hábito reptante da

planta. C. Detalhe dos nódulos na raiz principal e raízes secundárias. D. Detalhe das folhas alternas e

glabras com folíolos. E. Sementes geocárpicas. F. Detalhe da semente no solo. Fig. 1A, 10 mm; Fig. 1B,

30 mm; Fig. 1C, 10 mm; Fig. 1D, 10 mm; Fig. 1E, 45 mm; Fig. 1F, 15 mm.

Page 22: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

7

2 REVISÃO DA LITERATURA

2.1 FIXAÇÃO BIOLÓGICA DE NITROGÊNIO

Com a exceção da água, o nitrogênio é geralmente considerado o recurso

mais limitante para o crescimento de plantas no seu ambiente natural (FRANCO;

DÖBEREINER, 1994). O nitrogênio, além do carbono, oxigênio e hidrogênio, é o

nutriente mais abundante na matéria viva, participando na composição de moléculas

de ácidos nucléicos e proteínas dentre outras. Entretanto, apesar de ser requerido

em quantidades significativas pelos seres vivos, na natureza este elemento é

encontrado em abundância em uma forma quimicamente muito estável, o nitrogênio

molecular (N2), e sua pronta assimilação pela maioria dos seres vivos é limitada,

requerendo sua transformação para uma forma combinada que facilite sua

assimilação (MARIN et al., 2007).

A atmosfera terrestre é composta por 78% de gás dinitrogênio (N2). A

introdução do nitrogênio atmosférico, via fixação biológica de nitrogênio (FBN), no

circuito dos ciclos biogeoquímicos do nitrogênio tem freqüentemente efeitos positivos

no ambiente e na economia (STACEY; BURRIS; EVANS, 1992).

O problema básico para a fixação do nitrogênio é a presença da tripla ligação

(N≡N) o que torna este gás extremamente estável à temperatura ambiente

(SPRENT; SPRENT, 1990; EVANS; BURRIS, 1992). Apesar do N2 ser bastante

abundante na atmosfera terrestre, apenas uma pequena parte das espécies de

procariotos possui a enzima nitrogenase, indispensável para reduzir o N2 para a

forma inorgânica combinada NH3 (amônia) que pode, então, tornar-se disponível

para plantas e outros organismos denominados fixadores de nitrogênio ou

diazotróficos e o mecanismo responsável pela incorporação de nitrogênio à

biomassa é conhecido como fixação biológica de nitrogênio (FBN) (MOREIRA;

SIQUEIRA, 2006).

Portanto, a FBN é o processo pelo qual a maior parte do nitrogênio

atmosférico é incorporada à matéria viva, ao longo da evolução do nosso planeta.

Ainda hoje, este processo constitui a principal via de incorporação de nitrogênio ao

ecossistema, que constantemente é reciclado para a atmosfera principalmente por

Page 23: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

8

organismos decompositores de matéria orgânica do solo (MARIN et al., 2007). A

FBN, além de garantir um ecossistema em equilíbrio, possibilita a redução na

aplicação de doses excessivas de compostos nitrogenados, como por exemplo, o

nitrato, que contamina as águas e os vegetais consumidos pelo homem,

contribuindo para o desenvolvimento de uma agricultura menos agressiva ao

ambiente. Embora a contribuição dos processos industriais seja bastante

significativa em se tratando dos sistemas manejados agrícolas e florestais, se forem

considerados também os ecossistemas naturais, o processo biológico contribui com

a maior parte do nitrogênio fixado anualmente no planeta – 175 x 106 toneladas, ou

seja, cerca de 65% do total (MOREIRA; SIQUEIRA, 2006).

Os rizóbios, organismos diazotróficos, possuem a enzima nitrogenase que é

capaz de reduzir o N2 para a forma inorgânica combinada NH3 (Figura 2), que pode

então se tornar disponível para as plantas com as quais essas bactérias fazem

simbiose (MOREIRA; SIQUEIRA, 2006).

N2 + 8H+ + 16 ATP + 8e- 2NH3 + H2 + 16 ADP + 16 Pi

Figura 2: Esquema da reação de fixação de nitrogênio, com ação da nitrogenase, nas condições

normais de temperatura e pressão.

2.2 BACTÉRIAS ASSOCIATIVAS

Rizosfera é a zona do solo sob influência do sistema radicular. As

propriedades físico-químicas da rizosfera têm elevada estabilidade, que associadas

ao fornecimento constante de substratos orgânicos e fatores de crescimento,

favorecem intensa atividade metabólica das populações de microrganismos,

influenciando direta e positivamente o tempo de geração microbiano (MOREIRA;

SIQUEIRA, 2006). Segundo Kuss (2006), o crescimento e atividade microbianos são

intensos na rizosfera devido à presença de compostos orgânicos liberados pelas

raízes e que podem ser utilizados como fonte de energia e carbono.

Bactérias que se associam às plantas, colonizando suas raízes, são

denominadas rizobactérias, e podem ser classificadas de acordo com seus efeitos

nitrogenase

Page 24: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

9

sobre o crescimento vegetal: benéficas, deletérias ou neutras (DOBBELAERE;

VANDERLEYDEN; OKON, 2003). Quando benéficas, as bactérias colonizam o

sistema radicular e promovem o crescimento vegetal, sendo denominadas

rizobactérias promotoras de crescimento de plantas (RPCPs), em inglês “plant

growth promoting rhizobacteria” (KUSS, 2006).

Entre as rizobactérias existe um gradiente de proximidade e intimidade com a

raiz: (1) bactérias vivendo no solo ao redor das raízes (utilizando metabólitos

liberados pelas raízes como fontes de C e N); (2) bactérias colonizando o rizoplano

(superfície da raiz); (3) bactérias residindo no tecido radicular e; (4) bactérias

vivendo no interior das células em estruturas radiculares especializadas (nódulos,

como é o caso da interação rizóbio - leguminosa) (KUSS, 2006).

Rizobactérias que se instalam no interior das raízes das plantas, formando

associações, são endofíticas (MOREIRA; SIQUEIRA, 2006), mas o conceito se

estende ainda para bactérias que podem ser isoladas de plantas cujos tecidos foram

desinfestados superficialmente ou extraídas do interior das plantas, e que não

causam prejuízo visível nas plantas (GRAY; SMITH, 2005).

As rizobactérias promotoras de crescimento em plantas podem afetar o

crescimento vegetal de forma direta ou indireta. A promoção direta envolve a

produção de compostos ou facilita a entrada de certos nutrientes do ambiente para

nutrir as plantas. Os mecanismos de ação direta incluem: fixação biológica de

nitrogênio (FBN), síntese de sideróforos e produção de fitormônios. Indiretamente,

promovem o crescimento vegetal reduzindo ou prevenindo a ação de

microrganismos patogênicos, devido à produção de antibióticos ou sideróforos

(RODRIGUEZ; FRAGA, 1999).

Existem bactérias, como por exemplo, Pseudomonas fluorescens, que

produzem sideróforos, substâncias que têm alta afinidade por ferro e que formam

quelatos, tornando assim este composto menos disponível, principalmente para

patógenos da rizosfera (MOREIRA; SIQUEIRA, 2006).

Em relação à produção de fitormônios, estudos têm aumentado a evidência

de que bactérias diazotróficas apresentam papel importante no desenvolvimento

vegetal através da síntese e exportação de fitormônios ou reguladores de

crescimento vegetal. Os reguladores de crescimento vegetal são compostos

orgânicos que, sob concentrações muito baixas, influenciam processos fisiológicos

nas plantas, são estes: auxinas, giberelinas, citocininas, etileno e ácido abscísico

Page 25: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

10

(MOREIRA; SIQUEIRA, 2006). Estas substâncias podem ser produzidas pela própria

planta (endógena) ou produzidas por microrganismos presentes na raiz (exógena),

podendo um mesmo organismo produzir mais de um tipo de fitormônio (MOREIRA;

SIQUEIRA, 2006).

Kuss (2006) estima que 80% das bactérias isoladas da rizosfera têm a

capacidade de produzir auxinas reguladoras de crescimento vegetal e que mais de

90% dos microrganismos encontrados na rizosfera são capazes de liberar citocinina

quando cultivadas “in vitro”, estes microrganismos associados a plantas podem

produzir mais de 30 compostos promotores de crescimento do grupo das citocininas.

Em relação às giberelinas, muitas observações sugerem que este fitormônio pode

ser também produzido por microrganismos, induzindo ou promovendo o crescimento

de plantas hospedeiras, como por exemplo, Azospirillum spp. que apresentam um

importante papel nos primeiros estágios de crescimento em gramíneas devido às

giberelinas que produzem (CREUS; SUELDO; BARASSI, 2004).

Outra grande importância das rizobactérias é que elas são capazes de

secretar ácidos orgânicos e fosfatases que facilitam a conversão das formas

insolúveis de fósforo presente no solo em formas disponíveis para as mesmas,

disponibilizando o nutriente para as plantas hospedeiras (KIM; JORDAN;

McDONALD, 1998). Depois do nitrogênio, o fósforo é o segundo mineral limitante do

crescimento vegetal. Diferentes espécies de bactérias foram identificadas como

capazes de solubilizar compostos fosfatados inorgânicos, como Pseudomonas,

Bacillus, Rhizobium, Burkholderia (KUSS, 2006).

Vários são os exemplos da aplicação de microrganismos na produção

agrícola: aumento na produção por meio da síntese de fitormônios, promoção do

desenvolvimento e da proliferação das raízes (MEHNAZ et al., 2001), maior

resistência das plantas a doenças (CHEN et al., 1995), contribuição no manejo de

pragas e doenças (FAHEY et al., 1991), fixação do nitrogênio e maior resistência das

plantas a condições de estresse (BENSALIM; NOWAK; ASIEDU, 1998).

Page 26: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

11

2.3 SIMBIOSE RIZÓBIO – LEGUMINOSA

Relações simbióticas significam parcerias criativas. A Terra não pode ser

vista nem como um ecossistema a ser preservado inalterado nem como um

canteiro para ser explorado por razões egoístas e econômicas de curto

prazo, mas como um jardim a ser cultivado para o desenvolvimento das

próprias potencialidades da aventura humana. O objetivo desta relação não

é a manutenção do status quo mas a emergência de novos fenômenos e de

novos valores [RENÉ DUBOIS, (1901-1982)].

A simbiose entre rizóbios e leguminosas é geralmente entendida como sendo

mutualística. Segundo Moreira e Siqueira (2006), as simbioses de rizóbios podem

ser parasíticas (quando há formação de nódulos inefetivos) ou mutualísticas (quando

há formação de nódulos efetivos). Porém, mesmo no caso de formar nódulos

efetivos, ocorre um estádio inicial parasítico transitório quando a bactéria está

recebendo fotossintatos da planta sem ainda fixar nitrogênio para transferi-lo para

esta (MOREIRA; SIQUEIRA, 2006).

Nos nódulos, o rizóbio, na forma pleiomórfica (bacteróide) realiza o processo

de redução do nitrogênio atmosférico para uma forma combinada (amônia), que

pode ser utilizada pela planta hospedeira. Em troca, a planta supre a bactéria com

fontes de energia e carbono para sua manutenção (MERCANTE; GOI; FRANCO,

2002).

O estabelecimento da simbiose entre leguminosa e rizóbio segue alguns

passos: a pré-infecção; a infecção da planta pela bactéria e formação do nódulo; e o

funcionamento do nódulo com fixação de nitrogênio. Esses passos dependem e

podem variar em função dos genótipos da planta e da estirpe de bactéria envolvidos,

assim como dos fatores ambientais (PATRIARCA; TATÉ; IACCARINO, 2002).

Page 27: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

12

2.4 NÓDULOS

Durante a associação dos rizóbios com as leguminosas, são observadas

estruturas diferenciadas chamadas nódulos formadas devido à presença destas

bactérias nas raízes de leguminosas. Os nódulos se apresentam como estruturas

hipertróficas nas raízes e, excepcionalmente, no caule das plantas (MOREIRA;

SIQUEIRA, 2006) e são basicamente de dois tipos: determinados e indeterminados.

Os nódulos determinados apresentam formato globoso, devido o desenvolvimento

do meristema esférico temporário, já os indeterminados são alongados, por causa da

presença de um meristema persistente localizado no seu ápice (PATRIARCA; TATÉ;

IACCARINO, 2002; GAGE, 2004; PRELL; POOLE, 2006).

Nos estádios de pré-infecção as bactérias são atraídas por exsudados

liberados pela planta a ser infectada, essas substâncias promovem a colonização da

rizosfera por quimiotaxia (Figura 3A). Estes exsudados são percebidos pela bactéria

como sinais liberados na rizosfera e são basicamente compostos fenólicos

(flavonóides) e betaínas, que desencadeiam a expressão de genes nod envolvidos

na nodulação (LONG, 1989; MARTÍNEZ; ROMERO; PALACIOS, 1990; KRISHNAN;

KUO; PUEPPKE, 1995) e que, a depender da bactéria, podem estar localizados no

DNA cromossômico ou plasmidial (CHANDLER; DATE; ROUGHLEY, 1982;

PATRIARCA; TATÉ; IACCARINO, 2002; GAGE, 2004).

Após a colonização da rizosfera, as bactérias aderem-se aos pelos das raízes

das plantas, induzindo-lhes o encurvamento (Figura 3B) e, posteriormente, o início

da formação do meristema do nódulo (CHANDLER; DATE; ROUGHLEY, 1982;

SPRENT, 2001; PATRIARCA; TATÉ; IACCARINO, 2002; GAGE, 2004).

A formação do meristema do nódulo, segundo Cardoso, Tsai e Neves (1992),

é provocada pela sinalização que induz a mitose acelerada de células hipodérmicas,

determinada por fatores estimulantes provenientes da bactéria. Esse estímulo é

dirigido também às células localizadas nas proximidades dos pólos do xilema da

planta. No estágio inicial da divisão hipodérmica, forma-se o meristema primário do

nódulo. Quando a bactéria invade o pelo radicular, esse meristema primário induz a

divisão pericíclica de células próximas à região do xilema, formando o meristema

secundário do nódulo que se funde ao primário. Tanto as células em divisão quanto

às invadidas por rizóbios se fundem, e as células infectadas por bactérias aumentam

Page 28: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

13

de volume rapidamente ficando restritas à zona central do nódulo, o qual cresce e se

diferencia (CARDOSO; TSAI; NEVES, 1992).

Figura 3: Fases de formação da simbiose entre leguminosas e rizóbios. (Adaptado de:

<www.plantphys.net>)

1. Liberação de flavonóides pela raiz da planta;

2. Quimiotaxia do rizóbio em direção à superfície da raiz;

3. Proliferação do rizóbio na rizosfera e indução da diferenciação do primórdio do nódulo;

4. Aderência do rizóbio à raiz;

5. Diferenciação do meristema secundário do nódulo (originando a conexão vascular);

6. Encurvamento do pêlo radicular e formação da corrente de infecção;

7. Múltipla infecção das células do nódulo e crescimento do nódulo;

8. Crescimento do nódulo, diferenciação dos bacteróides e começo da fixação simbiótica de

nitrogênio.

Ao contrário do que ocorre na maioria das leguminosas nodulíferas, no

gênero Arachis a penetração da bactéria na raiz pode se dá através dos pêlos

presentes na raiz jovem (UHEDA; DAIMON; YOSHIZAKO, 2001) ou através de

aberturas (fissuras) na epiderme da raiz (CHANDLER, 1978). Em um estudo

detalhado sobre nodulação em A. hyphogaea (amendoim), Chandler (1978)

observou que a infecção do rizóbio nessa espécie de planta ocorria através de

fissuras na superfície da raiz e que não havia a formação da corrente de infecção. O

rizóbio nodula o amendoim entrando onde o pêlo radicular ou a raiz lateral emerge,

ocupando o espaço entre a parede do pêlo e a da célula epidérmica adjacente. Após

Page 29: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

14

a invasão da raiz, as bactérias são distribuídas intercelularmente via lamela média,

entrando nas células corticais através da parede celular estruturalmente alterada. O

rizóbio multiplica-se rapidamente dentro das células corticais e estas células

invadidas dividem-se repetidamente para formar o tecido infectado desse nódulo de

crescimento determinado (CHANDLER, 1978).

Segundo Uheda, Daimon e Yoshizako (2001), os bradirizóbios invadem

somente a lamela média entre as células de pêlos adjacentes (Figura 4). Nestes

locais a parede primária dos pelos é fracamente construída assim como a das

células epidérmicas da raiz primária. Os bradirizóbios provavelmente invadem a

lamela média através da produção de enzimas como a poligalactoronase (UHEDA;

DAIMON; YOSHIZAKO, 2001).

Figura 4: Esquema da invasão de Bradyrhizobium através das múltiplas camadas de células

de pelos da raiz (Adaptado de: UHEDA; DAIMON; YOSHIZAKO, 2001).

A. A emergência dos pêlos da raiz pode facilitar o desprendimento da camada exterior (seta).

A parede primária da base das células do pêlo da raiz tem construção frouxa. Bradyrhizobium

invade entre a lamela média e célula adjacente (pontas da seta), espalha-se na lamela média

e penetra eventualmente nas células. B. Vista ampliada da área do círculo.

A formação de nódulos através da invasão intercelular ou “entrada através de

fissura” foi primeiro descrita por Allen e Allen (1940), esta que ocorre em amendoim,

A. hypogaea, é comum também em outras simbioses como em Stylosanthes e

Page 30: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

15

Rhizobium (CHANDLER; DATE; ROUGHLEY, 1982), Mimosa e Rhizobium (de

FARIA; HAY; SPRENT, 1988), e Sesbania e Azorhizobium (NDOYE et al., 1994).

Interessantemente, rizóbios que nodulam o amendoim através das fissuras

provocadas pela emergência da raiz lateral podem nodular outras leguminosas via

pelo radicular, formando nódulos determinados, como por exemplo, em Vigna

unguiculata inoculada com Bradyrhizobium (SPRENT, 2001).

Nódulo pode ser considerado um órgão da planta formado pela simbiose com

o rizóbio, entretanto, para eles serem efetivos, precisam manter o nível de oxigênio

baixo, pois a enzima responsável pela fixação de nitrogênio (a nitrogenase) é

extremamente sensível a O2. Para neutralizar a incompatibilidade de fixação de N2 e

o seu metabolismo aeróbio, os diazotróficos desenvolveram vários mecanismos para

protegerem o sítio ativo da nitrogenase da interferência do oxigênio, como por

exemplo, apresentar uma razão superfície / volume celular menor, o que seria um

modo de impedir o excesso de absorção de O2 (GAGE, 2004; MOREIRA;

SIQUEIRA, 2006; PRELL; POOLE, 2006). Além disso, os nódulos que fixam

nitrogênio apresentam um composto com função e composição semelhante à

hemoglobina, a leghemoglobina, que transporta oxigênio para os microrganismos. A

leghemoglobina possui uma alta afinidade pelo O2, agindo assim como um tampão,

mantendo a concentração de oxigênio baixa no meio e provendo O2 ao

microssimbionte numa taxa constante, prevenindo assim a flutuação excessiva

dessa molécula (GAGE, 2004; MOREIRA; SIQUEIRA, 2006; PRELL; POOLE, 2006).

A taxa de fixação de nitrogênio varia com a espécie de leguminosa e a estirpe

de rizóbio, mas é geralmente limitada pelas condições abióticas do solo, como: a sua

acidez (WOLFF et al., 1991; ANYANGO et al., 1995), o tipo de solo, sua textura e

composição (HEIJNEN; BURGERS; VAN VEEN, 1993), a temperatura e umidade

(WOLFF et al., 1991) e a presença de metais pesados (HIRSCH et al., 1993).

2.5 RIZÓBIOS

O termo “rizóbio”, no senso estrito da palavra, referiu-se, durante muito tempo,

aos membros do gênero Rhizobium. Com o passar dos anos, entretanto, este termo

foi sendo usado para todas as bactérias capazes de nodular e fixar nitrogênio em

Page 31: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

16

associação com leguminosas (WILLEMS, 2006). O grupo denominado como

“rizóbio” são alfaproteobactérias Gram-negativas, aeróbias obrigatórias sem

endósporos, que produzem hipertrofias corticais em plantas, denominadas nódulos

(MOREIRA; SIQUEIRA, 2006).

Dentre os diversos táxons de bactérias fixadoras de nitrogênio, os rizóbios

podem ser considerados como o grupo mais importante para a agricultura tropical

devido sua associação com leguminosas. Esta simbiose é responsável por uma

substancial parte do fluxo global de nitrogênio atmosférico fixado nas formas de

amônia, nitrato e compostos orgânicos (KAHINDI et al., 1997).

