Aulas de concreto armado

19
1 Introdução ao Concreto Estrutural CONCRETO • material composto, preparado por ocasião de sua aplicação, • mistura de um aglomerante hidráulico (cimento) com materiais inertes (agregados) e água, • traço do concreto: proporção entre os diversos componentes, • fator água/cimento (a/c): parâmetro importante para a resistência do concreto • aditivos: acentuar características específicas, como acelerador de pega, super fluidificante, etc. CIMENTOS Componentes básicos: cal (CaO), sílica (SiO2), alumina (Al2O3) e óxido de ferro (Fe2O3), os componentes básicos são sempre os mesmos, variando para cada tipo a proporção em que esses componentes comparecem. Cimento de endurecimento normal Cimento de endurecimento normal CP cimento Portland (NBR 5732): CP25, CP32, CP40; Cimentos de endurecimento lento Cimentos de endurecimento lento AF cimento de alto forno (NBR 5735): AF25, AF32; POZ cimento pozolânico (NBR 5736): POZ25, POZ32; ARS cimento de alta resistência a sulfatos (NBR5737); MRS cimento de moderada resistência a sulfatos (NBR5737); Cimentos de endurecimento rápido Cimentos de endurecimento rápido ARI cimento de alta resistência inicial (NBR5733). AGREGADOS podem ser de origem natural (areia e pedregulho) ou artificial (pedrisco e pedra britada) agregado miúdo: quando é retido menos do que 5% do total na peneira com malha de abertura de 4.8 mm; agregado graúdo: quando passa menos do que 5% do total na peneira com malha de abertura de 4.8 mm; PEDRA BRITADA é classificada pelo seu diâmetro máximo nominal, normalmente são utilizadas as britas 1 e 2. brita diâmetro nominal (mm) 0 4,8 a 9,5 1 9,5 a 19 2 19 a 25 3 25 a 50 4 50 a 76 5 76 a 100

description

 

Transcript of Aulas de concreto armado

Page 1: Aulas de concreto armado

1

Introdução ao Concreto Estrutural

CONCRETO

• material composto, preparado por ocasião de sua aplicação, • mistura de um aglomerante hidráulico (cimento) com materiais inertes (agregados) e água, • traço do concreto: proporção entre os diversos componentes, • fator água/cimento (a/c): parâmetro importante para a resistência do concreto • aditivos: acentuar características específicas, como acelerador de pega, super fluidificante, etc.

CIMENTOS

Componentes básicos: cal (CaO), sílica (SiO2), alumina (Al2O3) e óxido de ferro (Fe2O3), os componentes básicos são sempre os mesmos, variando para cada tipo a proporção em que esses componentes comparecem. Cimento de endurecimento normal Cimento de endurecimento normal

CP – cimento Portland (NBR 5732): CP25, CP32, CP40; Cimentos de endurecimento lento Cimentos de endurecimento lento AF – cimento de alto forno (NBR 5735): AF25, AF32; POZ – cimento pozolânico (NBR 5736): POZ25, POZ32; ARS – cimento de alta resistência a sulfatos (NBR5737); MRS – cimento de moderada resistência a sulfatos (NBR5737); Cimentos de endurecimento rápido Cimentos de endurecimento rápido

ARI – cimento de alta resistência inicial (NBR5733).

AGREGADOS

podem ser de origem natural (areia e pedregulho) ou artificial (pedrisco e pedra britada) • agregado miúdo: quando é retido menos do que 5% do total na peneira com malha de

abertura de 4.8 mm; • agregado graúdo: quando passa menos do que 5% do total na peneira com malha de

abertura de 4.8 mm;

PEDRA BRITADA é classificada pelo seu diâmetro máximo nominal, normalmente são utilizadas as britas 1 e 2.

brita diâmetro nominal (mm) 0

4,8 a 9,5

1 9,5 a 19 2 19 a 25 3 25 a 50 4 50 a 76 5 76 a 100

Page 2: Aulas de concreto armado

2

CONCRETO SIMPLES: (características principais) • boa resistência a compressão

fcc (tensão normal de ruptura a compressão) variando de 10 a 40 MPa. • baixa resistência a tração fct (tensão normal de ruptura a tração) da ordem de fcc/10. • módulo de elasticidade

Ec= 20.000 MPa a 35.000 MPa, NBR 6118 – Ec = 0,9 x 6.600 (fck + 3,5)1/2

• coeficiente de dilatação térmica – t = 10-5 oC-1 Os efeitos da variação térmica são importantes, havendo necessidade, muitas vezes, da utilização de juntas de dilatação. • retração do concreto

