Apresentação Qualificação Mestrado - Felipe Guedes Pucci

15
Compilação de inventários do ciclo de vida de sistemas de gestão de Resíduos Sólidos Felipe Guedes Pucci Universidade de São Paulo Escola de Engenharia de São Carlos Departamento de Hidráulica e Saneamento Qualificação de mestrado Orientador: Prof. Dr. Valdir Schalch

Transcript of Apresentação Qualificação Mestrado - Felipe Guedes Pucci

Compilação de inventários do ciclo de vida de sistemas de gestão de Resíduos Sólidos

Felipe Guedes Pucci

Universidade de São Paulo Escola de Engenharia de São Carlos

Departamento de Hidráulica e Saneamento

Qualificação de mestrado

Orientador: Prof. Dr. Valdir Schalch

Demandas e oportunidades

• Geração de RSU não para de crescer com o aumento da urbanização • A Fração Orgânica do RS Domiciliar é mássicamente majoritária , e se encaminhada

junto com outras frações do RSU, degrada o ambiente urbano e o trabalho dos coletores de RSU, reduz a reciclabilidade dos materiais recicláveis e vai gerar metano no aterro sanitário com muito escape difuso para a atmosfera.

• Energia fóssil não será eterna e reinsere o C fóssil de volta no ciclo de carbono da

biosfera. • Mudanças climáticas • Aumento do preço da energia no Brasil, combustíveis e eletricidade. • Brasil está 92% dentro dos trópicos, alto fluxo solar W/m²

Perguntas

Como obter mais energia na gestão dos resíduos? Como aproveitar melhor a energia diponível ao nosso redor? Como integrar a produção de energia e alimentos ao saneamento? Qual escala de trabalho é a mais eficiente e com melhor desempenho econômico/ambiental/social? Quais são os atores financiadores desses sistemas?

Propostas

Desenvolver os métodos de integração dos fluxos energético/materiais dos resíduos biodegradáveis fermentáveis, e não biodegradável que ainda contenha energia química. Criar ecosistemas integrados ao saneamento básico

Propostas

Biometanização

Aproveitar a energia solar ainda presente na: • Fração biodegradável do RSU e esgotos • Resíduos agrosilvopastoris biodegradáveis (esterco, restos vegetais) • Efluentes da agroindrústria (vinhaça)

Gasoso -> Biogás Líquido -> Nutrientes aquacultura Sólido -> Substrato orgânico

de C que se tornará CH4 biogênico no aterro com chance grande de escape se reaproveita uma maior fração: • da energia do C, via CH4, do que num aterro, onde grande parte do CH4 escapa para

a atmosfera. (BERTO NETO, 2009) • do C estável via susbstâncias húmicas e, • dos nutrientes na aquacultura/agrofloresta.

Pirólise/Gaseificação

Aproveitar a energia ainda presente na: • RDF, Fração não biodegradável do RSU, não economicamente reciclável • Lodo de ETE • Material biodegradável lenhoso

Gás de síntese Óleos orgânicos Carvão/negro de fumo

de C e energia enterrada em aterro se transforma em estoque de C no solo protegendo-o, melhorando a taxa de produção de alimentos se produz energia

Trigeração e sistemas térmicos

• Mini turbinas a gás • Célula a combustível • Motor Stirling • Ciclo de rankine orgânico

Poesch et al. 2012, mostram que: • a trigeração e uso de células a cumbustível, são as opções mais eficientes e

ambientalmente menos impactantes do que a queima convencional numa usina termoelétrica de ciclo da Rankine à vapor d’água. Uso do calor resídual no processo anaeróbio.

• O uso de substratos oriundos de culturas energéticas tem piores índices de

impacto comparado com o uso de biomassa residual (e.g. FORSU, esterco, caixa de gordura, palha, poda e capina.) -> Competição com a produção de alimentos

Aquacultura multitrófica/agroecologia

Fazer com que o sistema absorva energia solar para:

• Se produzir mais energia

• Esquentar os reatores anaeróbios via energia térmica solar • Tratar mais profundamente o efluente líquido até este se tornar água de

reúso enquanto os nutrientes e CO2 realimentem os agroecossistemas • Produzir alimentos, algas, peixes, cogumelos, e produtos agroflorestais.

Luz solar + nutrientes orgânicos marginais

V Fotossíntese

V Biogás, peixes, água, biomassa

Método

ACV – Avaliação do Ciclo de Vida “compilação e avaliação dos insumos e produtos e dos respectivos impactos ambientais de um sistema de produto ao longo de seu ciclo de vida”.

Etapas: • Definição da unidade funcional

• Seleção das alternativas • Definição dos fluxos de referência de cada alternativa

• Construção dos sistemas de produto e unidades de processos

• Definição das fronteiras do sistema de cada sistema de produto • Coleta de dados quantitativos

• Alocação de processos unitários multifunção • Agregação de entradas e saídas de todo o sistema de produto

• Caracterização

• Categorias de impacto ambiental • Normalização e pesos

Cronograma e desenvolvimento

Definição de escopo, fronteiras de sistema e inventário de cada sistema de produto em três escalas:

1 – Bairro 2 – Microbacia 3 – Cidade inteira Distribuíção dos sistemas de produto no cronograma: Março/Abril/Maio – Transportes, coleta de substratos Junho/Julho/Agosto – Usinas de biometanização e tratamento de gás Setembro/Outubro/Novembro – Aquacultura multitrófica, agrofloresta Decembro/Janeiro – Sistemas térmicos e trigeração Fevereiro/Março – Interpretação, integração dos inventários e término da redação

Referências bibliográficas

INTERNATIONAL STANDARD. ISO 14040 Environmental management - Life cycle assessment - Principles and framework. Switzerland: International Organization for Standardization, 1997. 20 p. POESCHL M., WARD S., OWENDE P. Environmental impacts of biogas deployment e Part I: life cycle inventory for evaluation of production process emissions to air. Journal of Cleaner Production. v.24, 2012, p. 168-183. SHILTON, A.; GUIEYSSE, B. Sustainable sunlight to biogas is via marginal organics. Current opinion in Biotechnology. V.21, 2010, p. 287–291 COLLET, P.; HÉLIAS, A.; LARDON, L.; RAS, M.; GOY, R.A.; STEYER, J.P. Life cycle assessment of microalgae coupled to biogas production. Bioresource Technology. V. 102, 2011, p. 207-214. VALDERRAMA, L.T.; CAMPO, DEL C. M., RODRIGUEZ, C. M.; BASHAN, L.E.; BASHAN, Y. Treatment of recalcitrant waste water from ethanol and citric acid production using microalga Chlorella vulgaris and the macrophyte Lemna minuscula. Water Research, V. 36, 2002, p. 4185 – p. 4192.

Referências bibliográficas BERTO NETO, J. Medidas da emissão de gases em oito aterros de resíduos sólidos urbanos do Estado de São Paulo – Brasil. São Carlos-SP, 2009. Tese (Doutorado). Escola de engenharia de São Carlos. Universidade de São Paulo. Organization for Economic Cooperation and Development – OECD. Bioheat, Biopower and Biogas – Developments and implications for agriculture. OECD publishing. 2010 57 p.