Segundo Straliotto e Rumjanek (1999), estudos taxonômicos e filogenéticos

são necessários para estabelecer a real diversidade de rizóbios nos solos tropicais,

a qual durante muito tempo foi negligenciada, em parte devido às dificuldades de

classificação impostas pelos métodos tradicionais, baseados essencialmente em

características fenotípicas, morfológicas e fisiológicas.

Nas últimas décadas, os métodos moleculares baseados no estudo do

genoma bacteriano constituíram uma fonte abundante de dados reproduzíveis e

passíveis de serem gerados sem a interferência de problemas técnicos importantes

como condições de cultivo, estado fisiológico e tantos outros fatores que, muitas

vezes, mascaram os dados fenotípicos (STRALIOTTO; RUMJANEK, 1999).

Segundo Willems (2006), a partir da década de 80, com a introdução de

características genéticas nos estudos de taxonomia de microrganismos, o

conhecimento sobre a diversidade de rizóbios foi expandido, além disso, a biologia

molecular permitiu o estudo entre os táxons de rizóbios e sua relação com outros

grupos de bactérias.

Segundo Moreira e Siqueira (2006), atualmente são reconhecidos e aceitos

três gêneros de diazotróficos da família Rhizobiaceae: Rhizobium (FRANK, 1889),

Sinorhizobium (CHEN; YAN; LI, 1988; de LAJUDIE et al., 1994) e Allorhizobium (de

LAJUDIE et al., 1998); dois gêneros da família Bradyrhizobiaceae: Bradyrhizobium

(JORDAN, 1984) e Blastobacter (van BERKUN; EARDLY, 2002); um gênero da

família Xanthobacteraceae: Azorhizobium (DREYFUS; GARCIA; GILLIS, 1988); um

gênero da família Hyphomicrobiaceae: Devosia (RIVAS et al., 2002); um gênero da

família Phyllobacteriaceae: Mesorhizobium (JARVIS et al., 1997); um gênero da

família Methylobacteriaceae: Methylobacterium (SY et al., 2001) e um gênero da

família Brucellaceae: Ochrobactrum (TRUJÍLLO et al., 2005).

Page 32: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

17

Até 1982 apenas um gênero e seis espécies de rizóbio eram descritos.

Desde então, não só os avanços da biologia molecular, mas também o estudo de

novas simbioses contribuíram para a descrição de 13 novos gêneros e 54 novas

espécies (MOREIRA; SIQUEIRA, 2006). Apesar disto, considera-se que o número

de espécies existentes ainda esteja bastante subestimado, uma vez que muitas

espécies de leguminosas (que perfazem algo em torno de 11.200 espécies no total)

ainda não foram pesquisadas quanto a sua capacidade de nodular e,

conseqüentemente, características das bactérias a elas associadas também são

desconhecidas. Além disso, parte significativa das bactérias fixadoras de nitrogênio

nodulíferas em leguminosas isoladas da maioria das espécies nodulíferas

conhecidas até o momento, principalmente as tropicais, precisa ser estudada

(MOREIRA; SIQUEIRA, 2006).

Recentemente foram descobertas espécies de betaproteobactérias que

formam nódulos funcionais em leguminosas tropicais (CHEN et al., 2001, 2003). A

família Burkolderiaceae pertence a estas betaproteobactérias e incluem estirpes de

Burkholderia (VANDAMME et al., 2002) (originalmente isoladas de Aspalathus

carnosa e Machaerium lunatum) e uma estirpe de Ralstonia taiwanensis (CHEN et

al., 2001) (isoladas de Mimosa pudica). Tais gêneros são conhecidos como sendo

patógenos de plantas e animais, e ocupam uma grande diversidade de ambientes.

Assim como outras alfaproteobactérias, que não os membros da família

Rhizobiaceae, essas betaproteobactérias metabolizam uma grande variedade de

fontes de carbono, que as permitem sobreviver como sapróbias nos tipos

particulares de solos tropicais, dos quais foram isoladas (CHEN et al., 2003). Vale

salientar ainda que a maioria das espécies da família Rhizobiaceae descritas até

hoje foram isoladas de leguminosas herbáceas de interesse econômico, tais como

feijão e soja, com poucas espécies descritas de rizóbios isolados a partir de

leguminosas herbáceas e arbóreas tropicais (SPRENT, 2001).

Tradicionalmente, separam-se estes gêneros em grupos de acordo com a

velocidade de crescimento, como sugerido por Lohnis e Hansen (1921), em rizóbios

de crescimento rápido (Rhizobium, Azorhizobium e Sinorhizobium), de crescimento

intermediário (Mesorhizobium) e de crescimento lento (Bradyrhizobium).

Como acima descrito, atualmente sabe-se que os rizóbios não se limitam às

bactérias pertencentes aos gêneros Rhizobium, Bradyrhizobium, Azorhizobium,

Sinorhizobium e Mesorhizobium. Outras alfaproteobactérias e também

Page 33: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

18

betaproteobactérias podem nodular leguminosas. Nos últimos 20 anos, a taxonomia

dos rizóbios tem se desenvolvido rapidamente e têm sido descritas muitas espécies

e gêneros novos (WANG; MARTÍNEZ-ROMERO, 2007).

2.6 RNA RIBOSSÔMICO 16S

Os ribossomos procarióticos consistem de três moléculas de RNA (5S, 16S e

23S) de diferentes tamanhos e cerca de 50 proteínas ribossomais. A molécula do

rRNA 16S contém cerca de 1.540 pares de nucleotídeos (STRALIOTTO;

RUMJANEK, 1999).

Segundo Rosado et al. (1997), as moléculas das diferentes espécies de rRNA

são particularmente importantes nos estudos de ecologia microbiana, sendo que são

consideradas cronômetros moleculares nos estudos de evolução, pois preenchem

todos os requisitos que definem um marcador filogenético:

(1) os rRNA’s estão presentes e têm a mesma função em todos os

microrganismos;

(2) eles se originaram de um ancestral comum, portanto são homólogos;

(3) suas seqüências de nucleotídeos são altamente conservadas em algumas

regiões e possuem regiões variáveis;

(4) as moléculas do rRNA 16S e 23S são relativamente grandes e contêm

suficiente seqüências informativas para permitir comparações estatisticamente

significativas;

(5) um grande número de seqüências está disponível via base de dados pela

internet, permitindo o alinhamento de seqüências e a identificação das regiões

distintas.

O fato de que os rRNAs tem uma função conservada sugere uma possível

semelhança estrutural entre as seqüências nucleotídicas codificadoras dos rRNA de

diferentes organismos. Essa semelhança foi posteriormente confirmada

demonstrando-se a ocorrência de mudanças coordenadas de nucleotídeos em

posições homólogas de seqüências de rRNA 16S de origens filogenéticas diversas

(WOESE, 1987).

Page 34: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

19

As moléculas de rRNA apresentam regiões extremamente conservadas entre

todos os organismos que compartilham aquela espécie de rRNA e regiões altamente

variáveis, sendo que o grau de variação nessas regiões específicas pode ser maior

ou menor de um táxon a outro. A presença dessas regiões variáveis oferece grandes

possibilidades para o desenho de sondas genéticas reino-específicas, gênero-

específicas e até espécie ou estirpe-específicas (WOESE, 1987). Assim, o fato de

estas moléculas possuírem sítios de rápida e outros de lenta evolução permitem que

se avaliem as relações filogenéticas tanto entre organismos muito proximamente

relacionados quanto entre os filogeneticamente muito distantes.

Straliotto e Rumjanek (1999), dentre outros trabalhos, afirmam que a

caracterização da seqüência do rRNA 16S tem sido amplamente utilizada em

estudos evolucionários, taxonômicos e ecológicos (FOX; WISOTZKEY; JURTSHUK,

1992; OLSEN; WOESE; OVERBEEK, 1994; WILLEMS, 2006). A amplificação direta

via reação em cadeia da polimerase (PCR) do rRNA 16s tornou possível, por

exemplo, o estudo da diversidade microbiana sem a necessidade de cultivar o

microrganismo (WARD; WLLER; BATESON, 1990).

Comparações entre as seqüências de nucleotídeos completas ou parciais do

rRNA 16S tem sido amplamente utilizadas para avaliar relações filogenéticas entre

muitas espécies de rizóbios (JARVIS; DOWNER; YOUNG, 1992; LAGUERRE et al.

1993; LUCAS et al., 1995; VAN BERKUM; BEYENE; EARDLY, 1996; BARRERA et

al., 1997).

Page 35: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

20

3 MATERIAIS E MÉTODOS

3.1 LOCAIS DE COLETA DOS NÓDULOS, MATERIAL BOTÂNICO E SOLO

A coleta ocorreu em 18 de outubro de 2005, no campus da Universidade

Estadual de Santa Cruz (UESC) localizado no município de Ilhéus e no período de

12 a 16 de junho de 2006, novamente na UESC, na Estação de Zootecnia do

Extremo Sul da CEPLAC em Itabela, e nas Fazendas Ubirajara e São Francisco em

Belmonte. Os três municípios onde foram realizadas as coletas estão localizados na

região sul da Bahia (Figura 5). A descrição do holotipo A. pintoi está baseada em um

exemplar coletado às margens do rio Jequitinhonha, em Belmonte, Bahia, no ano de

1954 por Geraldo C. P. Pinto e Paulo D. T. Alvim, depositado no Herbário da

CEPLAC. Esta espécie é nativa da região sul baiana.

Figura 5: Mapa da Bahia. Municípios em que foram coletadas amostras de nódulos de A.

pintoi.

Page 36: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

21

Para coleta dos nódulos de Arachis pintoi Krapov. & W. C. Gregory

(amendoim forrageiro), inicialmente, foi demarcado um círculo de cerca de 15 cm ao

redor da planta, correspondendo aproximadamente à área ocupada pelo sistema

radicular. A terra foi removida cuidadosamente para não danificar as raízes, estas

foram transportadas em sacos plásticos e depois lavadas, retirando-se o solo.

Os nódulos foram devidamente lavados, secados em papel toalha e

armazenados em recipientes contendo sílica gel e algodão. Amostras de nódulos

foram fixadas para estudo anatômico e ultra-estrutural (ver itens 3.5.1, 3.5.2 e 3.5.3

abaixo). Cada recipiente foi devidamente identificado com o número correspondente

à área e data de coleta.

Na Estação de Zootecnia do Extremo Sul da CEPLAC em Itabela foram

coletadas amostras de nódulos dos cultivares cv 31534 (Figura 6A) e Orozimbo

(Figura 6B). Amostras também foram coletadas no campus da UESC (Universidade

Estadual de Santa Cruz) localizado em Ilhéus (Figura 6C e 6D), e na Fazenda São

Francisco (Figura 6E) e Fazenda Ubirajara (Figura 6F), ambas no município de

Belmonte.

O material botânico (ramos férteis e estéreis) dos acessos foi coletado,

prensado, identificado e depositado no Herbário da Universidade Estadual de Feira

de Santana (HUEFS).

Amostras compostas de solo das principais áreas de estudo foram coletadas

para análise química e granulométrica. Esta análise foi realizada pelo Laboratório de

Solos e Nutrição de Plantas da EMBRAPA Mandioca e Fruticultura Tropical (Cruz

das Almas – BA). As análises químicas (Tabela 1) e granulométricas (Tabela 2) dos

solos nos locais de coleta dos nódulos são apresentadas a seguir.

Page 37: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

22

Tabela 1: Resultados analíticos da fertilidade completa + matéria orgânica dos solos nos locais de

coleta de nódulos de Arachis pintoi.

K Ca Mg Ca+Mg Al Na H+Al S CTC Locais de coleta

pH em H2O

P mg/ dm 3 cmole/dm 3

V %

M.O. g/kg

UESC (Ilhéus)

6,0 39 0,82 11,8 0,8 12,6 0,1 0,30 4,73 13,72 18,45 74 68,82

CEPLAC (Itabela)

5,4 0,9 0,06 2,5 1,3 3,8 0,2 0,04 4,18 3,90 8,08 48 79,89

Faz. São Francisco (Belmonte)

5,1 2 0,17 2,0 1,3 3,3 0,3 0,05 3,74 3,52 7,26 48 12,32

Faz. Ubirajara

(Belmonte) 5,0 4 0,19 4,1 1,6 5,7 0,4 0,08 6,71 5,97 12,68 47 30,61

Tabela 2: Resultados da composição granulométrica (g/kg) dos solos nos locais de coleta de nódulos

de Arachis pintoi. Dispersão com NaOH.

Locais de coleta

Areia muito grossa

Areia grossa

Areia média

Areia fina

Areia muito fina

Areia total

Silte Argila Classifica-

ção textural

UESC (Ilhéus)

3 158 136 144 55 496 232 272 Franco argilo

arenoso

CEPLAC (Itabela)

42 213 202 218 40 715 63 222 Franco argilo

arenoso Faz. São

Francisco (Belmonte)

1 5 8 296 286 596 283 121 Franco arenoso

Faz. Ubirajara

(Belmonte) 28 96 74 148 52 398 328 274

Franco argiloso

As amostras de solo foram analisadas de acordo com os padrões adotados

pelo Laboratório de Solos e Nutrição de Plantas (EMBRAPA, 1997).

A amostra de solo correspondente ao ponto de coleta UESC em Ilhéus, em

relação à granulometria, foi caracterizado como solo franco argilo arenoso,

apresentando acidez média (pH 6,0) e os valores para quantificações do fósforo (39

mg/dm3), potássio (0,82 cmole/dm3) e cálcio+magnésio (12,6 cmole/dm3)

representativamente altos, o magnésio apresentou um valor médio (0,8 cmole/dm3) e

para o alumínio um baixo teor (0,1 cmole/dm3) (EMBRAPA, 1997).

Page 38: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

23

O solo coletado em Itabela também foi caracterizado como um solo franco

argilo arenoso, a acidez foi considerada média (pH 5,4), os valores para o fósforo

(0,9 mg/dm3) e cálcio+magnésio (3,8 cmole/dm3) foram considerados também

médios, para o potássio (0,06 cmole/dm3) e alumínio (0,2 cmole/dm3) os valores

quantificados foram considerados baixo e para o magnésio (1,3 cmole/dm3), alto

(EMBRAPA, 1997).

O solo da Fazenda São Francisco, localizada na cidade de Belmonte, com

características granulométricas de um solo franco arenoso, apresentou acidez média

(pH 5,1) e os valores para o fósforo (2,0 mg/dm3) e alumínio (0,3 cmole/dm3) baixos,

para o potássio (0,17 cmole/dm3) médio-alto, para cálcio+magnésio (3,3 cmole/dm3)

os valores foram considerados médios e o valor para o alumínio (0,3 cmole/dm3),

baixo (EMBRAPA, 1997).

O solo da Fazenda Ubirajara, localizada na cidade de Belmonte,

caracterizado como solo franco argiloso, apresentou acidez considerada elevada (pH

5,0), para o fósforo (4,0 mg/dm3) o valor foi considerado baixo, para o potássio, (0,19

cmole/dm3) médio-alto e para cálcio+magnésio (5,7 cmole/dm3) o valor considerado

foi alto, o alumínio (0,4 cmole/dm3) apresentou um valor considerado médio

(EMBRAPA, 1997).

Page 39: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

24

Figura 6: Áreas de coleta dos nódulos de Arachis pintoi. A. cv 31534, Itabela (CEPLAC/CEPED).

B. cv Orozimbo, Itabela (CEPLAC/CEPED). C. Campus da Universidade Estadual de Santa Cruz

(UESC), Ilhéus. D. Campus da Universidade Estadual de Santa Cruz (UESC), Ilhéus. E. Fazendo São

Francisco, Belmonte. F. Fazenda Ubirajara, Belmonte.

A B

C D

E F

Page 40: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

25

3.2 ISOLAMENTO DAS BACTÉRIAS

Em laboratório – Laboratório de Pesquisa em Microbiologia (LAPEM/UEFS) –

as bactérias foram isoladas a partir dos nódulos coletados. Os nódulos dessecados,

inicialmente foram reidratados, ficando em água destilada por 30 min. Após a

hidratação, os nódulos foram submetidos a um banho em álcool 95% durante 30 seg

para quebrar a tensão superficial da água e remover bolhas de ar no tecido. A

seguir, os nódulos foram transferidos para uma solução de hipoclorito de sódio 1%

durante 2 min e depois foram lavados com água destilada estéril por, no mínimo,

cinco vezes, para eliminar o excesso de hipoclorito.

Depois da desinfestação, os nódulos foram comprimidos com uma pinça

estéril, e este material foi inoculado em placa contendo meio 79 sólido (FRED;

WASKMAN, 1928). As placas foram incubadas a 28ºC. O crescimento das colônias

foi acompanhado diariamente, durante 10 dias. Depois de verificado o crescimento

das colônias foram feitos repiques dos isolados em meio de cultura 79 sólido em

câmara de fluxo laminar a fim de se obter culturas puras.

3.3 CARACTERIZAÇÃO MORFOLÓGICA DAS COLÔNIAS

Depois de purificadas, as colônias foram classificadas a partir da coloração

diferencial (método de Gram). Os isolados puros de bactérias obtidos a partir dos

nódulos de A. pintoi foram crescidos em meio 79 sólido (FRED; WAKSMAN, 1928)

com azul de bromotimol 0,5% a fim de avaliar a variação de pH no meio.

As características culturais das colônias puras, observadas após 2 dias de

crescimento, foram: mudança do pH no meio (avaliada pela alteração de cor do

indicador), velocidade de crescimento (em dias), diâmetro (em milímetros),

transparência, forma, coloração, borda, textura, produção de muco (avaliação visual

comparativa), elevação, características da superfície e morfologia da bactéria. Além

disso, foram feitas anotações de características diferenciais que o isolado

apresentasse.

Page 41: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

26

Esses isolados constituem um banco de bactérias atualmente estabelecido na

UEFS, e que poderá servir de fonte de inóculo para o amendoim forrageiro.

3.4 PRESERVAÇÃO DAS BACTÉRIAS

As bactérias isoladas dos nódulos foram preservadas em tubos de vidro com

tampas de rosca contendo meio de cultura 79 sólido inclinado e após 24 h de

crescimento foi acrescentado aos tubos óleo mineral estéril (MARTINS; NEVES;

RUMJNEK, 1997). Os tubos foram mantidos em temperatura ambiente.

A preservação das bactérias também foi feita em microtubos de plástico com

200 µL de meio 79 líquido e foram incubadas a 28°C por a proximadamente 24 h.

Depois desse período de incubação foram acrescentados 100 µL de glicerol 50%, a

solução foi homogeneizada e armazenada em ultra-freezer a -80°C.

3.5 MORFOANATOMIA E ULTRA-ESTRUTURA DOS NÓDULOS

As amostras coletadas dos nódulos e raízes de A. pintoi foram estudadas

através de microscopia de luz, microscopia eletrônica de varredura e microscopia

eletrônica de transmissão.

3.5.1 Microscopia de luz

As amostras dos nódulos e raízes foram fixadas em solução fixadora

composta por glutaraldeído 2,5%, paraformaldeído 2,5% em tampão fosfato de sódio

0,125 M, pH 7,2 (Karnovisk modificado). Estas amostras foram desidratadas em

série crescente de etanol (50 - 95%), por 10 min cada, e emblocadas em resina a

base de hidroxietilmeta-crilato (Leica®). Para embebição, o material foi submetido a

uma mistura de etanol 95% e resina Leica Historesin® 1:1 por 96 h na geladeira,

Page 42: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

27

seguido por uma embebição em resina pura sem ativador por mais 96 h também em

geladeira. As raízes e nódulos foram polimerizados na resina com ativador em estufa

à 60ºC por 24 h. O material assim emblocado foi cortado em micrótomo rotativo

Leica®.

Quinze nódulos foram emblocados e seccionados. Os cortes semifinos foram

corados com azul de toluidina, azul de metileno e/ou safranina, montados em

lâminas histológicas com Entellan®, observados e fotografados em fotomicroscópio

de campo claro Olympus BX-50®, no Departamento de Biologia da UESC.

3.5.2 Microscopia eletrônica de varredura

Amostras de nódulos foram fixadas em FAA 70 e em Karnov

sk modificado e desidratadas em série crescente de etanol (70 - 95%). A seguir

passaram por três banhos em álcool 100%, de 15 min cada, e um banho em acetona

e álcool 1:1, também durante 15 min. Após isto, as amostras foram colocadas em

banho de acetona 100%, por 10 min. As amostras foram processadas em ponto

crítico (Balzers CPD 030), onde foi retirado todo o líquido da amostra, e

posteriormente montadas em pequenos cilindros de aço (“stubs”) com fita adesiva

metálica e posteriormente recobertas com ouro em metalizador (Balzers SCD 050).

Quatro nódulos inteiros e oito nódulos cortados ao meio foram processados

para análise no microscópio eletrônico de varredura (MEV). As amostras assim

preparadas foram analisadas e fotografadas no microscópio eletrônico de varredura

(MEV) LEO 1430VP no Laboratório de Biologia da UEFS.

