Analise Fisico-quimica Da Agua

35
ALCALINIDADE TOTAL MÉTODO DE DETERMINAÇÃO I Material necessário: Pipeta volumétrica de 50 ml Frasco Erlenmeyer de 250 ml Bureta de 50 ml Reagentes: Fenolftaleína Indicador metilorange Mistura Indicadora de Verde de Bromocresol/Vermelho de Metila Solução de Ácido Sulfúrico 0,02 N Solução de Tiossulfato de Sódio 0,1 N. Procedimento Tomar 50 ml da amostra e colocar no Erlenmeyer Adicionar 3 gotas da solução indicadora de verde de bromocresol/vermelho de metila Titular com a Solução de Ácido Sulfúrico 0,02 N até a mudança da cor azul esverdeada para róseo 1

Transcript of Analise Fisico-quimica Da Agua

Page 1: Analise Fisico-quimica Da Agua

ALCALINIDADE TOTAL

MÉTODO DE DETERMINAÇÃO I

Material necessário:

Pipeta volumétrica de 50 ml

Frasco Erlenmeyer de 250 ml

Bureta de 50 ml

Reagentes:

Fenolftaleína

Indicador metilorange

Mistura Indicadora de Verde de Bromocresol/Vermelho de Metila

Solução de Ácido Sulfúrico 0,02 N

Solução de Tiossulfato de Sódio 0,1 N.

Procedimento

Tomar 50 ml da amostra e colocar no Erlenmeyer

Adicionar 3 gotas da solução indicadora de verde de bromocresol/vermelho de

metila

Titular com a Solução de Ácido Sulfúrico 0,02 N até a mudança da cor azul

esverdeada para róseo

Anotar o volume total de H2SO4 gasto (V) em ml.

Cálculo

Alcalinidade total em mg/l de CaCO3 = V x 20

1

Page 2: Analise Fisico-quimica Da Agua

Notas:

1. Usar 0,05 ml (1 gota) da solução de Tiossulfato de Sódio 0,1 N, caso a amostra apresente

cloro residual livre;

2. Utilizar esta técnica na ausência de alcalinidade à fenolftaleina;

3. Caso haja alcalinidade à Fenolftaleina, adicionar, antes da mistura indicadora de verde de

bromocresol/ vermelho de metila 3 gotas de Fenolftaleina e titule com H2SO4 0,02N até

desaparecer a cor rósea formada. Em seguida continuar no passo: (Adicionar 3 gotas da

solução indicadora de verde de bromocresol/vermelho de metila)

4. A alcalinidade à Fenolftaleína só poderá ocorrer se o pH da amostra for maior que 8,2

5. Na impossibilidade de conseguir a mistura indicadora de verde de bromocresol/vermelho

de metila, usar o indicador de metilorange. Nesse caso o ponto de viragem no passo 3 da

técnica será de amarelo para alaranjado;

6. O ponto de viragem quando se usa o indicador verde de bromocresol/vermelho de metila

é mais nítido do que quando se usa metilorange;

7. A fórmula acima é para ser utilizada quando se usa uma amostra de 50 ml. Quando for

usado 100 ml de amostra, o volume (V) passará a ser multiplicado por 10;

8. Fc – Fator de correção da solução titulante.

2

Page 3: Analise Fisico-quimica Da Agua

ALCALINIDADE TOTAL

MÉTODO DE DETERMINAÇÃO II

Material Necessário:

Proveta de 100 mL Agitador Magnético (com Peixinho) Bureta de 50 mL Becker de 250 mL Pisseta com água destilada pHmetro

Reagentes:

Ácido Sulfúrico (H2SO4) a 0,02NPreparo:

Tomar 0,6 mL de H2SO4 concentrado (a 96% e d = 1,84 g/mL) e diluir em 1.000 mL de água destilada. (Ver observação).

Procedimento:1. Tomar numa proveta 100 mL da amostra e transferir para um Becker de 250 mL;2. Colocar o Becker sob o agitador magnético com o peixinho dentro para auxiliar na

agitação e introduzir o eletrodo do pHmetro;3. Titular com Ácido sulfúrico (H2SO4) até o pH estabilizar em 4,5;

3

Page 4: Analise Fisico-quimica Da Agua

4. Anotar o volume gasto de Ácido Sulfúrico (H2SO4) na titulação.

Cálculo:Alç. Total (mgCaCO3/ L) = Volume (H2SO4) gasto (mL) * Normalidade de H2SO4 x 50.000 ---------------------------------------------------------------------------- Volume da amostra (mL)

Obs: A normalidade exata do Ácido sulfúrico será decorrente da padronização do reagente, que é feita quando se prepara o mesmo. (Abaixo)

Para transformar meq/L em mg/L: multiplica o resultado por 50.