Diminuição de volume no decorrer do tempo, independente de qualquer solicitação, em ambiente normal. Depende de vários fatores: umidade do meio ambiente, espessura das

peças, etc. (s= -15x10-5 => T=-15 oC) • fluência do concreto

incremento adicional de deformação ao longo do tempo (cc), quando solicitado

permanentemente. cc= c0 a 3 , = (1+ c0

CONCRETO ESTRUTURAL baixa resistência à tração do concreto simples, inviabiliza o seu uso em peças como tirantes e vigas IDÉIA ! associação do concreto

simples com o aço (ótima resistência à tração) que constitui a armadura do material composto –concreto estrutural ADERÊNCIA entre o concreto concreto e a armadura armadura garante a ligação dos materiais. COSTURA

as armaduras devem seguir a trajetória das tensões principais de tração, ao ocorrer a ruptura do concreto da zona tracionada da seção, a armadura costura as partes resultantes, restando apenas uma fissura fissura como registro desta ruptura.

CONCRETO ESTRUTURAL quando é utilizada na composição da peça a armadura livre de solicitações iniciais, tem-se o concreto armado. Caso, contrário, isto é, quando a armadura é aplicada já com certo estiramento inicial, tem-se o concreto protendido .

Page 3: Aulas de concreto armado

3

CONCRETO ARMADO CONCRETO PROTENDIDO

CONCRETO ARMADO

Aderência entre o concreto e a armadura, permitindo a mobilização da armadura imersa na massa de concreto. Aderência Perfeita. Aderência Perfeita.

Proteção da armadura pelo concreto, evitando a corrosão mesmo na presença de pequenas fissuras. Importância dos limites para as aberturas de fissuras e de cobrimentos adequados.

Coeficientes de dilatação térmica

os dois materiais apresentam valores muito próximos, evitando problemas relativos a diminuição, ou até mesmo a eliminação, da aderência entre os dois materiais.

VANTAGENS

materiais econômicos e disponíveis com abundância; grande facilidade de moldagem, permitindo adoção das mais variadas formas; emprego extensivo de mão-de-obra não qualificada e equipamentos simples; elevada resistência à ação do fogo e ao desgaste mecânico; grande estabilidade sob a ação de intempéries, dispensando trabalhos de manutenção; aumento de resistência à ruptura com o tempo; facilidade e economia na construção de estruturas contínuas, sem juntas.

DESVANTAGENS

a maior desvantagem do concreto armado é a sua massa específica elevada (2,5 ton/m³), a utilização de agregados leves permite reduzir o peso do concreto em cerca de 40%, porém esses agregados não são geralmente disponíveis em condições competitivas. dificuldades para reformas ou demolições; baixa proteção térmica; necessidade de impermeabilização de coberturas e ou superfícies em contato permanente com água.

CONCRETO PROTENDIDO

Sendo concreto um material de propriedades tão diferentes à compressão e à tração, o seu comportamento pode ser melhorado aplicando-se uma compressão prévia (isto é, pré-tensão ou protensão) nas regiões onde as solicitações produzem tensões de tração. a protensão pode ser definida como um artifício de introduzir, numa estrutura, um estado prévio de tensões, de modo a melhorar sua resistência ou comportamento, sob a ação de diversas solicitações.

CONCRETO SIMPLES + ARMADURA PASSIVA

CONCRETO SIMPLES +

ARMADURA ATIVA

Page 4: Aulas de concreto armado

4

a protensão do concreto é realizada, na prática, por meio de cabos de aço de alta resistência, tracionados e ancorados no próprio concreto. Sistemas de Protensão Sistemas de Protensão

Pré-tracionado

Pós-tracionado

Sistemas de Protensão – Pré- tracionado

Sistemas de Protensão - Pós-tracionado

•as armaduras de aço (1) são esticadas entre dois encontros (2), ficando ancoradas provisoriamente nos mesmos, •o concreto (3) é colocado dentro das formas, envolvendo as armaduras, •após o concreto haver atingido resistência suficiente, soltam-se as ancoragens dos encontros (2), transferindo-se a força para a viga, por aderência (4) entre o aço e o concreto.

•o concreto (3) é moldado e deixado endurecer; cabos de aço (1) são colocados no interior das bainhas (2); podendo deslocar-se no interior da viga; •após o concreto haver atingido a resistência suficiente, os cabos são esticados pelas extremidades até atingir o alongamento desejado; •os cabos são ancorados nas faces da viga com dispositivos mecânicos, aplicando um esforço de compressão no concreto.