3.5.3 Microscopia eletrônica de transmissão

Amostras dos nódulos e raízes foram fixadas em glutaraldeído 2,5% em

tampão fosfato de sódio 0,1 M pH 7,2 para estudo da sua ultra-estrutura. Essas

amostras foram desidratadas em série crescente de etanol (50 - 95%) por 10 min

Page 43: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

28

cada com três banhos em etanol 100%, embebidas em resina LR White® pura por

48 h sob agitação constante e polimerizadas com resina fresca em cápsulas de

gelatina seladas. O material assim emblocado foi seccionado em ultramicrótomo

Reichert-Jung®. Foram seccionados seis nódulos de A. pintoi. Os cortes semifinos

foram corados com azul de toluidina em bórax, montados em lâminas e observados

microscópio Zeiss Axioskope®. Os cortes ultrafinos foram recolhidos em grades de

cobre (“grids”) e contrastados com acetato de uranila aquoso 2%. As

eletromicrografias foram obtidas em microscópio eletrônico de transmissão (MET)

FEI Tecnai a 80kV no “Centre for High Resolution Imaging and Processing” da

Universidade de Dundee (Escócia).

3.6 EXTRAÇÃO DE DNA GENÔMICO

O DNA genômico foi extraído das culturas usando-se o procedimento abaixo

descrito:

As células repicadas em 1.000 µL de meio caldo TY foram incubadas a 28ºC

e 180 RPM. Após 20 h de crescimento, as células bacterianas crescidas foram

centrifugadas (5 min/13.000 rpm) e o sobrenadante descartado. Posteriormente foi

adicionado aos tubos plásticos, 400 µL de tampão de extração (Tris-HCl 200 mM, pH

7,5; EDTA 25 mM, pH 8,0; NaCl 1 M; SDS 5%) e 200 µL de acetato de potássio 3 M.

O material foi mais uma vez centrifugado (10 min/13.000 rpm) e 500 µL do

sobrenadante foi transferido para outro tubo, adicionando-se 500 µL de clorofórmio:

álcool isoamílico (24:1, respectivamente). Após homogeneizado, centrifugou-se (15

min/13.000 rpm) e retirou-se novamente o sobrenadante, transferindo-o para outro

tubo plástico. Adicionou-se 125 µL de acetato de amônia 10 M e 375 µL de

isopropanol, homogeneizando e logo após incubando durante 15 min a uma

temperatura de -80°. Os tubos foram novamente centr ifugados (15 min / 13.000

rpm), e ao final do processo foi descartado todo o líquido dos tubos. Acrescentou-se

200 µL de álcool 70% nos tubos (para limpeza do pellet) e estes foram novamente

centrifugados (5 min / 13.000 rpm), repetindo este último passo por 2 vezes,

pipetando o álcool e deixando o pellet formado. Os tubos foram secos em

temperatura ambiente durante aproximadamente 30 min, logo após este período o

Page 44: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

29

DNA foi resuspendido em 60 µL de TE (Tris-HCl 200 mM, pH 7,5; EDTA 1 mM, pH

8,0; NaCl 250 mM) e homogeneizado suavemente no vórtex. Os DNAs foram

conservados a -4ºC.

3.7. AMPLIFICAÇÃO POR PCR DO FRAGMENTO rDNA 16S E PURIFICAÇÃO

As reações de amplificação foram montados em volume final de 25 µL. O

sistema continha: 2,5 µL de tampão 10X de PCR, 1,0 µL de mix de dNTPs a 10 mM,

1,25 µL de MgCl2 a 50 mM, 1 µL de cada oligonucleotídio específico – FD1 e RP2

(Tabela 3) a 10 pMol, 5 µL de betaína, 1 µL de DNA do rizóbio, 0,3 µL de Taq DNA

polimerase. As amostras foram amplificadas em termociclador por 40 ciclos nas

temperaturas de 95ºC para a abertura da dupla hélice, 59ºC para anelamento dos

primers e 72ºC para polimerização da cadeia. Os produtos de amplificação do DNA

genômico foram purificados com 1/3 do volume do produto da amplificação de

exonuclease e 2/3 do volume do produto da amplificação de fosfatase alcalina e

quantificados com marcador Low DNA Mass Ladder, segundo instruções do

fabricante. Foi utilizado também o primer 926R, um oligonucleotídeo interno ao 16S

rDNA (Tabela 3), para a reação de seqüenciamento. 2 µL de cada amostra foram

aplicados em gel de agarose 1%, para verificar a qualidade das bandas do produto.

Tabela 3: Primers utilizados para amplificação e seqüenciamento do rDNA 16S

Primer Posição 1 Seqüência (5’ – 3’)

FD1 8 – 27 AGA GTT TGA TCC TGG CTC AG

RP2 1492 – 1510 ACG GCT ACC TTG TTA CGA CTT

926R 907 – 926 CCG TCA ATT CCT TTG AGT TT 1 Posição em Escherichia coli

(KHACHATRYAN, 2007)

Page 45: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

30

3.8. REAÇÃO DE SEQÜENCIAMENTO

As reações de seqüenciamento dos produtos de PCR das regiões 16S do

rDNA foram montados em volume final de 12 µL. Cada sistema foi constituído de 0,5

µL de um dos primers para os fragmentos rDNA 16S, 2,0 µL de tampão de

seqüenciamento, 0,4 µL do Kit ET Terminator da Amersham Biosciences®, 3 µL ou 4

µL do produto de PCR e água ultrapura em q.s.p. 10 µL.

Após a reação foi colocado em cada tubo 8 µL de água ultra pura, 2 µL de

acetato de sódio 3 M pH 4,6 e 50 µL de etanol absoluto. Os tubos foram

homogeneizados e deixados a temperatura ambiente durante 15 min no escuro.

Após esse período foram centrifugados por 30 min a 13.000 rpm. O sobrenadante foi

descartado e o precipitado foi lavado 2 vezes com 100 µL de etanol 70%. Após a

lavagem os tubos com as amostras foram deixados secando por 1 h. Após este

período foi adicionado 18 µL do tampão de injeção (0,02 mM EDTA em formamida

HiDi). Os precipitados foram resuspendidos 5 vezes e aplicados no Seqüenciador

Automático ABI PRISM® 3100 Applied Biosystems, da Escola Superior de

Agricultura Luiz de Queiróz, Universidade de São Paulo – USP, Piracicaba, SP.

3.9. ANÁLISE DAS SEQÜÊNCIAS OBTIDAS

Os eletroferogramas foram analisados utilizando o programa FinchTV 1.4.®

(Geospiza Inc.). A montagem dos contigs foi realizada no Programa LaserGene®

(BURLAND, 2000). As seqüências resultantes foram submetidas à pesquisa,

utilizando-se o programa BLASTn do NCBI (National Center for Biotechnology

Information – <www.ncbi.nlm.nih.gov>).

Page 46: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

31

4 RESULTADOS

4.1 MORFOLOGIA DOS NÓDULOS

Os nódulos de A. pintoi possuem coloração externa creme ou marrom clara,

atingindo tamanho de até 2 mm e média de 1,12 mm (n = 34) de diâmetro ou em sua

maior dimensão. Foram encontrados tanto na raiz principal como nas raízes laterais

e adventícias. A maioria dos nódulos coletados apresentou forma oblonga, i.e. mais

compridos do que largos (Figuras 7A, 7C e 8A), entretanto a forma arredonda

também foi observada (Figura 8E). Todos os nódulos estavam diretamente ligados

às raízes (Figuras 7A, 8A e 9A). Observou-se no interior de alguns nódulos a

coloração avermelhada (dados não apresentados).

4.2 ANATOMIA DOS NÓDULOS

Dezenove nódulos de A. pintoi foram emblocados e cortados para estudo da

sua anatomia. O nódulo é constituído por um córtex, formado por células

parenquimáticas, que envolve o tecido infectado, localizado ao centro (Figuras 7 e

8). O córtex pode ser dividido em externo e interno, sendo que neste se localizam os

feixes vasculares (Figuras 7B, 7D, 8B, 8C, 8D e 8F). O tecido infectado é constituído

exclusivamente por células infectadas (que possuem bacteróides em seu interior)

que podem apresentar vacúolos (Figuras 7B, 7E, 8B). Em um dos nódulos

analisados, entretanto, foi observada a presença de células intersticiais (não

infectadas) no interior do tecido infectado (Figura 8F).

Os nódulos analisados mostraram uma clara diferenciação tecidual entre o

córtex e o tecido infectado (Figura 7A, 7D, 8A, 8E e 9B). As células parenquimáticas

localizadas no córtex apresentaram-se bastante vacuolizadas (7B, 7E e 8B)

podendo eventualmente conter depósitos de compostos fenólicos (Figuras 8D e 8F)

identificáveis pela coloração azul-esverdeada devido ao azul de metileno (dados não

apresentados) e depósitos de grãos de amido no seu interior (Figura 9F).

Page 47: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

32

As células do tecido infectado eram preenchidas por bacteróides (Figuras 8C

e 8D), entretanto vacúolos foram também observados em seu interior (Figuras 7B,

7E e 8B) Os bacteróides eram envolvidos por membrana, a qual algumas vezes foi

visível ao MEV (Figura 9D) dependendo do fixador utilizado (no caso, Karnovski

modificado).

Page 48: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

33

Figura 7: Fotomicrografias de microscopia de luz dos nódulos radiculares de Arachis pintoi. A e B

nódulo coletado no campus da UESC e C – F nódulos da variedade Itabela coletados na CEPLAC.

A. Corte transversal de nódulo: r, raiz; c, córtex; ti, tecido infectado. B. Detalhe dos tecidos do

nódulo: c, córtex; fv, feixe vascular; a seta indica vacúolo na célula infectada. C. Corte transversal

de nódulo mostrando córtex (c) e tecido infectado (ti). D. Detalhe da figura anterior mostrando os

tecidos: c, córtex; fv, feixe vascular; ti, tecido infectado. E. Detalhe da região de transição entre

córtex interno e tecido infectado. c, córtex; ci, células infectadas; v, vacúolo. F. Nódulos gêmeos

(n) e duas raízes laterais (rl) associadas.

Page 49: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

34

Figura 8: Fotomicrografias de microscopia de luz dos nódulos radiculares de Arachis pintoi. A - D

nódulos coletados na Fazenda São Francisco e E e F nódulos coletados na Fazenda Ubirajara

ambas em Belmonte, BA. A. Corte transversal de nódulo: r, raiz; c, córtex; ti, tecido infectado. B.

Detalhe dos tecidos do nódulo: c, córtex; fv, feixe vascular; a seta indica vacúolo na célula

infectada C. Região do nódulo com feixes vasculares (fv), córtex (c) e células infectadas (ci). A

seta indica células corticais com parede espessada que separam o córtex externo do interno. D.

Detalhe da figura anterior mostrando o espessamento (seta) da parede das células do córtex, os

tecidos, o feixe vascular (fv) e as células infectadas (ci). E. Corte transversal de nódulo mostrando

o córtex (c) e o tecido infectado (ti). F. Tecido infectado (ti) com células não infetadas (intersticiais)

contendo amido (seta). Córtex (c) com feixe vascular (fv).

Page 50: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

35

Figura 9 : Fotomicrografias de microscopia eletrônica de varredura dos nódulos radiculares de Arachis

pintoi. A. Nódulo ligado à raiz. B. Corte transversal no nódulo: c, córtex; ti, tecido infectado. C.

Bacteróides esféricos fixados em FAA. D. Bacteróides esféricos fixados em K4. E. Corte transversal no

nódulo: c, córtex; a, grão de amido. F. Detalhe das células do nódulo, presença de grão de amido e

bacteróides: a, grão de amido; b, bacteróides.

A

A B

C

c

a

ti

a

b

ti

c

200 µm

Page 51: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

36

4.3 ULTRA-ESTRUTURA DOS NÓDULOS

A análise da ultra-estrutura dos nódulos mostrou que as células infectadas,

que constituem em sua totalidade o tecido infectado, são em grande parte

preenchidas pelos bacteróides (Figura 10A e 10B). O citoplasma dessas células está

localizado na periferia e se distribui por entre os simbiossomos (Figura 10A e 10B).

O simbiossomo geralmente contém em seu interior apenas um bacteróide, o

qual é separado do citoplasma da célula vegetal hospedeira pela membrana do

simbiossomo (Figura 10A e 10B). O espaço entre o bacteróide e a membrana do

simbiossomo eventualmente pode conter alguns depósitos elétron-densos (Figura

10A e 10B). O tamanho dos bacteróides pode variar de 2 a 4 µm em diâmetro e

apresentam forma circular (tridimensionalmente esféricos) com citoplasma granular e

eventualmente vesículas em seu interior (Figura 10A e 10B). Algumas vezes foram

observados espaços intercelulares no tecido infectado (Figura 10B). Esses espaços

também foram observados entre as células do córtex interno (Figura 10C e 10D), o

qual faz limite e envolve todo o tecido infectado (Figura 10C e 10D). As células

parenquimáticas do córtex interno se mostraram bastante vacuolizadas e

apresentaram uma estreita faixa de citoplasma localizada na periferia da célula

(Figura 10C e 10D). Nessas células também foram observados, com freqüência,

amiloplastos (Figura 10C e 10D).

Page 52: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

37

Figura 10: Fotomicrografias de microscopia eletrônica de transmissão dos nódulos radiculares de

Arachis pintoi. A. Células infectadas totalmente preenchidas por simbiossomos contendo bacteróides (b)

envolvidos pela membrana do simbiossomo (ms). p = parede celular. B. Detalhe de células infectadas

mostrando a membrana do simbiossomo (ms) envolvendo o bacteróide (b). O citoplasma vegetal fica

disperso entre os simbiossomos e na periferia das células. C. Região do limite entre as células do córtex

interno (ci) e das células infectadas por bacteróides (b). Nas células corticais os vacúolos (v) ocupam

grande parte do volume celular limitando o citoplasma a uma fina camada periférica onde estão

localizados os amiloplastos (a). D. Detalhe de uma célula do córtex interno com um grande vacúolo (v)

central e o citoplasma com amiloplastos (a) na periferia. Entre a célula cortical e as células infectadas

pode ser visto um espaço intercelular (ei). Fig. 10A, 5 µm; Fig. 10B, 2 µm; Fig. 10C, 5 µm; Fig. 10D, 2

µm.

Page 53: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

38

4.4 CARACTERIZAÇÃO DAS COLÔNIAS

A partir dos nódulos de A. pintoi foram cultivados cento e quarenta e dois

isolados (Tabela 4), todos os isolados estudados estão caracterizados na Tabela 5

(Apêndice – A).

Tabela 4: Quantidade de isolados obtidos dos diferentes cultivares de A. pintoi nos diferentes locais

de coleta.

Cultivar Local de coleta Quantidade de isolados Orozimbo (O) CEPLAC, Itabela 17

Belmonte (B) CEPLAC, Itabela e

Faz.Ubirajara, Belmonte 27

Belmonte (SF) Faz. São Francisco, Belmonte 20 cv 31534 (IB) CEPLAC, Itabela 11

Ilhéus (I) UESC, Ilhéus 67 Total 142

Dentre os isolados de bactérias, 25 foram selecionados para extração e

seqüenciamento do 16S rDNA. As colônias escolhidas para caracterização

molecular foram aquelas que apresentaram diferenças morfológicas marcantes

(classificados como diferentes morfotipos) quanto à coloração, produção de muco e

alteração do pH do meio após 2 dias de crescimento a 28ºC (Tabela 6).

A grande maioria dos isolados dos nódulos de A. pintoi apresentou

crescimento rápido (de até quatro dias a 28ºC) em meio de cultura e, em relação ao

pH, apresentou mudança no meio de cultura com o azul de bromotimol tornando-o

ácido (Figura 11 – B34). Também foram observados alguns isolados que não

alteraram o pH do meio de cultura (Figura 11 – I85) ou que alcalinizaram o meio

(Figura 11 – I30).

Quanto ao diâmetro das colônias, pode-se observar que aquelas com

diâmetro inferior a 1,0 mm foram caracterizadas como translúcidas e produziam

pouco muco ou não o produziam. As colônias que apresentaram tamanhos maiores

que 1,0 mm apresentaram alta produção de muco, podendo este ser translúcido ou

opaco. Quanto à produção de muco foram classificadas como: pouca produção de

muco (+), muita produção de muco (++), ausência da produção de muco (-). Das 19

colônias bacterianas estudadas 12 apresentaram pouca produção de muco (+), 4

produziram muito muco (++) (Figura 11 – I67) e em apenas duas não observou-se a

Page 54: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

39

presença de muco (-) (Tabela 6). Nos dois isolados identificados como Rhizobium

sp. através do Blastn (NCBI) foi observada a alta produção de muco.

A transparência é definida pela passagem de luz através da colônia. Os

isolados aqui caracterizados variaram de opacos a translúcidos, a colônia compacta

não permite a passagem de luz e não evidencia o brilho característico das colônias

translúcidas.

A forma das colônias isoladas depende da consistência do muco produzido

podendo apresentar-se de forma circular a irregular. As bordas das colônias

variaram de lisa ou inteira a borda irregular, independente da forma da colônia.

As superfícies das colônias apresentaram-se secas ou mucóides. As colônias

dos isolados não produtores de muco foram definidas como secas e os que

produzem muco foram classificadas de acordo com a aparência apresentada:

floculosa (colônias que lembram flocos), gomosa (colônias semelhantes a gomos),

aquosa (colônias com muco pouco consistente) e leitosa (colônias com superfícies

com aspecto de leite).

A morfologia das bactérias também foi estudada e utilizada na caracterização

dos isolados. A grande maioria das bactérias apresentou forma de bastonetes,

podendo ser observados também cocobacilos (Figura 11 – I30) e bastonetes (Figura

11 – I82) isalados ou em arranjos (diplo) (Figura 11 – I67).

Das 19 amostras que foram seqüenciadas, todas as colônias apresentaram

forma circular. Em relação ao Gram, 8 apresentaram o resultado Gram-positivo e 11,

resultado Gram-negativo.

A diversidade da morfologia das colônias e da morfologia bacteriana em meio

de cultura é uma indicação das diferenças fundamentais entre os isolados e pode

ser um indício da diversidade genética.

Page 55: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

40

Tabela 6: Caracterização morfológica das 19 colônias selecionadas para extração de DNA e seqüenciamento do rDNA 16S.

I – UESC, Ilhéus; IB – cv 31534, Itabela; O – Orozimbo, Itabela; SF- Faz. São Franscisco, Belmonte; B – Faz. Ubirajara, Belmonte.

Descrição das colônias

Prod. Isola- dos

Gram Morfologia da célula bacteriana Cor Borda

Muco Aparência pH

Diâmetro da colônia

(mm)

Cresci- mento (dias)

Transpa- rência

Elevação Superfície

I 07 negativo Bastonete branca regular ++ leitoso ácido 1,4 2 opaca convexa mucosa

I 22 negativo Diplococobacilo (0,5 - 1,0) vermelha regular ++ aquosa ácido 0,3 2 translúcida convexa mucosa

I 30 negativo cocobacilos azul irregular + floculosa neutro 1,4 2 translúcida convexa mucosa

I 67 negativo Bastonete (2,5 - 0,6) azul regular ++ aquosa neutro 0,7 2 translúcida convexa mucosa

I 68 negativo Bastonete (3,0 - 0,5) curvado ou

vibriões transp regular + aquosa neutro 1,06 1 translúcida convexa mucosa

I 82 positivo Bastonete (0,5 - 0,3) branca regular + leitosa neutro 1,04 1 opaca convexa seca

I 84 positivo Bastonete (0,6 - 0,3) branca regular + leitosa ácido 1,5 1 opaca convexa mucosa

I 85 positivo transp regular ++ aquosa ácido 1,5 1 translúcida convexa mucosa

I 116 negativo Bastonete transp regular + leitosa ácido 0,26 2 translúcida convexa mucosa

IB 13 positivo amarela regular + transparente ácido 1,5 1 translúcida convexa mucosa

O 01 negativo Bastonete amarela regular + floculosa neutro 0,8 1 opaca convexa mucosa

O 21 positivo Bastonete amarela regular - floculosa neutro 0,44 2 opaca convexa seca

SF 04 negativo Cocobacilo branca regular + leitosa ácido 0,7 2 opaca convexa mucosa

SF 14 positivo Bastonete branca regular + leitosa neutro 0,4 2 opaca convexa mucosa

SF 21 positivo Bastonete azul irregular + floculosa neutro 0,64 1 opaca convexa mucosa

SF 23 Positivo Bastonete azul irregular + floculosa neutro 0,4 1 opaca convexa mucosa

B 08 Negativo Bastonete (1,2 - 0,6) corou bem clarinho azul regular + aquosa neutro 1,5 2 translúcida convexa mucosa

B 18 Negativo Bastonete (2,0 - 0,8) branca irregular - gomosa ácido 0,64 2 opaca plana seca

B 34 negativo Bastonetes (1,0 - 0,6) agregados branca regular + aquosa ácido 0,44 1 translúcida convexa mucosa

40

Page 56: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

41

CULTURA CÉLULA CULTURA CÉLULA

B08

B08

B18

B18

B34

B34

I07

I07

I22

I22

I30

I30

I67

I67

I68

I68

I82

I82

I85

I85

I116

I116

O01

O01

O21

O21

SF04

SF04

Figura 11: Aspectos morfológicos de colônias e de células de estirpes tipo e isolados representativos

dos nódulos de Arachis pintoi. Figura das células, 10 µm.