Padronização da solução de H2SO4 - Procedimento:

1. Tomar numa pipeta 25 mL de solução de Bórax a 0,020N e transferir para um Erlenmeyer de 250 mL;

2. Adicionar 4 gotas de vermelho de metila;3. Titular com solução de Ácido Sulfúrico (H2SO4) até a mudança de coloração do

indicador;4. Anotar o volume gasto em mL.

Cálculo:

N (H2SO4) = N (bórax) x V (bórax) ---------------------------- Volume gasto (H2SO4)

4

Page 5: Analise Fisico-quimica Da Agua

DUREZA TOTAL

Material necessário:

Proveta de 50 mL Pipeta de 5 mL Bastão de vidro Bureta de 50 mL Erlenmeyer de 250 mL Pisseta com água destilada

Reagentes:

Solução de Buffer (solução tampão de pH 10) – Preparo: Dissolver 16,9g de Cloreto de Amônia em 143mL de Hidróxido de Amônia concentrada. Adicionar 1,25g de sal de magnésio de EDTA, diluir para 250mL com água destilda.

Negro de Eriocromo T – Preparo: Misturar 0,5g de Negro de Ericromo T e 100g de Cloreto de Sódio para se preparar uma mistura de pó seco.

EDTA para Dureza 0,01M – Preparo: Dissolver 3,723g de EDTA seco, analítico em 1.000mL de água destilada.

Procedimento:

1. Tomar uma proveta 50mL da amostra e transferir para um elenmeyer de 250mL;

5

Page 6: Analise Fisico-quimica Da Agua

2. Adicionar 1mL de solução de Buffer;3. Homogeneizar;4. Adicionar com auxilio de um bastão de vidro uma medida do indicador

Negro de Ericromo T e homogeneizar até a coloração lilás;5. Titular com EDTA a 0,01M até a viragem da coloração lilás para a

coloração azul;6. Anotar o volume gasto de EDTA na titulação (mL)

6

Page 7: Analise Fisico-quimica Da Agua

Cálculos:

Dureza Total (CaCO3mg/L) =Volume (EDTA) gasto (mL) x Molaridade do EDTA x 50.000 ------------------------------------------------------------------------------------ Volume da amostra (mL)

7

Page 8: Analise Fisico-quimica Da Agua

OXIGÊNIO DISSOLVIDO (OD)Método de Winkler

Fixação de Oxigênio Dissolvido (OD) no Campo:

1. Encher o frasco de DBO lentamente, sem perturbar a massa líquida;2. Adicionar 2mL de sulfato manganoso e logo em seguida 2ml de azida sódica.

Fechar o frasco e agitá-lo por inversão. Deixar o precipitado sedimentar por alguns minutos;

3. Adicionar 2mL de ácido sulfúrico concentrado, fechar o frasco de DBO e agitá-lo bem para dissolver completamente o material precipitado e distribuir de forma homogênea o iodo liberado. Aguardar 20 minutos;

4. Logo em seguida medir lentamente numa proveta 100mL de amostra assim tratada para um elenmeyer de 250mL;

5. Titular o iodo liberado com a solução de tiossulfato de sódio de normalidade conhecida até a coloração amarelo claro;

6. Adicionar 1 mL do indicador amido até uma cor azul escuro e, em seguida, prosseguir a titulação até o desaparecimento da cor azul intensa;

7. Anotar o volume gasto na titulação.

Obs: Se no momento da fixação aparecer um precipitado branco o oxigênio da amostra será zero.

Cálculo:

OD (mg/L) = Volume gasto na titulação (mL) x Normalidade x 8.000 ----------------------------------------------------------------- Vc mL

Onde:

Vc = (Volume do frasco – 4)x 100 --------------------------------------- Volume do Frasco

Observação: A normalidade do Tiossulfato de sódio será decorrente da padronização do reagente, que é feita quando se prepara o mesmo.