Page 5: Aulas de concreto armado

5

• NORMAS TÉCNICAS

Os projetos envolvem uma série de critérios. É, altamente, desejável que eles sejam padronizados visando a uniformização do nível de qualidade da obra. Estes critérios normatizados constituem as diversas Normas de Projeto. Para o projeto de estruturas de concreto interessam, diretamente, as seguintes Normas Brasileiras:

NBR-6118 - Projeto e execução de obras de concreto armado. Fixa condições gerais que devem ser obedecidas no projeto, na execução e no controle de obras de concreto armado, excluídas aquelas em que se empregue concreto leve ou outros concretos especiais.

NBR-6120 - Cargas para o cálculo de estruturas de edificações. Fixa condições exigíveis para determinação dos valores das cargas que devem ser consideradas no projeto de estrutura de edificações, qualquer que seja sua classe e destino, salvo os casos previstos em normas especiais.

NBR-6123 - Forças devidas ao vento em edificações. Fixa condições exigíveis na

consideração das forças devidas à ação estática do vento, para efeitos de cálculo de edificações, e aplicável exclusivamente a edificações em que o efeito dinâmico do vento pode ser desprezado

NBR-7197 - Projeto de estruturas de concreto protendido. Fixa condições gerais

exigíveis no projeto e estabelece certas exigências a serem obedecidas na execução e controle de obras de concreto protendido por armadura, excluidas aquelas em que se empregue concreto leve ou outros concretos especiais.

SISTEMAS DE UNIDADES

Comprimento: m (cm, mm) força normal: kN = 103 N (0,1 tf) força cortante: kN, kN/m momento: kN.m; kN.m/m; kN.cm/m carga concentrada: kN carga distribuida: kN/m; kN/m2 peso específico: kN/m3 resistência, tensão: kN/cm2,

1 MPa = 106 N/m2 = 0,1 kN/cm2 (10 gf/cm2) 10 MPa = 1 kN/cm2 1. CONSIDERAÇÕES PRELIMINARES 1.1. Introdução As lajes são “estruturas laminares planas solicitadas predominantemente por cargas normais ao seu plano médio” onde a espessura h é muito menor que as outras dimensões

(lx, ly, onde ly lx).

Page 6: Aulas de concreto armado

6

As lajes podem ser encontradas nas mais diferentes estruturas, tais como: _ Edificações residenciais e comerciais (a); _ Galpões industriais (b); _ Pontes (c) ; _ Reservatórios; _ Estrutura de contenção de terra (muros de arrimo, contrafortes ...) (d); _ Pistas de rodovias e aeroportos (e).

As lajes têm como função: _ Transmitir para as vigas as cargas de utilização, aplicadas diretamente nos pisos, no caso das estruturas convencionais do tipo laje-viga-pilar; _ Contraventar as estruturas (pórticos formados por pilares e vigas ou paredes portantes, também denominada de shear-walls), funcionando como placas infinitamente rígidas em seu plano, que distribuem as cargas horizontais atuantes; _ Trabalhar como mesas de compressão da seção T, em casos das lajes serem construídas ligadas monoliticamente às vigas. 2. CLASSIFICAÇÃO DAS LAJES 2.1. Quanto A Sua Natureza _ Lajes Maciças

· São as lajes constituídas por uma placa de concreto armado ou de concreto protendido; · São as mais utilizadas nas edificações e pontes.

Page 7: Aulas de concreto armado

7

_ Lajes Nervuradas · São lajes em que a zona de tração é constituída por nervuras (50 à 100cm), onde são

concentradas as armaduras de tração; (b) · Entre estas nervuras pode ser colocado material inerte (blocos cerâmicos de alvenarias, blocos de concreto, de pumex, de isopor, de concreto celular e outros, sem função estrutural, de forma que a superfície externa se mantenha plana; (a) · Estas lajes possuem, obrigatoriamente, uma mesa de concreto na região comprimida, sendo o espaçamento regulamentado pela NBR 6118. · Usadas quando os vãos a vencer são grandes (10 à 12 m) até máx 15m, em prédios

residenciais ou comerciais, ou em alguns casos de carregamentos especiais;