Page 57: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

42

4.5 CARACTERIZAÇÃO MOLECULAR DOS ISOLADOS

Foram selecionadas para caracterização molecular 25 amostras de diferentes

locais de coleta (Tabela 7). Os isolados escolhidos foram os que apresentaram as

maiores diferenças morfológicas entre si (coloração da colônia, mudança de pH no

meio de cultura, tipo de borda, produção ou não de muco, entre outras). Os

fragmentos amplificados pelos primers FD1 e RP2 apresentaram um tamanho

aproximado de 1500 pb (Figura 12).

Tabela 7: Quantidade de isolados obtidos e seqüenciados dos diferentes cultivares de A. pintoi nos

diferentes locais de coleta.

Cultivar Local de coleta Quantidade de

isolados obtidos

Quantidade de isolados

seqüenciados Orozimbo (O) CEPLAC, Itabela 18 3

Belmonte (B) CEPLAC, Itabela e

Faz.Ubirajara, Belmonte 27 6

Belmonte (SF) Faz. São Francisco,

Belmonte 19 5

cv 31534 (IB) CEPLAC, Itabela 11 1 Ilhéus (I) UESC, Ilhéus 68 10

Total 143 25

M I07 I22 I30 I67 I68 I82 I84 I85 I116 O01 O21 B08 B18 B34 SF04SF14 SF21SF23

Figura 12: Resultados da amplificação do fragmento rDNA 16S, via eletroforese em gel de agarose

1%, com os primers FD1 e RP2. Marcador de massa molecular Mass Ladder Invitrogen® (100 pb –

200 pb – 400 pb – 800 pb – 1200pb – 2000 pb).

Do resultado do seqüenciamento do rDNA 16S dos 25 isolados selecionados,

19 amostras apresentaram mais de 1300 pb de toda a molécula rDNA 16S, a qual

é composta por cerca de 1540 pb de nucleotídeos (STRALIOTTO; RUMJANEK,

2000 pb

100 pb

Page 58: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

43

1999). Em 6 amostras não foi possível obter a seqüência consenso (contig) devido a

baixa qualidade do seqüenciamento, por este motivo decidiu-se não incluí-las nesta

análise molecular.

Um total de 11 gêneros foram reconhecidos depois de submetidos à

comparação com as seqüências do GenBank através do Blastn (NCBI) e foram

agrupados e identificados (Tabela 8) através de táxons com maior porcentagem de

similaridade disponíveis no GenBank (ver Tabelas 9 – 27). O grau de significância

(valor E) para todas as seqüências estudadas foi muito baixo, sugerindo

confiabilidade nas análises de similaridade (Tabelas 9 – 27).

A maioria dos isolados (I07, I22, I30, I67, I68, I82, I116, SF14, SF21, SF23,

B08, B18, O01, O21) apresentou similaridade com as seqüências do GenBank

acima de 97%, porém os demais (IB13, I84, I85, B34 e SF04) demonstraram

similaridade igual ou inferior a 96% (Tabelas 9 – 27).

Foram identificados três gêneros de bactérias conhecidamente nodulíferas e

fixadoras de nitrogênio em simbiose com leguminosas e pertencentes à Classe

Alfaproteobacteria: Ochrobaterium (TRUJÍLLO et al., 2005) pertencente à família

Brucelaceae, e Agrobacterium (MARTINÉZ; PALACIOS; SÁNCHEZ, 1987) e

Rhizobium (FRANK, 1889) pertencentes à Família Rhizobiaceae. Um gênero da

Classe Betapoteobacteria e pertencente à família Burkholderiaceae, Pandorea, foi

encontrado nos isolados de A. pintoi, acredita-se que este gênero também possa ser

capaz de fixar nitrogênio.

Foram identificadas outras bactérias associadas aos nódulos de A. pintoi,

destas, três gêneros pertencentes à Classe Gammaproteobacteria: Serratia,

Pseudomonas (BARRAQUIO; LADHA; WATANABE, 1983 et al, 1983; FERNANDES;

FERNANDES; RODRIGUES, 2001) e Enterobacter (KORHOREN et al., 1989;

FERNANDES; FERNANDES; RODRIGUES, 2001).

Pertencente à Classe Bacilli foram identificados três gêneros conhecidamente

associados a espécies vegetais: Brevibacillus (DING et al., 2005), Paenibacillus

(SELDIN; VAN ELSAS; PENIDO, 1984; SELDIN; DUBNAU, 1985) e Bacillus (NEAL;

LARSON, 1976; HEULIN, 1992, DING et al., 2005).

Segundo as análises obtidas pelo Blastn e os dados de morfologia celular,

pode-se observar a presença de dois grandes grupos de bactérias associadas aos

nódulos da leguminosa estudada: Gram-positivas (Filo Firmicutis) e Gram-negativas

(Filo Proteobacteria).

Page 59: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

44

Tabela 8: Grupos obtidos através das análises de similaridade do GenBank.

As amostras I07 (Agrobacterium ou Rhizobium), I67 (Rhizobium) e I116

(Ochrobactrum) formam um pequeno grupo (Grupo I) pertencente à Classe

Alfaproteobacteria e Ordem Rhizobiales.

O Grupo II foi formado pelos isolados I22, I30, O01 e SF04 que foram

identificados como bactérias da classe Gammaproteobacteria principalmente do

gênero (Pseudomonas), a amostra I22 também apresentou um alto grau de

similaridade (97%) com o gênero Serratia. O isolado B34 foi identificado através de

Blastn como pertencente ao gênero Enterobacter, incluído portanto no Grupo II.

O Grupo III, composto por 4 isolados (B18, SF14, SF21 e SF23),

correspondeu a isolados que no Blastn foram identificados como sendo do gênero

Bacillus. Já o Grupo IV foi formado por outros 4 isolados obtidos dos nódulos de A.

pintoi (IB13, I68, I84 e I85) que no Blastn foram identificados como pertencentes ao

gênero Paenibacillus. A amostra IB13 apresentou a possibilidade de ser do gênero

Grupos Gêneros Isolados

I

Agrobacterium ou Rhizobium

Rhizobium

Ochrobactrum

I07

I67

I116

II

Pseudomonas ou Serratia

Pseudomonas

Pseudomonas

Pseudomonas

Enterobacter

I22

I30

O01

SF04

B34

III

Bacillus

Bacillus

Bacillus

Bacillus

Bacillus

B18

I82

SF14

SF21

SF23

IV

Paenibacillus ou Corynebacterium

Paenibacillus

Paenibacillus

Paenibacillus

IB13

I68

I84

I85

V Brevibacillus O21

VI Pandorea BO8

Page 60: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

45

Corynebacterium pertencente à Classe Actinobacteria e à Família

Corynebacteriaceae.

A amostra O21 foi separadamente incluída no Grupo V, pois foi identificada

como Brevibacillus, gênero também pertencente à Classe Bacilli.

A amostra B08 também foi a única amostra constituindo o Grupo VI, pois foi

identificada como uma bactéria pertencente à Classe Betaproteobacteria e a Família

Burkholderiaceae, Pandorea sp.

Page 61: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

46

Tabela 9: Dados obtidos das comparações da seqüência do isolado I07 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

DQ507210.1 Agrobacterium sp. MTR35B 16S ribosomal

RNA gene, partial sequence

2490 97 99 0.0 98 0

AY513492.1 Agrobacterium tumefaciens

strain 2001025242 16S ribosomal RNA gene,

partial sequence 2490 99 99 0.0 98 0

AY513491.1 Agrobacterium tumefaciens

strain 2003015367 16S ribosomal RNA gene,

partial sequence 2490 99 99 0.0 98 0

AY513490.1 Agrobacterium tumefaciens

strain 2003018195 16S ribosomal RNA gene,

partial sequence 2490 99 99 0.0 98 0

AY513489.1 Agrobacterium tumefaciens

strain 2002000903 16S ribosomal RNA gene,

partial sequence 2490 99 99 0.0 98 0

AF531767.1 Candidatus Rhizobium massiliae

16S ribosomal RNA gene, partial sequence 2490 97 99 0.0 98 0

AY174112.1 Agrobacterium sp. JS71 16S ribosomal RNA gene, partial sequence 2490 94 99 0.0 98 0

AB116668.1 Agrobacterium tumefaciens gene for 16S rRNA 2490 99 99 0.0 98 0

AJ389908.1 Agrobacterium tumefaciens

16S rRNA gene, strain O363 2490 97 99 0.0 98 0

AJ389907.1 Agrobacterium tumefaciens

16S rRNA gene, strain 0362 2490 97 99 0.0 98 0

46

Page 62: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

47

... Continuação (isolado I07)

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AJ389900.1 Agrobacterium tumefaciens

16S rRNA gene, strain CIP 43-76 2490 97 99 0.0 98 0

AJ389899.1 Agrobacterium tumefaciens

16S rRNA gene, strain CIP 28-75 2490 97 99 0.0 98 0

AJ389898.1 Agrobacterium tumefaciens

16S rRNA gene, strain CIP 127-76 2490 97 99 0.0 98 0

AJ389894.1 Agrobacterium tumefaciens

16S rRNA gene, strain CFBP2884 2490 97 99 0.0 98 0

AY850392.1 Agrobacterium tumefaciens

isolate B8S 16S ribosomal RNA gene, partial

sequence 2486 99 99 0.0 98 0

EF443163.1 Agrobacterium tumefaciens

strain M5 16S ribosomal RNA gene, partial

sequence 2484 95 99 0.0 98 0

DQ304800.1 Uncultured bacterium clone

C9 16S ribosomal RNA gene, partial sequence 2484 94 99 0.0 98 0

AY043382.1 Agrobacterium tumefaciens

16S ribosomal RNA gene, partial sequence 2481 98 97 0.0 99 0

AJ971480.1 Rhizobium sp. CO51 16S rRNA gene for 16S ribosomal RNA 2481 96 99 0.0 98 0

AY210716.1 Rhizobium sp. Ho-1 16S ribosomal RNA gene, partial sequence 2473 96 99 0.0 98 0

47

Page 63: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

48

Tabela 10: Dados obtidos das comparações da seqüência do isolado I22 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF415649.1 Serratia marcescens 16S ribosomal RNA gene, partial sequence 2422 92 99 0.0 97 1

AJ296308.1 Serratia marcescens 16S rRNA gene, isolate CPO1(4)CU 2420 94 99 0.0 97 1

EF510326.1 Uncultured bacterium clone

P6D1-448 16S ribosomal RNA gene, partial

sequence 2416 93 99 0.0 97 1

EF510258.1 Uncultured bacterium clone

P6D1-392 16S ribosomal RNA gene, partial

sequence 2416 94 99 0.0 97 1

EF510239.1 Uncultured bacterium clone

P6D1-469 16S ribosomal RNA gene, partial

sequence 2416 96 99 0.0 97 1

EF510192.1 Uncultured bacterium clone

P6D1-490 16S ribosomal RNA gene, partial

sequence 2416 99 99 0.0 97 1

EF510180.1 Uncultured bacterium clone

P6D1-435 16S ribosomal RNA gene, partial

sequence 2416 99 99 0.0 97 1

DQ439976.1 Pseudomonas fluorescens strain ost5 16S ribosomal

RNA gene, partial sequence

2416 95 99 0.0 97 1

AY566180.1 Serratia marcescens isolate SA Ant10(2) 16S

ribosomal RNA gene, partial sequence

2416 93 99 0.0 97 1

AY043386.1 Serratia marcescens strain AU736 16S

ribosomal RNA gene, partial sequence

2416 93 99 0.0 97 1

48

Page 64: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

49

Tabela 11: Dados obtidos das comparações da seqüência do isolado I30 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AF074383.1 Pseudomonas migulae 16S ribosomal RNA gene, complete sequence 2449 93 99 0.0 97 1

AY959204.1 Uncultured bacterium clone

rRNA431 16S ribosomal RNA gene, partial

sequence 2438 94 99 0.0 97 1

AY958988.1 Uncultured bacterium clone

rRNA215 16S ribosomal RNA gene, partial

sequence 2438 93 99 0.0 97 1

DQ279329.1 Uncultured Pseudomonas sp.

clone TM14_3 16S ribosomal RNA gene,

partial sequence 2438 94 99 0.0 97 1

DQ777728.1 Pseudomonas sp. Cam-1 16S ribosomal

RNA gene, partial sequence

2429 96 99 0.0 97 1

DQ310485.1 Pseudomonas sp. 33/2 16S ribosomal RNA gene, partial sequence 2427 99 99 0.0 97 1

DQ310484.1 Pseudomonas sp. 33/1 16S ribosomal RNA gene, partial sequence 2427 99 99 0.0 97 1

AY747591.1 Pseudomonas sp. HF3/S21027 16S

ribosomal RNA gene, partial sequence

2427 95 99 0.0 97 1

AY047218.1 Pseudomonas migulae 16S ribosomal RNA gene, partial sequence 2427 93 99 0.0 97 1

AY958838.1 Uncultured bacterium clone

rRNA065 16S ribosomal RNA gene, partial

sequence 2427 93 99 0.0 97 1

49

Page 65: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

50

Tabela 12: Dados obtidos das comparações da seqüência do isolado I67 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AY490118.1 Rhizobium sp. lebia-1 16S ribosomal

RNA gene, partial sequence

2462 97 97 0.0 99 0

Z94806.1 Rhizobium genosp. Q 16S rRNA gene 2462 96 97 0.0 99 0

EF035065.1 Rhizobium sp. CCBAU 83375 16S

ribosomal RNA gene, partial sequence

2460 99 97 0.0 99 0

EF035062.1 Rhizobium sp. CCBAU 83333 16S

ribosomal RNA gene, partial sequence

2460 99 97 0.0 99 0

EF035059.1 Rhizobium sp. CCBAU 83345 16S

ribosomal RNA gene, partial sequence

2460 97 97 0.0 99 0

EF035067.1 Rhizobium sp. CCBAU 83277 16S

ribosomal RNA gene, partial sequence

2459 99 97 0.0 99 0

DQ648576.1 Rhizobium tropici strain UPRM 8021 16S ribosomal RNA gene,

partial sequence 2457 96 97 0.0 99 0

AY864736.1 Rhizobium sp. ORS3177 16S ribosomal

RNA gene, partial sequence

2457 92 97 0.0 99 0

EF035077.1 Rhizobium sp. CCBAU 83523 16S

ribosomal RNA gene, partial sequence

2455 97 97 0.0 99 0

EF035076.1 Rhizobium sp. CCBAU 83503 16S

ribosomal RNA gene, partial sequence

2455 97 97 0.0 99 0

50

Page 66: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

51

Tabela 13: Dados obtidos das comparações da seqüência do isolado I68 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AB042938.1 Paenibacillus sp. DS-1 gene for 16S rRNA 2436 97 99 0.0 97 1

DQ129555.1 Uncultured bacterium clone

AKIW1098 16S ribosomal RNA gene, partial

sequence 2435 95 99 0.0 97 0

DQ407280.1 Paenibacillus sp. PALXIL06 16S ribosomal

RNA gene, partial sequence

2418 92 99 0.0 97 1

AM162337.1 Paenibacillus sp. H07-02 partial 16S rRNA gene 2412 95 99 0.0 97 1

AM162340.1 Paenibacillus sp. JS01-05 partial 16S rRNA gene 2399 92 97 0.0 97 0

DQ180952.1 Paenibacillus sp. MI-61a 16S ribosomal

RNA gene, partial sequence

2377 99 97 0.0 97 1

DQ298278.1 Uncultured bacterium clone

SR22 16S ribosomal RNA gene, partial sequence 2327 97 95 0.0 97 1

AM162349.1 Paenibacillus sp. YO4-16 partial 16S rRNA gene 2314 93 97 0.0 96 0

AY839868.1 Paenibacillus sp. B538 16S ribosomal RNA gene, partial sequence 2313 90 97 0.0 96 1

AM162311.1 Paenibacillus sp. YO4-14 partial 16S rRNA gene 2302 92 97 0.0 96 0

51

Page 67: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

52

Tabela 14: Dados obtidos das comparações da seqüência do isolado I82 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF178451.1 Bacillus sp. 1Re28 16S ribosomal

RNA gene, partial sequence

1539 58 96 0.0 99 0

DQ854983.1 Bacillus sp. GPTSA100-8 16S

ribosomal RNA gene, partial sequence

1539 58 96 0.0 99 0

AB116121.1 Bacillus mycoides gene for 16S ribosomal RNA, partial sequence,

strain:S31 1519 57 96 0.0 98 0

DQ339678.1 Bacillus fusiformis isolate BRL02-52 16S ribosomal RNA gene,

partial sequence 1495 97 96 0.0 98 0

EF154097.1 Unidentified bacterium clone

MEB020 16S ribosomal RNA gene, partial

sequence 1493 59 94 0.0 99 0

DQ219340.1 Bacillus sp. LQC-4 16S ribosomal

RNA gene, partial sequence

1467 58 96 0.0 97 0

AY373357.1 Bacillus mycoides strain c2 16S ribosomal

RNA gene, partial sequence

1467 56 96 0.0 97 0

DQ278904.1 Bacillus sp. eg1 16S ribosomal RNA gene, partial sequence 1467 59 96 0.0 97 0

EF210306.1 Bacillus mycoides strain BGSC 6A19 16S ribosomal RNA gene,

partial sequence 1461 58 96 0.0 97 0

CP000485.1 Bacillus thuringiensis str. Al Hakam, complete genome 2,04E+07 - 96 0.0 97 -

52

Page 68: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

53

Tabela 15: Dados obtidos das comparações da seqüência do isolado I84 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

DQ129555.1 Uncultured bacterium clone

AKIW1098 16S ribosomal RNA gene, partial

sequence 1410 56 97 0.0 95 1

AB042938.1 Paenibacillus sp. DS-1 gene for 16S rRNA 1410 57 97 0.0 95 1

DQ407280.1 Paenibacillus sp. PALXIL06 16S ribosomal

RNA gene, partial sequence

1395 54 97 0.0 95 2

AM162337.1 Paenibacillus sp. H07-02 partial 16S rRNA gene 1395 56 97 0.0 95 1

DQ298278.1 Uncultured bacterium clone

SR22 16S ribosomal RNA gene, partial sequence 1386 60 97 0.0 94 1

DQ180952.1 Paenibacillus sp. MI-61a 16S ribosomal

RNA gene, partial sequence

1378 60 96 0.0 95 2

AJ863343.1 Uncultured bacterium partial 16S rRNA gene, clone 5RHF36 1376 57 97 0.0 94 1

AY839868.1 Paenibacillus sp. B538 16S ribosomal RNA gene, partial sequence 1315 53 93 0.0 94 1

AM162340.1 Paenibacillus sp. JS01-05 partial 16S rRNA gene 1314 54 93 0.0 94 1

AJ863344.1 Uncultured bacterium partial 16S rRNA gene, clone 17RHF17 1290 57 97 0.0 93 2

53

Page 69: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

54

Tabela 16: Dados obtidos das comparações da seqüência do isolado I85 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

DQ401862.1 Mercury-resistant bacterium

mCFU 601 16S ribosomal RNA gene, partial

sequence 1456 95 99 0.0 97 0

AJ863293.1 Uncultured bacterium partial 16S rRNA gene, clone 27RHU1 1450 80 99 0.0 96 0

AM162318.1 Paenibacillus sp. H10-02 partial 16S rRNA gene 1450 56 99 0.0 96 0

AM162298.1 Paenibacillus sp. H42-08 partial 16S rRNA gene 1450 55 99 0.0 96 0

EF073971.1 Uncultured Paenibacillus sp.

clone GASP-WB2S2_E08 16S ribosomal RNA gene,

partial sequence 1437 95 99 0.0 96 0

AB073206.1 Paenibacillus chondroitinus

gene for 16S rRNA, partial sequence 1437 98 99 0.0 96 0

EF073315.1 Uncultured Paenibacillus sp.

clone GASP-WB1S1_C04 16S ribosomal RNA gene,

partial sequence 1424 96 99 0.0 96 1

D82064.1 Paenibacillus chondroitinus DNA for 16S rRNA 1399 58 99 0.0 95 1

AB245386.1 Paenibacillus pocheonensis

gene for 16S rRNA, partial sequence, strain:Gsoil

1138 1397 56 99 0.0 95 1

EF516124.1 Uncultured bacterium clone FCPP694 16S ribosomal RNA gene, complete sequence

1290 57 97 0.0 93 1

54

Page 70: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

55

Tabela 17: Dados obtidos das comparações da seqüência do isolado I116 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF537010.1 Ochrobactrum sp. 15 16S ribosomal RNA gene, partial sequence 2453 91 99 0.0 98 0

AM490611.1 Ochrobactrum anthropi partial 16S rRNA gene, strain CCUG 43892 2451 94 99 0.0 98 0

AM422371.1 Ochrobactrum pseudogrignonense

partial 16S rRNA gene, type strain CCUG 30717T 2451 94 99 0.0 98 0

EF465412.1 Ochrobactrum sp. WZUH09-1 16S ribosomal

RNA gene, partial sequence

2446 94 99 0.0 98 0

EF537009.1 Ochrobactrum sp. 10 16S ribosomal RNA gene, partial sequence 2442 91 99 0.0 98 0

D63836.1 Ochrobactrum sp. gene for 16S ribosomal RNA, partial sequence 2433 91 99 0.0 98 0

DQ267116.1 Ochrobactrum sp. CCBAU 61322 16S

ribosomal RNA gene, partial sequence

2427 93 98 0.0 98 0

DQ985280.1 Ochrobactrum sp. EV3 16S ribosomal RNA gene, partial sequence 2416 97 98 0.0 98 0

AM490617.1 Ochrobactrum anthropi partial 16S rRNA gene, strain DSM 7216 2396 94 99 0.0 97 0

AF452128.1 Ochrobactrum sp. LMG 20564 16S ribosomal

RNA gene, partial sequence

2392 91 99 0.0 97 0

55

Page 71: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

56

Tabela 18: Dados obtidos das comparações da seqüência do isolado IB13 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AM162330.1 Paenibacillus sp. GP08-05 partial 16S rRNA gene 1234 57 98 0.0 90 2

AB245384.1 Paenibacillus panacisoli

gene for 16S rRNA, partial sequence, strain:Gsoil

1411 1232 57 98 0.0 90 1

AY259129.1 Corynebacterium sp. 2301292 16S ribosomal

RNA gene, partial sequence

1221 56 98 0.0 90 2

AY230766.1 Paenibacillus sp. 'Smarlab BioMol-2301065' 16S ribosomal RNA gene,

partial sequence 1221 62 98 0.0 90 2

AY323608.1 Paenibacillus sp. 'Smarlab BioMol-2301065' 16S ribosomal RNA gene,

partial sequence 1219 57 98 0.0 90 2

AY373364.1 Paenibacillus sp. T7 16S ribosomal RNA gene, partial sequence 1216 55 98 0.0 90 2

AJ604539.1 Uncultured Paenibacillus sp.

partial 16S rRNA gene, clone za19 1212 56 98 0.0 90 1

D85397.1 Paenibacillus illinoisensis DNA for 16S rRNA 1208 59 98 0.0 90 2

AB073192.1 Paenibacillus illinoisensis gene for 16S rRNA, partial sequence 1208 56 98 0.0 90 2

EF074719.1 Uncultured Paenibacillus sp.

clone GASP-WC1W2_B02 16S ribosomal RNA gene,

partial sequence 1205 93 94 0.0 91 1

56

Page 72: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

57

Tabela 19: Dados obtidos das comparações da seqüência do isolado O01 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AJ575816.1 Pseudomonas sp. C36 16S rRNA gene, strain C36 2510 96 98 0.0 98 0

AB175661.1 Pseudomonas sp. CYN01B gene for 16S rRNA, partial sequence 2507 92 98 0.0 98 0

AY177356.2 Pseudomonas sp. M13 16S ribosomal RNA gene, partial sequence 2505 99 98 0.0 99 0

AM262973.1 Pseudomonas oryzihabitans

partial 16S rRNA gene, type strain IAM 1568T 2501 95 98 0.0 98 0

DQ129302.1 Uncultured bacterium clone

AKIW1037 16S ribosomal RNA gene, partial

sequence 2501 93 98 0.0 98 0

AY623816.1 Pseudomonas oleovorans 16S ribosomal RNA gene, partial sequence 2495 93 98 0.0 98 0

DQ837571.1 Pseudomonas sp. K3 16S ribosomal RNA gene, partial sequence 2494 96 98 0.0 98 0

AF479376.1 Glacial ice bacterium M3C4.7K-2 16S ribosomal

RNA gene, partial sequence

2494 96 98 0.0 98 0

EF550161.1 Pseudomonas sp. GW11 16S ribosomal

RNA gene, partial sequence

2492 99 97 0.0 99 0

EF157292.1 Pseudomonas sp. OK-5 16S ribosomal RNA gene, partial sequence 2488 91 98 0.0 98 0

57

Page 73: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

58

Tabela 20: Dados obtidos das comparações da seqüência do isolado O21 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AY591911.1 Brevibacillus brevis strain B15 16S ribosomal

RNA gene, partial sequence

1502 56 97 0.0 98 0

AY887081.1 Brevibacillus brevis 16S ribosomal RNA gene, partial sequence 1496 54 97 0.0 98 0

EF173465.1 Brevibacillus brevis 16S ribosomal RNA gene, partial sequence 1491 60 97 0.0 98 0

EF061893.1 Brevibacillus sp. M22 16S ribosomal RNA gene, partial sequence 1489 60 96 0.0 98 0

DQ444284.1 Brevibacillus brevis strain YJ009 16S

ribosomal RNA gene, partial sequence

1489 56 97 0.0 98 0

DQ316786.1 Brevibacillus sp. Y2 16S ribosomal RNA gene, partial sequence 1489 59 96 0.0 98 0

AB090803.1 Brevibacillus sp. YT-658 gene for 16S rRNA, partial sequence 1485 57 97 0.0 98 0

AY822561.1 Bacterium PSB-1-15 16S ribosomal

RNA gene, partial sequence

1483 99 97 0.0 98 0

AB112731.1 Brevibacillus brevis gene for 16S rRNA, partial

sequence, strain:DSM 5760

1480 57 97 0.0 98 0

DQ833765.1 Brevibacillus sp. KN2 16 ribosomal RNA gene, partial sequence 1478 97 95 0.0 98 0

58

Page 74: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

59

Tabela 21: Dados obtidos das comparações da seqüência do isolado SF04 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF126756.1 Pseudomonas sp. CBMB39 16S ribosomal

RNA gene, partial sequence

2287 93 93 0.0 96 1

EF126755.1 Pseudomonas sp. CBMB25 16S ribosomal

RNA gene, partial sequence

2287 93 93 0.0 96 1

EF126753.1 Pseudomonas sp. CBMB18 16S ribosomal

RNA gene, partial sequence

2287 93 93 0.0 96 1

DQ885949.1 Pseudomonas trivialis strain BIHB 749 16S ribosomal RNA gene,

partial sequence 2287 87 93 0.0 96 1

DQ536520.1 Pseudomonas trivialis strain BIHB 759 16S ribosomal RNA gene,

partial sequence 2287 87 93 0.0 96 1

DQ536519.1 Pseudomonas trivialis strain BIHB 757 16S ribosomal RNA gene,

partial sequence 2287 87 93 0.0 96 1

DQ536516.1 Pseudomonas trivialis strain BIHB 745 16S ribosomal RNA gene,

partial sequence 2287 87 93 0.0 96 1

DQ536513.1 Pseudomonas poae strain BIHB 730 16S ribosomal RNA gene,

partial sequence 2287 87 93 0.0 96 1

AY599721.1 Pseudomonas sp. TB3-6-I 16S ribosomal

RNA gene, partial sequence

2287 90 93 0.0 96 1

AJ492829.1 Pseudomonas poae partial 16S rRNA gene, type strain DSM 14936T 2287 86 93 0.0 96 1

59

Page 75: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

60

Tabela 22: Dados obtidos das comparações da seqüência do isolado SF14 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

DQ523503.1 Bacillus sphaericus strain B586 16S ribosomal

RNA gene, partial sequence

2237 86 98 0.0 98 0

DQ286310.1 Bacillus sphaericus strain CIP5125 16S

ribosomal RNA gene, partial sequence

2237 87 98 0.0 98 0

DQ870695.1 Bacillus sphaericus strain KSC_SF3b 16S

ribosomal RNA (rrn) gene, partial sequence

2235 85 98 0.0 98 0

DQ192210.1 Bacillus sp. L15 16S ribosomal RNA gene, partial sequence 2235 90 97 0.0 98 0

AB116123.1 Bacillus sphaericus gene for 16S ribosomal RNA, partial sequence,

strain:S33 2235 83 98 0.0 98 0

AF435435.1 Bacillus sphaericus strain 205y 16S ribosomal

RNA gene, partial sequence

2231 81 98 0.0 98 0

AF169527.1 Bacillus sp. NRS-1186 16S ribosomal

RNA gene, partial sequence

2222 87 97 0.0 98 0

AF169494.1 Bacillus sp. B-1876 16S ribosomal

RNA gene, partial sequence

2217 87 97 0.0 98 0

EF503614.1 Bacillus sp. ge05 16S ribosomal RNA gene, partial sequence 2213 86 97 0.0 98 0

EF503613.1 Bacillus sp. ge04 16S ribosomal RNA gene, partial sequence 2213 86 97 0.0 98 0

60

Page 76: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

61

Tabela 23: Dados obtidos das comparações da seqüência do isolado SF21 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AF435435.1 Bacillus sphaericus strain 205y 16S ribosomal

RNA gene, partial sequence

1507 58 98 0.0 98 1

DQ870695.1 Bacillus sphaericus strain KSC_SF3b 16S

ribosomal RNA (rrn) gene, partial sequence

1502 58 98 0.0 98 1

DQ523503.1 Bacillus sphaericus strain B586 16S ribosomal

RNA gene, partial sequence

1496 58 98 0.0 98 0

AB116123.1 Bacillus sphaericus gene for 16S ribosomal RNA, partial sequence,

strain:S33 1496 56 98 0.0 98 1

AY043358.1 Bacillus sp. ZYM 16S ribosomal RNA gene, complete sequence 1491 57 98 0.0 98 0

AF169543.1 Bacillus sp. NRS-752 16S ribosomal

RNA gene, partial sequence

1491 57 98 0.0 98 1

AF169527.1 Bacillus sp. NRS-1186 16S ribosomal

RNA gene, partial sequence

1491 60 98 0.0 98 1

DQ286310.1 Bacillus sphaericus strain CIP5125 16S

ribosomal RNA gene, partial sequence

1491 59 98 0.0 98 1

AF169494.1 Bacillus sp. B-1876 16S ribosomal

RNA gene, partial sequence

1485 60 98 0.0 98 1

AF169521.1 Bacillus sp. BD-89 16S ribosomal

RNA gene, partial sequence

1480 60 98 0.0 97 1

61

Page 77: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

62

Tabela 24: Dados obtidos das comparações da seqüência do isolado SF23 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

DQ523503.1 Bacillus sphaericus strain B586 16S ribosomal RNA gene, partial sequence 2211 86 99 0.0 97 0

AB116123.1 Bacillus sphaericus gene for 16S ribosomal RNA, partial sequence, strain:S33 2211 83 99 0.0 97 0

DQ286310.1 Bacillus sphaericus strain CIP5125 16S

ribosomal RNA gene, partial sequence

2211 87 99 0.0 97 0

DQ870695.1 Bacillus sphaericus strain KSC_SF3b 16S

ribosomal RNA (rrn) gene, partial sequence

2187 85 98 0.0 97 0

AF435435.1 Bacillus sphaericus strain 205y 16S ribosomal RNA gene, partial sequence 2187 85 98 0.0 97 0

EF472269.1 Bacillus fusiformis strain LQ88 16S ribosomal RNA gene, partial sequence 2183 84 99 0.0 97 0

EF472267.1 Bacillus fusiformis strain LQ104 16S ribosomal RNA gene, partial sequence 2183 81 99 0.0 97 0

EF473132.1 Bacillus fusiformis isolate qd84 16S ribosomal RNA gene, partial sequence 2183 84 99 0.0 97 0

EF473129.1 Bacillus fusiformis isolate ld84 16S ribosomal RNA gene, partial sequence 2183 84 99 0.0 97 0

DQ333300.1 Bacillus fusiformis isolate LLP 16S ribosomal RNA gene, partial sequence 2183 81 99 0.0 97 0

62

Page 78: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

63

Tabela 25: Dados obtidos das comparações da seqüência do isolado B08 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AF247693.1 Pandoraea sp. G5084 16S ribosomal

RNA gene, partial sequence

2479 92 95 0.0 98 1

AF139176.1 Pandoraea sputorum 16S ribosomal RNA gene, partial sequence 2470 94 95 0.0 98 1

AF247699.1 Pandoraea sp. G3307 16S ribosomal

RNA gene, partial sequence

2459 92 95 0.0 98 1

AF247697.1 Pandoraea sp. G9805 16S ribosomal

RNA gene, partial sequence

2459 92 95 0.0 98 1

AY677092.1 Pandoraea sputorum isolate TC84 16S

ribosomal RNA gene, partial sequence

2435 98 95 0.0 97 1

AY268170.1 Pandoraea pnomenusa strain CCUG 38742 16S

ribosomal RNA gene, partial sequence

2433 96 95 0.0 97 1

EF191352.1 Pandoraea pnomenusa strain LA-2 16S ribosomal

RNA gene, partial sequence

2429 96 95 0.0 97 1

AF139174.1 Pandoraea pnomenusa 16S ribosomal RNA gene, partial sequence 2429 95 95 0.0 97 1

DQ831002.1 Pandoraea sp. LB-7 16S ribosomal RNA gene, partial sequence 2427 90 95 0.0 97 1

AY268168.1 Pandoraea pnomenusa strain 2001008157 16S ribosomal RNA gene,

partial sequence 2427 96 95 0.0 97 1

63

Page 79: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

64

Tabela 26: Dados obtidos das comparações da seqüência do isolado B18 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

AB308441.1 Bacillus pumilus gene for 16S rRNA, partial

sequence. strain: TUT1346

2547 95 99 0.0 99 0

EF540447.1 Bacillus sp. 4_1V 16S ribosomal RNA gene, partial sequence 2547 98 99 0.0 99 0

EF528291.1 Bacillus pumilus strain CICCHLJ Q89 16S

ribosomal RNA gene, partial sequence

2547 95 99 0.0 99 0

EF528287.1 Bacillus pumilus strain CICCHLJ Q74 16S

ribosomal RNA gene, partial sequence

2547 95 99 0.0 99 0

EF197942.1 Bacillus pumilus strain J 16S ribosomal

RNA gene, partial sequence

2547 95 99 0.0 99 0

AY188840.1 Bacillus sp. ROO40B 16S ribosomal

RNA gene, partial sequence

2547 98 99 0.0 99 0

AJ831842.1 Bacillus sp. 41KF2b partial 16S rRNA gene, strain 41KF2b 2547 95 99 0.0 99 0

AB098578.1 Bacillus pumilus gene for 16S rRNA, partial sequence 2547 95 99 0.0 99 0

AF479336.1 Glacial ice bacterium G500K-16 16S ribosomal

RNA gene, partial sequence

2547 99 99 0.0 99 0

AM237349.1 Bacillus pumilus partial 16S rRNA gene, isolate OS-31.a 2545 96 99 0.0 99 0

64

Page 80: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

65

Tabela 27: Dados obtidos das comparações da seqüência do isolado B34 do rDNA 16S com os primeiros resultados mais similares disponíveis no GenBank.

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF402329.1 Uncultured bacterium clone

SJTU_B_06_49 16S ribosomal RNA gene,

partial sequence 1411 55 98 0.0 95 1

EF402993.1 Uncultured bacterium clone

SJTU_B_15_31 16S ribosomal RNA gene,

partial sequence 1410 55 98 0.0 95 1

EF401960.1 Uncultured bacterium clone

SJTU_B_01_86 16S ribosomal RNA gene,

partial sequence 1410 55 98 0.0 95 1

EF402854.1 Uncultured bacterium clone

SJTU_B_13_34 16S ribosomal RNA gene,

partial sequence 1406 55 98 0.0 95 1

EF402630.1 Uncultured bacterium clone

SJTU_B_10_44 16S ribosomal RNA gene,

partial sequence 1406 55 98 0.0 95 1

EF402437.1 Uncultured bacterium clone

SJTU_B_07_88 16S ribosomal RNA gene,

partial sequence 1406 55 98 0.0 95 1

EF402046.1 Uncultured bacterium clone

SJTU_B_02_87 16S ribosomal RNA gene,

partial sequence 1406 55 98 0.0 95 1

EF401986.1 Uncultured bacterium clone

SJTU_B_02_16 16S ribosomal RNA gene,

partial sequence 1406 55 98 0.0 95 1

EF402103.1 Uncultured bacterium clone

SJTU_B_03_68 16S ribosomal RNA gene,

partial sequence 1404 55 98 0.0 95 1

EF634287.1 Gamma proteobacterium X2 16S ribosomal RNA gene, partial sequence 1400 97 97 0.0 95 1

65

Page 81: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

66

... Continuação (isolado B34)

Acesso Descrição Comentário Escore Total

Cobertura da seqüência

problema (%)

Cobertura da seqüência do

banco (%) Valor E Identidade

(%) Gaps (%)

EF402885.1 Uncultured bacterium clone

SJTU_B_13_69 16S ribosomal RNA gene,

partial sequence 1400 55 98 0.0 95 2

EF402397.1 Uncultured bacterium clone

SJTU_B_07_39 16S ribosomal RNA gene,

partial sequence 1400 55 98 0.0 95 2

EF402249.1 Uncultured bacterium clone

SJTU_B_05_50 16S ribosomal RNA gene,

partial sequence 1400 55 98 0.0 95 2

EF402187.1 Uncultured bacterium clone

SJTU_B_04_72 16S ribosomal RNA gene,

partial sequence 1400 55 98 0.0 95 2

EF402011.1 Uncultured bacterium clone

SJTU_B_02_43 16S ribosomal RNA gene,

partial sequence 1400 55 98 0.0 95 1

DQ857896.1 Enterobacter aerogenes strain zjs04 16S ribosomal

RNA gene, partial sequence

1400 55 98 0.0 95 2

AB099402.1 Enterobacter aerogenes gene for 16S rRNA, partial sequence 1400 59 98 0.0 95 2

AJ251468.1 Enterobacter aerogenes partial 16S rRNA gene, strain NCTC10006T 1399 55 98 0.0 95 2

U39556.1 Enterobacter sp. 16S rRNA gene, partial sequence 1399 56 98 0.0 95 2

66

Page 82: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

67

88

5 DISCUSSÃO

5.1 MORFOLOGIA, ANATOMIA E ULTRA-ESTRUTURA DOS NÓDULOS

A formação de nódulos nas raízes das leguminosas e a efetiva fixação

biológica de nitrogênio pelos bacteróides requerem uma seqüência complexa de

processos fisiológicos expressados por genes, os quais são ativados pela constante

troca de sinalizações entre a bactéria e a planta hospedeira (STACEY; BURRIS;

EVANS, 1992).

A contribuição das leguminosas, como fornecedoras de nitrogênio para o solo,

depende do estabelecimento de uma eficiente simbiose entre a planta e a bactéria.

Uma medida indireta dessa eficiência é a concentração de leghemoglobina no tecido

infectado, a qual confere coloração avermelhada ao interior dos nódulos (SPRENT,

2001), como a que foi evidenciada em alguns nódulos de amendoim forrageiro no

presente trabalho.

Os resultados das análises anatômicas aqui apresentados permitem

classificar os nódulos de A. pintoi como sendo do tipo asquenomenóide (CORBY,

1988). Os nódulos asquenomenóides apresentam crescimento determinado,

geralmente possuem vida curta (poucas semanas), tem forma de esfera achatada

nos pólos, estão associados com raízes laterais ou adventícias e a infecção ocorre

através de feridas onde as raízes emergem (SPRENT, 2001).

Os nódulos do tipo asquenomenóide possuem tecido infectado composto

exclusivamente por células infectadas e não apresentam um meristema permanente,

tendo, portanto, um período de crescimento e desenvolvimento determinado. Dos

cortes realizados para estudo da anatomia, apenas em um nódulo coletado na

Fazenda Ubirajara observou-se células não infectadas (intersticiais) em meio ao

tecido infectado. Sprent (2001) afirma que o tecido infectado pode apresentar

poucas células não infectadas (intersticiais).

De maneira geral a distribuição dos tecidos no nódulo de A. pintoi seguiu o

mesmo padrão relatado para nódulos determinados de outras leguminosas (ALLEN;

ALLEN, 1981).