Page 8: Aulas de concreto armado

8

INFORMAÇÕES DO FABRICANE DE FORMAS – ATEX

FORMAS PESO DIMENSÕES ENTRE EIXOS

ATEX 150 2,8 Kg Forma nervuras ortogonais com 600 mm entre eixos

ATEX 180 2,7 Kg Forma nervuras ortogonais com 600 mm entre eixos

ATEX 600 x 225 7,1 Kg Forma nervuras principais com 600 mm entre eixos e nervuras

secundárias

com 1,125 mm entre eixos

ATEX 600 x 325 8,2 Kg

ATEX 600 x 425 10,4 Kg

ATEX 900 x 225 9,5 Kg Forma nervuras ortogonais com 900 mm entre eixos

ATEX 900 x 325 11,4 Kg

Ref. - Catálogo de Fabricante de

Formas Atex

_ Lajes Mistas _ Lajes Compostas de Vigotas E Blocos Cerâmicos

São lajes compostas por nervuras(vigotas) pré-fabricadas de concreto armado, entre as quais são colocados blocos, uma malha de armadura e um capeamento de concreto, solidarizando o conjunto. Os blocos têm a função de eliminar as formas;

Tem sua principal aplicação em obras residenciais de pequeno porte;

Comumente usadas para vencer vãos de até 4m em caso de laje de piso e 5m nas lajes de cobertura sem acesso à público;

As vigotas podem ser executadas em concreto armado ou protendido, mas as mais usuais são em concreto armado;

Tem como vantagens a rapidez de execução, a economia de formas e escoramentos;

Não suportam cargas de paredes diretamente sobre a laje, é necessário colocar vigas sob as paredes.

Page 9: Aulas de concreto armado

9

Vãos Livres Máximos para Intereixo de 33 cm

Para a montagem colocam-se as vigotas e os tijolos, escorando-se o conjunto. Antes de concretar a camada superior de concreto, devendo-se molhar intensamente o material, principalmente as lajotas, para evitar que absorvam a água do concreto. Em seguida executa-se a camada superior de concreto. Pode-se retirar o escoramento somente após a cura do concreto.

Page 10: Aulas de concreto armado

10

_ Lajes Treliçadas

O sistema construtivo de lajes armadas em uma direção, com vigotas treliçadas, tem 5 componentes: vigotas treliçadas, elementos de enchimento, nervuras transversais, armaduras complementares e capa de concreto;

Vãos livre de 3 à 6m para obras de médio porte;

Como possuem estribos ( treliça) que absorvem o cisalhamento , podem ser utilizadas para vãos maiores, de 8 à 12m, quando projetadas com espessura maiores e armaduras adicionais;

Suportam cargas de paredes.

Page 11: Aulas de concreto armado

11

_ Lajes Pré-Fabricadas

Lajes planas alveolares ; Lajes P;

As lajes em painéis são produzidas em usinas, em pistas de protensão e moldadas em fôrmas metálicas ou por processo de extrusão;

Vão livre na ordem de 10 à 11m;

Vem crescendo no Brasil a utilização destas lajes, especialmente nas área industriais e shoppings. Ref. - Catálogo de Fabricante - Preconcretos

Page 12: Aulas de concreto armado

12

Page 13: Aulas de concreto armado

13

2.2 Quanto Aos Seus Apoios _ Lajes Apoiadas Sobre Alvenarias (a) ou Lajes Apoiadas Sobre Vigas (b) _ Lajes apoiadas sobre pilares

Conhecida Como Lajes Cogumelos Ou Lajes Planas São lajes de concreto executada “in loco”, maciça de espessura constante, sem vigas, exceto nas bordas; Tem como vantagens: _ a rapidez de execução, podendo-se executar um pavimento por semana; _ economia de formas e mão de obra; _ junta de dilatação até 100m. Tem como desvantagens: _ mão de obra especializada, no caso de barras pretensionadas; _ puncionamento e; _ pouca rigidez do conjunto.

Page 14: Aulas de concreto armado

14

O efeito do vento deve ser considerado com cuidado !!!

Laje Plana de Concreto Protendido Utilizadas em prédios comerciais e de escritórios com vãos de até 12 m; São colocadas armaduras em toda a área da laje nas duas direções perpendiculares por cabos (sistema VSL). Esta armação é completada por barras de aço comum apenas nos pilares e nas bordas; A laje plana protendida é pré-tensionada para a carga permanente, eliminando assim os problemas de deformação lenta.