Page 83: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

68

Segundo Sprent (2001), os nódulos determinados são formados a partir da

invasão do rizóbio na raiz da planta. A divisão celular acontece no córtex externo da

raiz e em seguida diversas células meristemáticas são invadidas por correntes de

infecção que distribuem as bactérias, as quais, ao entrarem em contato com o

citoplasma da célula vegetal hospedeira, formarão o simbiossomo. Células

meristemáticas infectadas e não-infectadas continuam a se dividir formando o

nódulo, dentro de poucos dias as células param de se dividir e iniciam o processo de

fixação de nitrogênio (SPRENT, 2001). É importante salientar que as correntes de

infecção estão ausentes nos nódulos do tipo asquenomenóide (Figura 13)

(SPRENT, 2001). No presente estudo, em nenhum corte foi observado estas

estruturas tão comuns nos outros tipos de nódulos de leguminosas, como era

esperado.

Figura 13: Esquema de um nódulo tipo asquenomenóide: C, córtex do nódulo; R, raiz

(Adaptado de SPRENT, 2001).

Em um amplo estudo sobre nodulação em leguminosas Corby (1981) relatou

que a maioria dos nódulos de crescimento determinado é do tipo desmodióide. Os

nódulos determinados do tipo asquenomenóide e desmodióide ocorrem apenas

dentro da subfamília Papilionoideae (SPRENT, 2001).

Ao contrário do encontrado para A. hypogeae por Chandler (1978), Sprent

(1994) e Uheda; Daimon; Yoshizako (2001), onde pêlos radiculares multicelulares

geralmente circundam a área onde emerge a raiz lateral, em plantas adultas de A.

pintoi não foram encontrados pêlos radiculares (multicelulares ou unicelulares) em

nenhuma das raízes coletadas nos diferentes locais. Entretanto, pêlos multicelulares

foram encontrados nas raízes de plantas jovens de A. pintoi, corroborando o

Page 84: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

69

trabalho de Uheda; Daimon; Yoshizako (2001) que afirmam, que os pêlos podem

estar presentes em raízes de plantas jovens e que são perdidos (descartados) no

decorrer do desenvolvimento da planta.

A formação de nódulos através da invasão intercelular do rizóbio ou “entrada

através de fissura”, que primeiro foi descrita em A. hypogaea no ano de 1940 por

Allen e Allen, está condicionada, segundo Uheda; Daimon; Yoshizako (2001), à

presença dos pêlos radiculares, e estes só foram encontrados em raízes jovens na

espécie do presente estudo. Entretanto, Sprent (2001) afirma que espécies de

amendoim que comumente não apresentam pêlos nas raízes pode tê-los em

condições de estresse e que a invasão do rizóbio nas raízes jovens pode acontecer

através das fissuras provocadas pela emergência das raízes secundárias.

A análise micromorfológica dos nódulos permitiu avaliar, além do tamanho

dos bacteróides, a sua forma, a qual é esférica e semelhante a de Bradyrhizobium,

uma bactéria fixadora de nitrogênio que comumente forma simbiose com

leguminosas do gênero Arachis (SPRENT, 2001). Os bacteróides dos nódulos de A.

pintoi, assim como os dos nódulos de A. hypogaea (SPRENT, 2001), apresentaram

a forma esférica e podem ser considerados grandes (atingindo até 4 µm de

diâmetro) quando comparados aos bacteróides de outros nódulos de leguminosas

(ALLEN; ALLEN, 1981).

A forma do bacteróide é em grande parte controlada pela planta hospedeira,

uma vez que, por exemplo, amendoim e caupi (Vigna unguiculata) podem ser

nodulados pela mesma estirpe de Bradyrhizobium e produzir bacteróides esféricos e

em forma de bacilo, respectivamente (SEN; WEAVER, 1984).

O espaço entre o bacteróide e a membrana do simbiossomo, observado nas

células infectadas do nódulo de A. pintoi pode ser, resultado da fixação química a

que foi submetido o nódulo, uma vez que esse espaço não foi identificado nos

simbiossomos de A. hypogaea submetidos à criofixação (SPRENT, 1994).

Duas características ultra-estruturais dos nódulos do amendoim que são

bastante incomuns nos de outras leguminosas são os vários tipos de oleossomos

(corpos lipídicos) e os corpos de armazenamento de proteínas (lectinas) presentes

nas células infectadas (SPRENT, 2001). Depósitos elétron-densos foram

encontrados nos espaços do simbiossomo de A. pintoi e podem ser comparados

pelo seu tamanho, posição e elétron-densidade com os depósitos de lectinas

encontrados em A. hypogaea.

Page 85: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

70

Os espaços intercelulares encontrados tanto no tecido infectado como no

córtex interno do nódulo de amendoim forrageiro são importantes para permitir a

difusão do oxigênio, o qual é necessário para a respiração aeróbica e formação de

ATPs, que são consumidos em grande quantidade (16 ATPs por molécula de N2

transformada em 2 moléculas de NH3) durante a fixação biológica de nitrogênio que

ocorre no bacteróide (MOREIRA; SIQUEIRA, 2006).

As células do córtex interno do nódulo de A. pintoi apresentaram as

características ultra-estruturais típicas para as células corticais dos nódulos de

outras leguminosas como a presença de grãos de amido, que servem de reserva

para momentos de maior atividade metabólica do órgão (SPRENT, 2001). O nódulo

asquenomenóide de A. pintoi apresentou grandes semelhanças anatômicas,

morfológicas e ultra-estruturais com o nódulo de A. hypogaea (SPRENT, 2001).

5.2 CARACTERIZAÇÃO DAS COLÔNIAS

Para os gêneros da família Rhizobiaceae (Classe Alfaproteobacteria) e da

família Burkholderiaceae (Classe Betaproteobacteria), conhecidamente importantes

para o crescimento da planta e potencialmente nodulíferas, as características

culturais e morfológicas destas espécies bacterianas fornecem informações

importantes para sua identificação e agrupamento. Sabe-se que o processo de

fixação de nitrogênio é uma importante simbiose entre a bactéria e a leguminosa.

Esta interação tem despertado grande interesse da comunidade científica na busca

de melhorias para potencialização das pastagens associadas com A. pintoi.

As principais características das colônias, isoladas através deste trabalho e

observadas no meio de cultura 79 foram a mudança de pH do meio e produção de

muco (provavelmente uma mistura complexa de exopolissacarídeos) pelas bactérias.

Vale ressaltar que o meio de cultura 79 também conhecido com YMA (Yeast

Mannitol Agar) não é específico para culturas de rizóbios, portanto pode ser utilizado

e permite o cultivo de outros tipos de bactérias, fornecendo ainda a possibilidade de

avaliar a mudança de pH no referido meio.

Nos dois isolados identificados como Rhizobium sp. através do Blastn foi

observada a alta produção de muco. Foi observado que os isolados identificados

Page 86: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

71

com Bacillus não produziam muco (-) ou quando produziam era em pequena

quantidade (+). Martins (1996) em seu estudo de rizóbios que nodulavam Vigna

unguiculata observou que a quantidade de muco produzida coincide com o tempo de

crescimento da colônia, onde as estirpes de crescimento rápido produziam uma

quantidade abundante de muco, enquanto as de crescimento lento e muito lento

produziam pouco ou nenhum muco. No presente trabalho não foi observado esta

relação, pois todas as colônias isoladas apresentaram crescimento rápido e a

produção de muco foi bastante variada.

Em relação à mudança de pH produzida no meio de cultura, foram

observadas três características bastante evidentes: algumas estirpes acidificaram o

meio de cultura, outras o alcalinizaram e já outras, não alteraram o pH. Segundo Tan

e Broughton (1981) a mudança de pH é decorrente da utilização preferencial de

açúcares pelas estirpes de crescimento rápido, seguida de excreção de ácidos

orgânicos e de compostos de nitrogenados pela estirpe.

O estudo das características culturais e morfológicas dos isolados de A. pintoi

revela uma diversidade bastante ampla. O conhecimento da diversidade das

comunidades nativas é a principal fonte para desenvolvimento da biotecnologia.

5.3 CARACTERIZAÇÃO DO rDNA 16S

Todos os gêneros isolados a partir dos nódulos de A. pintoi no decorrer do

presente estudo e identificados através da comparação com as seqüências do

GenBank (NCBI) são comumente encontrados no solo, com exceção do gênero

Corynebacterium.

No presente trabalho foram identificados três gêneros de bactérias

conhecidamente nodulíferas e fixadoras de nitrogênio em simbiose com leguminosas

e pertencentes à Classe Alfaproteobacteria: Agrobacterium (MARTÍNEZ; PALÁCIOS;

SÁNCHEZ, 1987), Ochrobaterium, (TRUJÍLLO et al., 2005) e Rhizobium (FRANK,

1889). Um gênero da Classe Betapoteobacteria e pertencente à família

Burkholderiaceae, Pandorea, também foi encontrado nos isolados de A. pintoi.

Acredita-se que este gênero também possa ser capaz de fixar nitrogênio.

Pertencente também a família supracitada encontra-se o gênero Burkholderia

Page 87: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

72

descrito como nodulífero e capaz de fixar nitrogênio quando associado a

leguminosas (MOULIN et al., 2001; VANDAMME et al., 2002). Associadas aos

nódulos de A. pintoi também foram encontradas bactérias dos gêneros Bacillus,

Paenibacillus, Enterobacter e Pseudomonas, todos eles citados por Moreira e

Siqueira (2006) como sendo diazotróficos associativos na rizosfera de espécies

vegetais.

Na literatura algumas espécies de Bacillus são descritas como diazotróficas

associativas (NEAL; LARSON, 1976; HEULIN, 1992). Dentro da Classe Bacilli a

espécie Paenibacillus brasiliensis foi encontrada associada ao milho (VON DER

WEID et al., 2002) e é conhecida pela sua capacidade de fixar nitrogênio, assim

como Paenibacillus borealis espécie isolada de coníferas em florestas da Finlândia

(ELO et al., 2001). Outra espécie de Paenibacillus, Paenibacillus azotofixans, é

freqüentemente isolada de solo e raízes de cana-de-açúcar, trigo e outras gramíneas

(SELDIN, VAN ELSAS; PENIDO, 1984).

Espécies pertencentes à Classe Bacilli podem apresentar resultados diversos

para o teste de Gram, e isso explicaria alguns dos resultados obtidos no presente

estudo. Segundo Piao et al. (2005), algumas espécies do gênero Bacillus pode

apresentar reações de Gram instáveis, positivas ou negativas. O gênero

Paenibacillus pode apresentar coloração Gram-negativa por possuir uma parede

celular fina, com menor quantidade de peptideoglicanos (UETANABARO et al.,

2003).

O isolado B34 identificado como não cultivável ou Enterobacter apresentou

índice de cobertura da seqüência problema muito baixo, em média 56% e índice de

similaridade 95%. O gênero Enterobacter já foi citado como associado a raízes de

coqueiros, gramíneas, trigo cevada e arroz (KORHOREN et al., 1989; FERNANDES;

FERNANDES; RODRIGUES, 2001).

O gênero Pseudomonas pertencente à Classe Gammaproteobacteria, e

durante muito tempo foi questionada a capacidade de Pseudomonas spp. fixarem

nitrogênio. Entretanto, com novos estudos realizados sobre este gênero foi

comprovado que Pseudomonas stutzeri (XIE et al., 2006), dentre outras espécies,

pode reduzir o nitrogênio atmosférico à amônia. Pseudomonas spp. associadas às

raízes das plantas foram isoladas de arroz (BARRAQUIO; LADHA; WATANABE,

1983 et al., 1983) e coqueiro (FERNANDES; FERNANDES; RODRIGUES, 2001).

Page 88: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

73

Dentre os grupos de bactérias mais estudados e de grande potencial para

utilização na agricultura encontram-se as rizobactérias promotoras de crescimento

de plantas, representando um subgrupo diverso de bactérias que colonizam as

raízes. O termo Rizobactérias Promotoras de Crescimento em Plantas (RPCPs) foi

adotado por Schroth e Hancock (1982) para descrever bactérias benéficas bem

adaptadas às raízes das plantas, e para diferenciá-las das bactérias do solo que não

as colonizam ou não o fazem tão agressivamente (BOTELHO, 1996).

A maioria das estirpes de rizobactérias promotoras de crescimento em plantas

documentadas na literatura pertence aos gêneros Pseudomonas e Bacillus. Sendo

que, dentre o gênero Pseudomonas, o maior número das espécies refere-se ao

grupo das fluorescentes. Pseudomonas spp. fluorescentes também estão envolvidas

na conservação do ambiente. Seu metabolismo de carbono e energia são

responsáveis pela dissimilação de nitrato e degradação de compostos xenobióticos.

A diversidade metabólica de Pseudomonas spp. fluorescentes dá a estas bactérias

uma grande habilidade para adaptação a vários ambientes, especialmente solo e

rizosfera (LATOUR; LEMANCEAU, 1997).

Existem registros da presença do gênero Brevibacillus, pertencente à Família

Paenibacillaceae, em solos (BAEK, 2006) já para o gênero Corynebacterium (56%

de cobertura da seqüência problema e 90% de similaridade), identificado através do

Blast, não foi encontrado nenhum registro sobre a sua presença em solo rizosférico.

Os isolados bacterianos de A. pintoi, identificados molecularmente através do

seqüenciamento do rDNA 16S, podem ser considerados como simbiontes,

endofíticos ou associativos dos nódulos, uma vez que foram tomados os devidos

cuidados no procedimento de desinfestação desses órgãos e no processo

isolamento em capela de fluxo laminar. Entretanto, não pode ser descartada a

hipótese de contaminação no procedimento de isolamento ou repicagem das

colônias bem como no processo de desinfestação dos nódulos.

O presente estudo apresentou informações sobre isolados bacterianos de

nódulos de A. pintoi, os quais foram provenientes da região sul baiana, onde essa

espécie vegetal é considerada nativa. As informações da morfologia das colônias e

das bactérias associativas e simbiontes dos nódulos dessa leguminosa forrageira

são importantes para caracterização do banco de isolados que foi, através deste

trabalho, constituído e que subsidiará através do fornecimento de inoculantes os

estudos posteriores para averiguar a influência destas bactérias no crescimento de

Page 89: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

74

A. pintoi. Vale ainda ressaltar a grande importância do conhecimento sobre essas

bactérias que podem ser utilizadas em processos biotecnológicos de interesse

agropastoril em outras espécies vegetais.

Page 90: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

75

6 CONCLUSÕES

• As características morfoanatômicas e ultra-estruturais observadas nos

nódulos de A. pintoi permitem classificá-lo como sendo do tipo

asquenomenóide, portanto de crescimento determinado.

• A grande maioria (64) dos isolados dos nódulos de A. pintoi dos diferentes

locais de coleta acidificaram o meio de cultura 79, apresentaram crescimento

rápido e produziram muco.

• Dos 19 isolados selecionados quanto as diferenças morfológicas das colônias

(diferentes morfotipos) para seqüenciamento do rDNA 16S, 11 amostras

apresentaram similaridade (através de Blastn) com os gêneros Bacillus,

Paenibacillus, Brevibacillus, Pseudomonas, Enterobacter, Pandorea,

Rhizobium e Ochrobacterium.

• Foi estabelecido no Laboratório de Pesquisa em Microbiologia (LAPEM) da

UEFS um banco de bactérias isoladas a partir dos nódulos de A. pintoi

constituído por aproximadamente 150 isolados.

• Propõe-se estudos posteriores dos 19 isolados seqüenciados quanto a sua

capacidade de fixação biológica de nitrogênio, podendo-se averiguar a

presença no genoma desses isolados do gene nifH, e posteriores testes de

inoculação dessas bactérias em sementes de A. pintoi com intuito de avaliar

sua capacidade de nodulação, vale ressaltar ainda a necessidade de

posteriores estudos na identificação ao nível de espécie.

Page 91: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

76

REFERÊNCIAS

ALLEN, O. N.; ALLEN, E. K. Response of the Peanut Plant to Inoculation with Rhizobia, with Special Reference to Morphological Development of the Nodules. Botanical Gazette , v.102, n.1, p.121-142, 1940 ALLEN, O.N.; ALLEN, E.K. The Leguminosae: a source book of characteristics, uses and nodulation. Madison, University of Wisconsin Press. 812p, 1981. ANDRADE, C. M. S.; VALENTIM, J. F. Adaptação, produtividade e persistência de Arachis pintoi submetido a diferentes níveis de sombreamento, no Acre. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, Anais... Juiz de Fora: SBZ, v.34, p.341-343, 1997. ANYANGO, B.; WILSON, K.J.; BEYNON, J.L.; GILLER, K.E. Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Applied and Environmental Microbiology , v.61, n.11, p.4016-4021, 1995. ARGEL, P. J.; PIZARRO, E. A. Germoplasm case study: Arachis pintoi. In.: PASTURES FOR THE TROPICAL LOWLANDS – CIAT's Contribution. Cali: CIAT, p.57-76, 1992. BARRAQUIO, W. L.; LADHA, J. K.; WATANABE, I. Isolation and identification of N2-fixing Pseudomonas associated with wetland Rice. Canadian Journal of Microbiology , v.29, n.8, p.867-873, 1983. BARRERA, L.L.; TRUJILLO, M.E.; GOODFELLOW, M.; GARCÍA, F.J.; HERNÁNDEZ-LUCAS, I.; DÁVILA, G.; van BERKUM, P.; MARTÍNEZ-ROMERO, E. Biodiversity of bradyrhizobia nodulating Lupinus spp. International Journal of Systematic Bacteriology , v.47, p.1086-1091, 1997. BENSALIM, S.; NOWAK, J.; ASIEDU, S. K. A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. American Journal of Potato Research , v.75, p.145-152, 1998. BOTELHO, G. R. Impacto ambiental de Pseudomonas fluorescens em riz osfera de milho (Zea mays L. Merril) e seu potencial uso e m biocontrole. UFRJCCS- Pós-graduação de Biotecnologia Vegetal, Dissertação (Mestrado), Rio de Janeiro, 1996.

Page 92: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

77

BURLAND, T. G. DNASTAR's Lasergene sequence analysis software. Methods Mol Biol . v.132, p.71-91, 2000. CARDOSO, E. I. B. N., TSAI, S. M., NEVES. Microbiologia do solo . Campinas, Sociedade Brasileira de Ciências do Solo, 1992. CARULLA, J. E.; LASCANO, C. E.; WARD, J. K. Selectivity of resident and oesophageal fistulated steers grazing Arachis pintoi and Brachiaria dictyoneura in the Llanos of Colombia. Tropical Grasslands , v.25, p.317-324, 1991. CHANDLER, M. L. Some observations of infection of Arachis hypogaea L. by Rhizobium. Journal Experimental Botany . v.29, p.749-755, 1978. CHANDLER, M. L. ; DATE, R. A. ; ROUGHLEY, R. J. Infection and root-nodule development in Stylosanthes species by Rhizobium. Journal Experimental Botany , v.132, p.47-57, 1982. CHEN, W. X., YAN, G. H.; LI, J. L. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sonorhizobium gen. nov. International Journal Systematic Bacteriology , v.38, n.4, p.392-397, 1988. CHEN, C.; BAUSKE, E. M. ; MUSSON, G. ; RODRÍGUEZ-KÁBANA, R. ; KLOEPPER, J. M. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control , v.5, p.83-91, 1995. CHEN, W.M., LAEVENS, S., LEE, T.M., COENYE, T., DE VOS, P. MERGEAY, M. ; VANDAMME, P. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. International Journal of Systematic and Evolutionary Microbiology , v.51, p.1729-1735, 2001. CHEN, W. M., JAMES E. K., PRESCOTT, A. R., KIERANS, M. ; SPRENT, J. I. Nodulation of Mimosa spp. by the β-Proteobacterium Ralstonia taiwanensis. Molecular Plant-Microbe Interactions , v.16, p.1051-1061, 2003. CORBY, H.D.L. 1981. The systematic value of leguminous root nodules . In: ADVANCES IN LEGUME SYSTEMATICS (R.M. POLHILL & P.H. RAVEN, eds.). Royal Botanic Gardens, Kew, p.657-669,1981.

Page 93: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

78

CORBY, H. D. L. Types of rhizobial nodule and their distribution among the Leguminosae. Kirkia , v.13, p. 53–123, 1988. CREUS, C. M., SUELDO, R. J., BARASSI, C. A. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botanic , v. 82, n. 2, p. 273 – 281, 2004. de LAJUDIE, P.; WILLEMS, A.; POT, B. DEWETTINCK, D.; MAESTROJUAN, G.; NEYRA, M.; COLLINS, M. D.; DREYFUS, B.; KERSTERS, K.; GILLIS, M. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti com. nov.; Sinorhizobium saheli sp. Nov.; and Sinorhizobium teranga, sp. nov. International Journal of Systematic Bacteriology , v.44, p.715-733, 1994. de LAJUDIE, P.; LAURENT-FULELE, E.; WILLEMS, A.; TORCK, U.; COOPMAN, R.; COLLINS, M.D.; KERSTERS, K.; DREYFUS, B.; GILLIS, M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. International Journal of Systematic Bacteriology , v.48, p.1277-1290, 1998. de FARIA, S. M.; HAY, G. T., and SPRENT, J. I. Entry of rhizobia into roots of Mimosa scabrella Bentham occurs between epidermal cells. Journal Genetic Microbiology , v.134, p.2291-2296, 1988. DING, Y.; WANG, J.; LIU, Y.; CHEN, S. Isolation and identification of nitrogen-fixing bacilli from plant rhizospheres in Beijing region. Journal of Applied Microbiology , v.99, p.1271–1281, 2005. DOBBELAERE, S.; VANDERLEYDEN, J.; OKON, Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences , v. 22, n. 2, p. 107-149, 2003. DREYFUS, B.; GARCIA, J.L.; GILLIS, M. Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbani rostrata. International Journal of Systematic Bacteriology , Baltimore, v.38, n.1, p.89-98, 1988. ELO, S.; SUOMINEN, I.; KÄMPFER, P.; JUHANOJA, J.; SALKINOJA-SALONEN, M.; HAAHTELA, K. Paenibacillus borealis sp. nov., fixing species isolated from spruce forest humus in Finland. International Journal of Systematic and Evolution ary Microbiology , v.51, p.535-545, 2001.

Page 94: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

79

EVANS, H.J.; BURRIS, R.H. Highlights in Biological Nitrogen Fixation during the last 50 years. In: STACEY, G.; BURRIS, R.H.; EVANS, H.J eds. Biological Nitrogen Fixation. New York: Chapman and Hall, p.1-42, 1992. EMBRAPA. Manual de Métodos de Análise de Solo . CNPS 20 ed. rev. atual. Rio de Janeiro. 212p, 1997. FAHEY, J. W.; DIMOCK, M. R.; TOMASINO, S. F.; TAYLOR, J. M.; CARISON, P. S. Genetically engineered endophytes as biocontrol agents: a case study from industry. In: ANDREWS, J. H.; HIRANO, S. S. (Ed.). Microbial ecology of leaves . London: Springer-Verlag, p.401-411, 1991. FERNANDES, M. F.; FERNANDES, R. P. M.; RODRIGUES, L. da S. Bactérias diazotróficas associadas a coqueiros na região de baixada litorânea em Sergipe. Pesquisa Agropecuária Brasileira , v.36, n.12, p.1509-1517, 2001. FRANCO, A. A.; DÖBEREINER, J. A biologia do solo e a sustentabilidade dos solos tropicais. Summa Phytopathologica , v.20, n.1, p.68-74, 1994. FRANK, B. Ueber die Plizsymbiose der Leguminosen. Ber Deut. Bot. Ges. v.7, p.332-346, 1889. FRED, E. B.; WAKSMAN, S. A. Yeast extract-manitol agar. Laboratory Manual of General Microbiology . New York: McGraw-Hill, p. 145, 1928. FOX, G.E.; WISOTZKEY, J.D.; JURTSHUK JR., P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. International Journal of Systematic Bacteriology , v.42, p.166-170, 1992.

GAGE, D. I. Infection and invasion of roots by simbiotc, nitrogen-fixing rhizobia during nodulation oftemperate legumes. Microbiology and Molecular Biology Reviews . voI.68, n.2, 2004. GARRITY, G.M.; WINTERS, M.; SEARLES, D.B. Taxonomic outline of the prokaryotic genera Bergey's Manual® of Systematic B acteriology , 2nd ed. New York: Springer, 2001. GRAY, E.J.; SMITH, D.L. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology & Biochemistry , n.37, p.395-412, 2005.

Page 95: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

80

GROF, B. Forage attributes of perenial groundnut Arachis pintoi in a tropical savana environment in Colombia. In: INTERNATIONAL GRASSLAND CONGRESS, Kyoto. Proceedings... Kyoto, Japan, v.15, p.168-170, 1985. HEIJNEN, C.E.; BURGERS, S.C.G.E.; VAN VEEN, J.A. Metabolic activity and population dynamics of rhizobia introduced into unamended and bentointeamended loamy sand. Applied and Environmental Microbiology , v.59, n.3, p.743-747, 1993. HEULIN, T. Adaptation des Bacillus fixateurs dázote a la rhizosphere des gramínees: une idée qui fait son chemin. Interaction plantes – microorganisms IFS , p.68-82, 1992. HIRSCH, P.R.; JONES, M.J.; MC GRATH, S.P.; GILLER, K.E. Heavy metals from past applications of sewage slude decrease the genetic diversity of Rhizobium leguminosarum biovar trifolii populations. Soil Biology and Biochemistry , v.25, n.11, p.1485-1490, 1993. ILDIS - INTERNATIONAL LEGUME DATABASE & INFORMATION SERVICE. Disponível em: <http://www.ildis.org/LegumeWeb/>. Acesso em: 12 de agosto 2006. JARVIS, B.D.W.; DOWNER, J.L.; YOUNG, J.P.W. Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium & Bradyrhizobium and assignment to Rhizobium fredii. International Journal of Systematic Bacteriology , Washington, v.42, p.93-96, 1992. JARVIS, B.D.W.; VAN BERKUM, P.; CHEN, W.X.; NOUR, S.M.; FERNANDEZ, M.P.; CLEYET-MAREL, J.C.; GILLIS, M. Transfer of Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tiashanense to Mesorhizobium gen. nov. International Journal of Systematic Bacteriology , v.47, n.3, p.895-898, 1997. JONES, R. M. Persistence of Arachis pintoi cv. Amarillo on three soil types ar Samford, south-eastern Queensland. Tropical Grasslands , v.27, p.11-15, 1993. JORDAN, D. C. Rhizobiaceae. In: N. R. KREIG; J. G. HOLT (Eds). Bergey´s manual of systematic bacteriology, v.1. pp. 234-254, 1984. KAHINDI, J. H. P.; WOOMER, P.; GEORGE, T.; de SOUZA MOREIRA, F. M.; KARANJA, N. K.; GILLER, K. E. Agricultural intensification, soil biodiversity and ecosystem function en the tropics: the role of nitrogen-fixing bacteria. Applied Soil Ecology , v.6, p.55-76, 1997.

Page 96: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

81

KHACHATRYAN, Z. A. Alterations in Gut Microbiota Composition in Famili al Mediterranean Fever , 2006. Disponível em: <http://elib.sci.am/2006_4/13/13.htm>. Acesso em: 26 de junho de 2007. KIM, K. Y., JORDAN, D., McDONALD, G. A. Effects of phosphate solubilizing bacteria and vesicular arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils , n.26, p.79 – 87, 1998. KORHONEN, T. K.; LAAKSO, T.; ROENKKOE, R.; HAAHTELA, K. In: HATTORI, ISHIDA, MARUYAMA, MORITA; USHIDA, (Ed.). Recent advances in microbial ecology . Tokio: Japan Scientific Societies Press, p.192-195, 1989. KRAPOVICKAS, A.; GREGORY, W. C. Taxonomia del genero Arachis. Bonplandia , v.8, n.1-4, p.1-186, 1994. KRISHNAN, H. B.; KUO, C. L.; PUEPPKE, S. G. Elaboration of flavonoid-induced proteins by the nitrogen-fixing soybean symbiont Rhizobium fredii is regulated by both nodD1 and nodD2, and is dependent on the cultivar-specificity locus, nolXBTUV. Microbiology , v.141, p.2245-2251, 1995. KUSS, A. V. Fixação de nitrogênio por bactérias diazotróficas e m cultivares de arroz irrigado. Tese (doutorado) – Universidade Federal de Santa Maria, Centro de Ciências do Solo, Rio Grande do Sul, 2006. LADEIRA, M.M.; RODRIGUEZ, N.M.; BORGES, I.; GONÇALVES, L.C.; SALIBA, E.C.S.; BRITO, S.C. & DE SÁ, L.A.P. Avaliação do feno de Arachis pintoi utilizando o ensaio de digestibilidade in vivo. Revista Brasileira de Zootecnia , v.31, p.2350-2356, 2002. LAGUERRE, G.; FERNANDEZ, M.P.; EDEL, V.; NORMAND, P.; AMARGER, N. Genomic heterogeneity among French Rhizobium strains isolated form Phaseolus vulgaris. International Journal of Systematic Bacteriology , v.43, p.761-767, 1993. LASCANO, C. E.; THOMAS, D. Forage quality and animal selection of Arachis pintoi in association with tropical grasses in the eastern plains of Colombia. Grass and Forage Science , v. 43, p. 433-439, 1988. LATOUR, X.; LEMANCEAU, P. Carbon and energy metabolism of oxidasepositive saprophytic fluorescent Pseudomonas spp. Agronomie , v.17, n.9-10, p.427-443, 1997.

Page 97: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

82

LEWIS, G.; SCHRIRE, B.; MACKINDER, B.; LOCK, M. Legumes of the World . Royal Botanic Garden, Kew, 2005 LIMA, J. A. de; PINTO, J. C.; EVANGELISTA, A. C.; SANTANA, R. A. V. Amendoim forrageiro ( Arachis pintoi Krapov. & Gregory) . Disponível em: <http://www.editora. ufla.br/Boletim/pdfextensao/bol_01.pdf>. Acesso em: 10 de junho de 2006. LOHNIS, F.; HANSEN, R. Nodule bacteria of leguminous plants. Journal Agricultural Research , v.20, p.543-556, 1921. LONG, S.R. Rhizobium-legume nodulation: life together in the underground. Cell Cambridge , v.56, p.203-214, 1989. LUCAS, I.H.;L SEGOVIA, L.; MARTINEZ-ROMERO, E.; PUEPPKE, S.G. Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Applied and Environmental Microbiology , v.61, p.2775-2779, 1995. MARIN, V. A.; BALDANI, V. L. D.; TEIXEIRA, K. R. S.; BALDANI, J. I. Fixação Biológica de Nitrogênio: Bactérias Fixadoras de Nit rogênio de Importância para a Agricultura Tropical. Disponível em: <http://www.cnpab.embrapa.br/ publicacoes/download/doc091.pdf> Acesso em: 15 de junho de 2007. MARTÍNEZ, E.; PALACIOS, R.; SANCHÉZ, F. Nitrogen-fixing nodules induced by Agrobacterium tumefaciens harboring Rhizobium phaseoli plasmids. Journal of Bacteriology , v.169, n.6, p.2828-2834, 1987. MARTÍNEZ, E.; ROMERO, D.; PALACIOS, R. The Rizobium genome. CRC Critical Reviews in Plant Sciences , v.9, p.59-93, 1990. MARTINS, L. M. V. Características ecológicas e fisologicas de rizobio que nodula caupi ( Vigna unguiculata (L) Walp) isolados a partir de solos da regiao Nordeste do Brasil . Seropédica: Universidade Federal Rural do Rio de Janeiro, 213p. Tese (Mestrado), 1996. MARTINS, L.M.V.; NEVES, M.C.P.; RUMJNEK, N.G. Growth characteristics and symbiotic efficiency of rhizobia isolated from cowpea nodules of the north-east region of Brazil. Soil Biology and Biochemistry , v.29, p.1005-1010, 1997.

Page 98: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

83

MEHNAZ, S.; MERZA, M. S.; HAURAT, J.; BALLY, R.; NORMAND, P.; BANO, A.; MALIK, K. A. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Canadian Journal of Microbiology , v.47, p.110-117, 2001. MERCANTE, F. M.; GOI, S. R.; FRANCO, A. A. Importância dos compostos fenólicos nas interações entre espécies leguminosas e rizóbio. Revista Universidade Federal Rural do Rio de Janeiro , Série Ciências da Vida, v.22, n.1, p.65-81, 2002. MIRANDA, C.H.B.; VIEIRA, A.; CADISCH, G. Determinação da fixação biológica de nitrogênio no amendoim forrageiro (Arachis spp.) por intermédio da abundância natural de 15N. Revista Brasileira de Zootecnia , v. 32, p. 1859-1865, 2003. MOREIRA, F. M. S.; SIQUEIRA, J. O. Microbiologia e Bioquímica do Solo . Lavras: Editora UFLA, 2 ed, 2006. MOULIN, L.; MUNIVE, A.; DREYFUS, B.; BOLVIN-MASSON, C. Nodulation of legumes by members of the beta sub-class of Proteobacteria. Nature , v.411, n.21, p.948-950, 2001. NDOYE, I.; DE BILLY, F.; VASSE, J.; DREYFUS, B.; and TRUCHET, G. Root nodulation of Sesbania rostrata. Journal Bacteriology , v.176, p.1060-1068, 1994. NEAL, J. L.; LARSON, R. I. Acetylene reduction by bacteria isolated from the rhizosphere of wheat. Soil Biology and Biochemistry , v.8, n.2, p.151-155,1976. OLIVEIRA, L. S. et al. Avaliação de dez genótipos de amendoim forrageiro (Arachis pintoi) em Itabela- BA . In: I CONGRESSO DE FORRAGICULTURA E PASTAGENS, Anais..., Lavras, p. 26-30, 2005. OLSEN, G.J.; WOESE, C.R.; OVERBEEK, R. The winds of (evolutionary) change: breathing new life into microbiology. Journal of Bacteriology , v.176, p.1-6, 1994. PATRIARCA, E. I; TATÉ, R; IACCARINO, M Key role of NH4 metabolism in rhizobium-plant symbiosis. Microbiology and Molecular Biology Reviews , p.203-222, 2002.

Page 99: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

84

PEREIRA, J. M. Utilização de Leguminosas Forrageiras na Alimentaçã o de Bovinos . Disponível em: <http://www.ceplac.gov.br/radar/Artigos/artigo29.htm>. Acesso em: 25 de junho de 2007a. PEREIRA, J. M. Amendoim Forrageiro . Disponível em: <http://www.ceplac.gov.br/ radar/pastagens.htm>. Acesso em: 25 de junho de 2007b. PÉREZ, L. Arachis pintoi como cobertura en el cultivo de banano cv. Gran Enamo (Musa AAA). In.: P. J. ARGEL E A. RAMÍREZ, eds., Experiencias Regionales con Arachis pintoi y Planes Futuros de Investigación y Promoción de La Especie en Mexico, Centroamérica y el Caribe, Cali, Colombia, p. 171-183. Centro Internacional de Agricultura Tropical (CIAT), 1996. PÉREZ-JIMÉNEZ, S. C.; CASTILLO, E.; ESCALONA, M. A.; VALLES, B.; JARILLO, J. Evaluación de Arachis pintoi CIAT 17434 como Cultivo de Cobertura en una plantación de Naranja var . Valencia. In.: P. J. ARGEL E A. RAMIRÉZ, (Eds.), Experiencias Regionales con Arachis pintoi y Planes Futuros de Investigación y Promoción de La Especie en Mexico, Centroamérica y el Caribe, Cali, Colombia, p. 188-193. Centro Internacional de Agricultura Tropical (CIAT), 1996. PERIN, A.; GUERRA, J.G.M.; TEIXEIRA, M.G. Cobertura do solo e acumulação de nutrientes pelo amendoim forrageiro. Pesquisa Agropecuária Brasileira , v.38, p.791-796, 2003. PIAO, Z.; CUI, Z.; YIN, B.; HU, J.; ZHOU, C.; XIE, G.; SU, B.; YIN, S. Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biol. Fertil. Soils , v.41, p.371-378, 2005. PINTO, P.P.; PAIVA, E.; PURCINO, H.; PASSOS, R.V.M.; SÁ, N.M.H. Characterization of rhizobia that nodulate Arachis pintoi by RAPD analysis. Brazilian Journal of Microbiology , v. 35, p. 219-223. 2004. PRELL, I; POOLE, P. Metabolic changes of rhizobia in legume nodules. Trends in Microbiology , v.14, n.4, 2006. RINCÓN, A. C.; CUESTA, M. P. A.; PÉREZ, B. R.; LASCANO, C. E.; FERGUNSON, J. Maní forrajero perenne (Arachis pintoi Krapovickas e Gregory): Una alternativa para ganaderos y agricultores. Cali, Colombia: ICA/CIAT. (ICA. Boletín Técnico, 219). 23p., 1992.

Page 100: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

85

RIVAS, R; VELÁZQUEZ, E.; WILLEMS, A; VIZCAÍNO, N.; SUBBA-RAO, N. S.; MATEOS, P. F.; GILLIS, M.; DAZZO, F. B.; MARTÍNEZ-MOLINA,E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (L.r) Druce. Applied and Enviromental Microbilogy , v.68, n.11, 2002. RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances v.17, p.319-339, 1999. ROSATO, A.S.; WOLTERS, A.; SELDIN, L.; VAN ELSAS, J.D. Quantitative analysis of Paenibacillus azotofixians in soil and rhizosphere of wheat using MPN-PCR. In: INTERNATIONAL SYMPOSIUM ON SUSTAINABLE AGRICULTURE OF THE TROPICS - THE ROLE OF BIOLOGICAL NITROGEN FIXATION, Programe and Abstracts. Seropédica: EMBRAPA-CNPAB, p.228-229, 1995. SELDIN, L.; VAN ELSAS, J.D.; PENIDO, E.G.C. Bacillus azotofixans sp. nov., a nitrogen fixing species from Brazilian soils and grass roots. International Journal of Systematic Bacteriology , v.34, p.451-456, 1984. SELDIN, L.; DUBNAU, D. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacllus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. International Journal of Systematic Bacteriology , v.35, p.151-154, 1985. SEN, D.; WEAVER, R. W. A basis of different rates of N2-fixation by some strains of Rhizobium in peanut and cowpea root nodules. Plant Science Letters , v.34, p.239-246, 1984. SCHROTH, M.N.; HANCOCK, J. Disease suppressive soil and root colonizing bacteria. Science , v.216, p.1376, 1982. SPRENT, J. I.; SPRENT, P. Nitrogen fixing organisms . London: Chapman and Hall, 2ed., 256p., 1990. SPRENT, J.I. Evolution and diversity in the legume – Rhizobium symbiosis: chaos or theory? Plant and Soil , v.161, p.1-10, 1994. SPRENT, J.I. Nodulation in legumes . Kew, Royal Botanic Gardens. 146p. 2001. STACEY, G.; BURRIS, R. H.; EVANS, H. J. Biological Nitrogen Fixation . New York: Chapman and Hall, 943p., 1992.

Page 101: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

86

STACEY, G.; LIBAULT, M.; BRECHENMACHER, L.; WAN, J.; MAY, G. D. Genetics and functional genomics of legume nodulation. Current Opinion in Plant Biology , v.9, p.110-121, 2006. STRALIOTTO, R.; RUMJANEK, N. G. Aplicação e evolução dos métodos moleculares para o estudo da biodiversidade do rizóbio. Seropédica – Rio de Janeiro-RJ: Embrapa Agrobiologia , n.93, 58p, 1999. SY, A.; GIRAUD, E.; JOURAND, P.; GARCIA, N.; WILLEMS, A.; DE LAJUDIE, P.; PRIN, Y.; NEYRA, M.; GILLIS, M.; BOIVIN-MASSON, C.; DREYFUS, B. Methylotropic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. Journal of Bacteriology , v.183, n.1, p.214-220. 2001. TAN, I. K. P.; BROUGHTON, W.J. Rhizobia in tropical legumes. XIII Biochemical basis of acid and alkali reations. Soil Biology and Biochemistry , v.13, p.389-393, 1981. TRUJÍLLO, M. E., WILLENS, A.; ABRIL, A.; PLANCHUELO, A.; RIVAS, R.; LUDEÑA, D.; MATEOS, P. F.; MARTÍNEZ-MOLINA, E. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Applied and Environmental Microbiology , v.71, n.3, p.1318-1327, 2005. UETANABARO, A. P.; WAHRENBURG, C.; HUNGER, W.; PUKALL, R.; SPRÖER, C.; STACKEBRANDT, E.; de CANHOS, V. P.; CLAUS, D.; FRITZE, D. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. International Journal of Systematic and Evolutionar y Microbiology , v.53, p.1051–1057, 2003. UHEDA, E.; DAIMON, H.; YOSHIZAKO, F. Colonization and invasion of peanut (Archis hypogaea L.) roots by gusA-marked Bradyrhizobium sp. Canadian Journal Botanic . v.79, p.733-738, 2001. VALLS, J. F. M. Origem do germoplasma de Arachis pintoi disponível no Brasil . In: REUNIÓN SAVANAS, 1, Brasília. Red International de Evaluación de Pastos Tropicales – RIEPT. Cali: CIAT, Brasília: EMBRAPA-CPAC, p.81-96, 1992. VALLS, J. F. M.; SIMPSON, C.E. Taxonomy natural distribution, and attributes of Arachis. In P. C. KERRIDGE E B. HARDY, (Eds.), Biology and Agronomy of Forage Arachis, Cali: Centro Internacional de Agricultura Tropical (CIAT), Chapter 1. p.1-18, 1994.