Laje Plana de Concreto Armado Indicado para vãos de até 6,0m a 6,5 m. Acima destes vãos são desaconselháveis pois podem ocorrer flechas excessivas devido a deformação lenta. 2.3 Quanto À Armação

Considerando apenas as lajes retangulares. _ Lajes Armadas em uma só direção. Se lx / ly >2

São aquelas que apresentam solicitações importantes (momentos fletores e esforços cortantes) em uma direção apenas;

Quando for suportada continuamente ao longo de 2 bordos apenas;

Page 15: Aulas de concreto armado

15

_ Lajes armadas em duas direções

São aquelas que apresentam solicitações importantes em ambas as direções

Se lx / ly 2

3. VÃO TEÓRICO

De acordo com o subitem 14.6.2.4 da NBR 6118 o vão efetivo (l ef ) o vão efetivo (vão teórico) pode ser calculado por: lef = l0 + a1 + a2 vão teórico = l

Com a1 igual ao menor valor entre (t1 e h) e a2 igual ao menor valor entre (t2 e h). (tomar o menor deles)

Quando tiver 3 bordos livres (Laje em

balanço)

a) Apoio de vão extremo b) Apoio de vão intermediário

Page 16: Aulas de concreto armado

16

Nas lajes em balanço, o comprimento teórico é o comprimento da extremidade até o centro do apoio, não sendo necessário considerar valores superiores ao comprimento livre acrescido da metade da espessura da laje junto ao apoio. Simplificação : · Vão teórico = medida de eixo a eixo de apoio; · Vão teórico (BALANÇO) = medida da extremidade ao eixo de apoio; 4. VINCULAÇÃO

As lajes podem se apoiar sobre alvenaria, sobre vigas ou sobre paredes ou diretamente sobre pilares. É necessário adotar hipóteses, de forma a se estabelecer se uma laje é engastada (deslocamento vertical e rotação impedidos), ou se é simplesmente apoiada (deslocamento vertical nulo e nenhum impedimento à rotação) ao longo de um determinado bordo. O estabelecimento destas condições de apoio, tornará possível a idealização do modelo estrutural da laje, necessária para se obterem as suas solicitações e deformações. 4.1. Bordos Simplesmente Apoiados

Convenção para a representação gráfica :

“A extensão dos apoios extremos de uma laje, sobre alvenaria, não deve ser menor que sua espessura no meio do vão nem menor que 7cm”.

lo + b/2 lo + h/2

Page 17: Aulas de concreto armado

17

Quando a laje termina sobre uma viga

Quando a laje não tem continuidade no seu plano devido a um rebaixo 4.2. Bordos Engastados

Convenção para a representação gráfica :

Toda a borda que há continuidade com a laje vizinha de espessura aproximadamente igual (diferença máxima 2cm)

REPRESENTAÇÃO GRÁFICA (ESQUEMAS)

CORTE

REPRESENTAÇÃO GRÁFICA (ESQUEMAS)

CORTE

Page 18: Aulas de concreto armado

18

Quando o vão da menor é maior ou igual a 40% do vão maior adota-se o bordo engastado Exemplo: Caso 1 : Vão menor =3m Vão maior = 5m Caso 2 : Vão menor =1,5m Vão maior = 5m

Toda a laje que tem 3 bordos livres deve ter o quarto bordo engastado. Neste bordo, mesmo que exista rebaixo é necessário criar o engaste por questão de equilíbrio

Quando num bordo ocorrem duas situações de vínculo, considera-se a favor da segurança em todo o bordo apoio simples, a não ser que o trecho engastado corresponda a mais de 2/3 do bordo, podendo neste caso sem grande erro considerar a borda engastada.

REPRESENTAÇÃO GRÁFICA (ESQUEMAS)

CORTE

Page 19: Aulas de concreto armado

19

5. ESPESSURAS 5.1. Item 13.2.4.1 Lajes Maciças, NBR 6118/2003

Nas lajes maciças devem ser respeitados os seguintes limites mínimos para a espessura : a) 5 cm para lajes de cobertura não em balanço; b) 7 cm para lajes de piso ou de cobertura em balanço; c) 10 cm para lajes que suportem veículos de peso total menor ou igual a 30 kN; d) 12 cm para lajes que suportem veículos de peso total maior que 30 kN; e) 15 cm para lajes com protensão. Sugestão: Adotar 8cm para espessura mínima. 5.2. Lajes Maciças

5.2.1. Lajes Armadas Em 2 Direções - Se lx / ly 2 Obs.: lx > ly

d 0,025.l . (1- n.0,1)

CASO lx > ly

L ly (Vão teórico menor)

0,75.lx (Vão teórico maior)

CASO lx = ly l = lx = ly n = nº de lados engastados

h = d + c + l (cm) h = d + 2 (cm)

c = 1,5cm

l = 0,5cm

c = cobrimento h = altura da laje

d = altura útil l = diâmetro da barra

Usualmente: l = 0,5cm c = ver norma