Page 102: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

87

VAN BERKUM, P.; BEYENE, D.; EARDLY, B. D. Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). International Journal os Sistematic Bacteriology , v.46,p.240-244, 1996. VAN BERKUN, P.; EARDLY, B. D. The aquatic budding bacteria Blastobacter denitricans is a nitrogen fixing symbiont of Aeschynomene indica. Applied and Environmental Microbiology , v.68, n.3, p.1132-1136, 2002. VANDAMME, P.; GORIS, J.; CHEN, W-M.; DE VOS , P.; WILLEMS, A. Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Systematic and Applied Microbiology , v.25, p.507-512, 2002. VON DER WEID, I.; FROIS DUARTE, G.; VAN ELSAS, J. D.; AND SELDIN, L. Paenibacillus brasiliensis sp.nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. International Journal os Sistematic Bacteriology , v.52, p.2147-2153, 2002. XIE, Z.; DOU, Y.; PING, S.; CHEN, M.; WANG, G.; ELMERICH, C.; LIN, M. Interaction between NifL and NifA in the nitrogen-fixing Pseudomonas stutzeri A1501. Microbiology , v.152, p.3535-3542, 2006. WARD, D.M.; WLLER, R.; BATESON, M.M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural comunity. Nature , v.345, p.63-65, 1990. WANG, E. T.; MARTÍNEZ-ROMERO, J. Taxonomía de Rhizobium. Disponível em: <http://www.microbiologia.org.mx/microbiosenlinea/CAPITULO_12/Capitulo12.pdf>. Acesso em: 13 de junho de 2007. WILLEMS, A. The taxonomy of rhizobia: an overview. Plant and Soil , v.287, p.3-14, 2006. WOESE, C. R. Bacterial Evolution. Microbiological Reviews , v.51, n.2, p.221-271, 1987. WOLFF, A.B.; STREIT, W.; KIPE-NOLT, J.A.; VARGAS, H.; WERNER, D. Competitiveness of Rhizobium leguminosarum bv. phaseoli strains in relation to environmental stress and plant defense mechanisms. Biology and Fertility of Soils , v.12, n.3, p.170-176, 1991. Disponível em: <www.plantphys.net>. Acesso em 10 de junho de 2007.

Page 103: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

67

88

APÊNDICE A – Tabela 5: Características culturais dos isolados provenientes dos nódulos de A. pintoi.

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

I 01 branca regular + gomoso neutro 0,6 1 opaca circular convexa mucosa I 03 transp regular + aquosa ácido 0,4 2 translúcida circular convexa mucosa I 04 vermelha regular + aquosa ácido 0,3 1 translúcida circular convexa mucosa

I 06 negativo Cocobacilo azul regular + gomoso ácido 0,7 2 opaca circular convexa mucosa

I 07 negativo Bastonete branca regular ++ leitoso ácido 1,4 2 opaca circular convexa mucosa I 08 transp regular ++ aquosa neutro 0,5 2 translúcida circular convexa mucosa I 10 negativo Cocobacilo (0,5 - 1,0) vermelha regular ++ aquosa ácido 0,3 1 translúcida circular convexa mucosa I 11 negativo Cocobacilo (0,5 - 1,0) branca regular ++ gomoso ácido 1,6 1 opaca circular convexa mucosa I 12 negativo Bastonete (3,0 - 1,2) branca irregular + gomoso ácido 0,6 1 opaca circular convexa mucosa

I 14 negativo Bastonete (1,0 - 0,5) branca regular ++ leitoso ácido 1,4 1 translúcida circular convexa mucosa

I 15 azul regular ++ ? neutro 1,1 2 opaca circular convexa mucosa I 17 negativo Cocobacilo (0,6 - 1,0) branca regular ++ leitoso ácido 2,2 1 translúcida circular convexa mucosa

I 18 negativo Cocobacilo (0,5 - 1,0) vermelha regular ++ aquosa ácido 0,3 1 translúcida circular convexa mucosa

I 19 vermelha regular ++ aquosa ácido 0,8 1 translúcida circular convexa mucosa I 20 negativo Cocobacilo (0,6 - 1,0) vermelha regular ++ aquosa ácido 0,6 1 translúcida circular convexa mucosa

I 22 negativo Diplococobacilo

(0,5 - 1,0) vermelha regular ++ aquosa ácido 0,3 2 translúcida circular convexa mucosa

I 23 negativo Cocobacilo (0,5 - 1,0) vermelha regular ++ aquosa ácido 0,2 1 translúcida circular convexa mucosa I 25 negativo Bastonete vermelha regular ++ aquosa ácido 0,3 1 translúcida circular convexa mucosa

I 26 positivo Bastonete (2,0 - 3,0) com pontos escuros branca regular + leitoso neutro 0,7 1 opaca circular convexa mucosa

I 27 positivo Bastonete (2,0 - 3,0) com pontos escuros branca regular + gomoso ácido 0,5 2 opaca circular convexa seca

I 29 branca regular ++ leitoso ácido 0,6 1 translúcida circular convexa mucosa I 30 negativo cocobacilos azul irregular + floculosa neutro 1,4 2 translúcida circular convexa mucosa

I – Local de coleta UESC (Ilhéus).

88

Page 104: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

90

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

I 32 Bastonete (1,5 - 0,5) branca regular ++ leitoso ácido 1,6 1 opaca circular convexa mucosa I 33 Bastonete (2,5 - 1,0) branca regular + floculosa ácido 0,7 1 opaca circular convexa mucosa I 35 Bastonete (3,0 - 4,0) amarela regular ++ gomoso neutro 1 1 translúcida circular convexa mucosa

I 38 Cocobacilo (0,5 - 1,0) azul irregular - gomoso básico 0,6 1 opaca circular plana seca

I 39 Cocobacilo (0,5 - 1,0) azul irregular - gomoso básico 0,6 1 opaca circular plana seca I 40 Cocobacilo (0,3 - 0,6) azul regular - aquosa básico 0,2 1 translúcida circular convexa mucosa I 46 branca irregular - floculosa básico 0,8 1 opaca irregular convexa seca I 49 branca irregular - floculosa ácido 0,5 1 opaca irregular convexa seca I 51 branca regular + floculosa ácido 0,8 1 opaca circular convexa mucosa

I 54 branca regular + floculosa ácido 0,8 1 opaca circular convexa mucosa

I 57 branca regular + floculosa ácido 0,7 1 opaca circular convexa mucosa I 67 negativo Bastonete (2,5 - 0,6) azul regular ++ aquosa neutro 0,7 4 translúcida circular convexa mucosa

I 68 negativo Bastonete (3,0 - 0,5) curvado ou vibriões

transp regular + aquosa neutro 1,06 1 translúcida circular convexa mucosa

I 70 branca regular + floculosa neutro 0,4 1 opaca circular convexa mucosa I 72 Bastonete (0,5 - 0,2) azul regular + floculosa neutro 0,5 1 opaca circular convexa mucosa

I 74 Cocobacilo (ø 2,0) amarela regular + floculosa neutro 0,9 1 opaca circular convexa mucosa

I 76 amarela regular ++ aquosa neutro 1,2 1 translúcida circular convexa mucosa I 78 azul regular + floculosa ácido 0,5 1 opaca circular convexa mucosa I 79 Bastonete (0,5 - 0,3) amarela irregular + gomosa neutro 0,5 1 opaca circular convexa mucosa I 82 positivo Bastonete (0,5 - 0,3) branca regular + leitosa neutro 1,04 1 opaca circular convexa seca I 83 branca regular + floculosa ácido 0,9 1 translúcida circular convexa mucosa I 84 positivo Bastonete (0,6 - 0,3) branca regular + leitosa ácido 1,5 1 opaca circular convexa mucosa I 85 positivo transp regular ++ aquosa ácido 1,5 1 translúcida circular convexa mucosa

I – Local de coleta UESC (Ilhéus).

89

Page 105: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

91

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

I 86 azul irregular - floculosa ácido 0,8 1 opaca circular convexa seca I 88 Bastonete (0,5- 0,3) azul irregular - floculosa neutro 0,44 1 opaca circular plana seca I 89 branca regular ++ aquosa ácido 1 1 translúcida circular convexa mucosa

I 90 branca regular + gomosa ácido 0,2 1 opaca circular convexa mucosa

I 91 Bastonete (1,2 - 0,5) branca regular + floculosa ácido 0,86 1 opaca circular convexa mucosa I 92 Cocobacilo (ø 1,0) azul regular + aquosa neutro 0,4 1 opaca circular convexa mucosa I 93 branca regular + gomosa ácido 1,14 1 opaca circular convexa mucosa I 96 vermelha regular + floculosa neutro 0,7 1 opaca circular convexa mucosa I 97 Bastonete (1,2 - 0,8) amarela regular + floculosa neutro 0,2 1 opaca circular convexa mucosa

I 98 Bastonete (1,2 - 0,5) amarela regular + floculosa neutro 0,2 2 opaca circular convexa mucosa

I 99 Cocobacilo (ø 1,3) azul regular + aquosa neutro 0,7 1 opaca circular convexa mucosa I 100 Bastonete (2,0 x 1,0) azul regular + aquosa neutro 0,7 1 opaca circular convexa mucosa

I 101 branca regular + gomosa neutro 0,9 1 opaca circular convexa mucosa

I 104 azul regular + floculosa neutro 0,6 4 opaca circular convexa mucosa I 105 amarela regular + floculosa neutro 1,1 1 opaca circular convexa mucosa

I 106 Diplococos (ø 1,3) branca regular + leitosa neutro 1,6 1 opaca circular convexa mucosa

I 108 transp regular + aquosa ácido 0,3 1 translúcida circular convexa mucosa

I 111 Bastonete (2,0 - 1,0) com pontos escuros

branca regular + floculosa ácido 0,8 1 opaca circular convexa mucosa

I 112 bastonete (1,0 - 0,5) amarela regular ++ aquosa neutro 1,9 1 translúcida circular convexa mucosa I 113 branca regular + leitosa ácido 1,3 1 opaca circular convexa mucosa

I 115 Bastonete (1,2 - 0,5) e irregulares azul regular + leitosa ácido 1,8 2 opaca circular convexa mucosa

I 116 negativo Bastonete transp regular + leitosa ácido 0,26 2 translúcida circular convexa mucosa

I – Local de coleta UESC (Ilhéus).

... Continuação

90

Page 106: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

92

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

B 01 Bastonete (1,2 - 0,6) corou bem clarinho branca regular + aquosa ácido 0,2 2 translúcida circular convexa mucosa

B 03 branca regular + gomosa neutro 0,14 2 opaca circular plana mucosa B 04 Bastonete (2,5 - 1,5) branca regular ++ floculosa neutro 37,5 1 translúcida circular convexa mucosa

B 05 azul regular + gomosa neutro 0,24 2 opaca circular plana mucosa

B 07 Cocobacilo (ø 1,0) transp regular + aquosa ácido 0,3 2 translúcida circular convexa mucosa

B 08 Negativo Bastonete (1,2 - 0,6) corou bem clarinho

azul regular + aquosa neutro 1,5 2 translúcida circular convexa mucosa

B 09 Bastonetes (2,5 - 0,6) azul regular + gomosa básico 0,5 1 opaca circular plana mucosa B 11 amarela regular - gomosa ácido 0,3 1 opaca circular plana seca B 12 amarela regular + gomosa ácido 0,64 1 opaca circular convexa mucosa

B 13 Bastonete (2,0 - 0,8) azul regular + gomosa básico 1 1 opaca circular convexa mucosa

B 14 Bastonete (2 - 1,2 µm) branca irregular + gomosa neutro 1,54 1 opaca circular convexa seca B 15 Bastonete (3,0 - 1,0) amarela irregular - não ácido 0,2 1 opaca circular plana seca

B 18 Negativo Bastonete (2,0 - 0,8) branca irregular - gomosa ácido 0,64 2 opaca circular plana seca

B 21 Cocobacilo (ø 0,5) branca regular + gomosa ácido 1,1 4 opaca circular convexa mucosa B 25 branca irregular - não neutro 0,4 2 opaca circular plana seca

B 26 branca irregular - floculosa neutro 0,8 1 opaca circular convexa seca

B 28 branca regular + floculosa neutro 1,4 2 opaca circular convexa mucosa B 29 Cocobacilo (ø 0,8) branca regular + floculosa neutro 0,4 2 opaca circular convexa mucosa B 32 azul regular - floculosa ácido 0,2 2 opaca circular convexa mucosa B 33 azul regular + floculosa ácido 0,2 2 opaca circular convexa mucosa

B 34 negativo Bastonetes (1,0 - 0,6)

agregados branca regular + aquosa ácido 0,44 1 translúcida circular convexa mucosa

B 35 branca regular + leitosa ácido 1,04 2 opaca circular convexa mucosa

B – Local de coleta Faz. Ubirajara, Belmonte e CEPLAC, Itabela.

... Continuação

91

Page 107: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

93

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

B 37 azul regular + floculosa neutro 0,4 2 opaca circular convexa mucosa B 38 Gram - azul regular + floculosa ácido 0,2 2 opaca circular convexa mucosa B 39 transp regular ++ gomosa ácido 0,68 1 translúcida circular convexa mucosa

B 42 azul regular + floculosa ácido 0,7 1 opaca circular convexa mucosa

B 45 transp regular + aquosa ácido 0,7 1 translúcida circular convexa mucosa O 01 negativo Bastonete amarela regular + floculosa neutro 0,8 1 opaca circular convexa mucosa O 03 branca regular + leitosa ácido 1 1 opaca circular convexa mucosa O 04 branca regular + leitosa ácido 1 1 opaca circular convexa mucosa O 06 branca regular + leitosa ácido 0,8 1 opaca circular convexa mucosa

O 07 branca regular ++ leitosa neutro 0,84 1 opaca circular convexa mucosa

O 08 branca regular + leitosa ácido 1,06 1 opaca circular convexa mucosa O 10 branca regular + leitosa ácido 0,7 1 opaca circular convexa mucosa

O 11 branca regular + leitosa ácido 0,46 1 opaca circular convexa mucosa

O 12 branca regular + leitosa ácido 0,9 1 opaca circular convexa mucosa O 13 branca regular ++ aquosa ácido ? 2 opaca circular convexa mucosa

O 16 branca regular + leitosa ácido 0,9 1 opaca circular convexa mucosa

O 17 Gram - branca regular + leitosa ácido 0,5 1 opaca circular convexa mucosa O 18 branca regular + leitosa ácido 1 1 opaca circular convexa mucosa O 20 branca regular + leitosa ácido 0,8 1 opaca circular convexa mucosa O 21 positivo Bastonete amarela regular - floculosa neutro 0,44 2 opaca circular convexa seca O 22 branca regular + floculosa neutro 0,6 2 opaca circular convexa mucosa O 23 Gram - branca regular + leitosa ácido 0,5 1 opaca circular convexa mucosa

B – Local de coleta Faz. Ubirajara, Belmonte, CEPLAC, Itabela e O – cv Orozimbo, Itabela.

... Continuação

92

Page 108: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

94

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

SF 01 azul irregular + floculosa neutro 0,7 1 opaca circular convexa mucosa SF 02 azul irregular + floculosa neutro 0,7 1 opaca circular convexa mucosa SF 04 negativo Cocobacilo branca regular + leitosa ácido 0,4 2 opaca circular convexa mucosa

SF 05 Negativo branca regular + leitosa ácido 0,46 1 opaca circular convexa mucosa

SF 07 branca regular + floculosa neutro 0,7 1 opaca circular convexa mucosa SF 08 Negativo azul regular + floculosa neutro 0,6 1 opaca circular convexa mucosa SF 10 Bastonetes (2 x 0,6) azul regular + floculosa neutro 0,4 2 opaca circular convexa mucosa SF 11 Negativo branca regular + leitosa ácido 0,5 2 opaca circular convexa mucosa SF 12 amarela irregular - gomosa ácido 0,4 1 opaca disforme convexa seca SF 14 positivo Bastonete branca regular + leitosa neutro 0,4 2 opaca circular convexa mucosa

SF 16 Negativo

SF 18 Negativo azul irregular - floculosa neutro 1,28 1 opaca circular convexa seca SF 19 amarela irregular - gomosa ácido 0,4 1 opaca disforme convexa seca

SF 20 Negativo azul regular + floculosa neutro 0,4 2 opaca circular convexa mucosa

SF 21 positivo Bastonete azul irregular + floculosa neutro 0,64 1 opaca circular convexa mucosa SF 22 azul irregular + floculosa neutro 0,7 1 opaca circular convexa mucosa

SF 23 Positivo Bastonete azul irregular + floculosa neutro 0,4 1 opaca circular convexa mucosa

SF 27 Negativo branca regular + leitosa ácido 0,64 1 opaca circular convexa mucosa SF 28 branca irregular - floculosa neutro 0,9 1 opaca circular convexa seca SF 34 amarela regular + floculosa neutro 0,4 1 opaca circular convexa mucosa

SF – Local de coleta Faz. São Francisco, Belmonte.

... Continuação

93

Page 109: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

95

... Conclusão.

Descrição das colônias

Isolados Gram Morfologia da célula

bacteriana Cor Borda Produção de muco

Aparência pH Tamanho Cresc. (dias)

Transpa-rência

Forma Elevação Super-

fície

IB 01 amarela regular sim + lisa ácido 0,7 1 opaca circular convexa mucosa IB 02 azul regular sim + flocoso neutro 0,6 1 opaca circular convexa mucosa IB 03 negativo Cocobacilo amarela regular sim + flocoso ácido 0,6 1 opaca circular convexa mucosa

IB 04 Negativo azul regular sim + flocoso neutro 0,7 1 opaca circular convexa mucosa

IB 05 amarela regular sim + lisa ácido 0,8 1 opaca circular convexa mucosa IB 06 Negativo amarela regular sim + lisa ácido 0,6 1 opaca circular convexa mucosa IB 07 Bastonetes (2 x 0,6) IB 08 Negativo azul regular sim + flocoso neutro 1,4 1 opaca circular convexa mucosa IB 09 azul regular sim + flocoso neutro 0,8 1 opaca circular convexa mucosa IB 11 positivo Bastonete amarela regular sim + transp ácido 1,5 1 transp circular convexa mucosa

IB 13 positivo amarela regular + transp ácido 1,5 1 translúcida circular convexa mucosa

IB – Local de coleta cv 31534 (CEPLAC), Itabela.

94

Page 110: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

67

88

ANEXO A – Protocolo para preparo de meios de cultura 79 e TY

MEIO 79

(FRED; WASKMAN, 1928)

- 10g de açúcar

- 1mL k2HPO4/L solução 10%

- 4mL KH2PO4/L solução 10%

- 2mL MgSO4. 7H2O/L solução 10%

- 1mL NaCl/L solução 10%

- 0,4g de extrato de levedura em pó/ L de meio

- 5mL de solução alcoólica 0,5% de azul de bromotimol

- 15g de ágar bacteriológico

• Completar para 1000mL com água destilada e ajustar o pH com NaOH 10%

para 6,8 - 7,0.

• Dissolver os reagentes em água destilada fervente.

• Esterilizar

MEIO TY (para extração de DNA)

- 5g de triptona

- 3g de extrato de levedura

- 0,9g CaCl2. 2H2O

- Ágar 15g

- Água destilada q.s.p. 1000mL

- Esterilizar

95

Page 111: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

96

ANEXO B – Protocolo para preparo dos reagentes para o teste de coloração

diferencial – Método de Gram

Solução de Cristal Violeta

- 110g de violeta cristal

- 4g de oxalato de amônio

- 100mL de etanol (álcool absoluto)

- 400mL de água destilada

Solução de Lugol

- 1g de iodo

- 2g de iodeto de potássio

- 25mL de etanol (álcool absoluto)

- 100mL de água destilada

Solução de descoloração

- 95mL de etanol (álcool absoluto)

- 5mL de água destilada

Solução de safranina

- 2,5g de safranina

- 90mL de água destilada

- 100mL de etanol (álcool absoluto)

Page 112: Bactérias associativas e simbiontes dos nódulos de Arachis pintoi ...

97

ANEXO C – Protocolo para coloração pelo método diferencial de Gram

- Cobrir o esfregaço já fixado em lâmina, com solução de violeta de cristal

durante 1 minuto.

- Lavar com água corrente.

- Cobrir o esfregaço com lugol durante 1 minuto.

- Lavar com água corrente.

- Descorar com álcool.

- Lavar com água corrente.

- Cobrir o esfregaço com safranina durante 1 minuto.

- Lavar com água corrente.

- Deixar secar