8

Page 9: Analise Fisico-quimica Da Agua

Padronização da Solução de Tiossulfato de Sódio (Na2S2O3.5H2O)

1. Medir 10mL de solução padrão de dicromato de potássio (K2Cr2O7) e transferir para um balão volumétrico de 100mL. Completar o volume de água destilada até o menisco;

2. Passar esta solução para um elenmeyer de 250mL;3. Adicionar 1g d de iodeto de potássio (KI) sólido para o elenmeyer. Agitar bem;4. Adicionar 1mL de Ácido Sulfúrico concentrado ao elenmeyer e agitar;5. Titular o iodo liberado com a solução de tiossulfato de sódio até a coloração

amarelo claro;6. Adicionar entre 4 a 8 gotas do indicador amido até uma cor esverdeada e em

seguida prosseguir a titulação até o desaparecimento da cor azul intensa;7. Anotar o volume gasto na titulação.

Cálculo:

Normalidade do Na2S2O3 = N (K2Cr2O7) x V (mL) K2Cr2O7

--------------------------------------- V (mL) K2Cr2O7

9

Page 10: Analise Fisico-quimica Da Agua

DETERMINAÇÃO DE CLORETOSMétodo Colorimétrico de Mohr

Material necessário:

Proveta de 50mL ou pipeta de 100mL; Pipeta de 5mL; Bureta de 50mL; Elenmeyer de 250mL; Pisseta com água destilada Material para filtração (Filtro Plástico; Papel filtro e Bomba à vácuo).

Reagentes:

Cromato de potássio a 5% - Preparo: Dissolver 5g de cromato de potássio (K2CrO4), em 100mL de água destilada.

Nitrato de prata (AgNO3) a 0,014N – Preparo: Dissolver 2,396g de AgNO3 analítico em 1.000mL de água destilada. (Ver observação).

Hidróxido de sódio (NaOH) a 4% (eliminar interferentes) – Preaparo: pesar 4 g de NaOH e dissolver em 100mL de água destilada.

Procedimento:

1. Tomar uma proveta 100mL da amostra filtrada e transferir para um elenmeyer de 250mL;

2. Adicionar 1mL do indicador cromato de potássio a 5%;3. Adicionar 1 gota de Hidróxido de Sódio e homogeneizar;4. Titular com nitrato de prata até a viragem da coloração amarela para cor telha

(laranja);5. Anotar o volume gasto de nitrato de prata na titulação.

Cálculo:

Cloretos (mg/L) = mL de Nitrato de prata gasto na titulação x 35,5 x normalidade do AgNO3

-------------------------------------------------------------------------------- Volume da amostra em litros (100mL/1.000 = 0,1L)

10

Page 11: Analise Fisico-quimica Da Agua

Observação: A normalidade exata do nitrato de prata será decorrente da padronização do reagente, que é feita quando se prepara o mesmo.

Metodologia para a Padronização do Nitrato de Prata:

Material necessário:

Proveta de 50mL ou pipeta de 50mL Pipeta de 5mL; Bureta de 50ml; Elenmeyer de 250mL; Pisseta com água destilada.

Reagentes:

Cloreto de sódio (NaCl 0,01M) – Preparo: Pesar 0,584g (seco a 105ºC por 2 horas) e dissolver em 1.000mL de água destilada.

Cromato de potássio a 5% - Preparo: Dissolver 5g de cromato de potássio (K2CrO4), em 100mL de água destilada.

Nitrato de prata (AgNO3) a 0,01N – Preparo: Dissolver 1,7g de AgNO3 analítico em 1.000mL de água destilada.

Hidróxido de Sódio 4% (NaOH) – Preaparo: pesar 4 g de NaOH e dissolver em 100mL de água destilada.

Procedimentos:1. Tomar 5mL do NaCl 0,01N e transferir para um elenmeyer de 250mL;2. Adicionar 95mL de água destilada;3. Pipetar 1mL do indicador de Cromato de Potássio e 1 gota de

Hidróxido de sódio 4%;4. Homogeneizar;5. Titular a solução de Nitrato de Prata 0,01N até a coloração passar de

amarelo para alaranjado.

Cálculo:

Normalidade do AgNO3 = Cloreto de sódio usado (mL) x a Normalidade do NaClVolume de AgNO3 gasto na titulação em mL *ideal 5,0mL

11

Page 12: Analise Fisico-quimica Da Agua

NITRATOMétodo do Ácido Fenoldissulfônico

Reagentes:

Ácido sulfúrico Fenol (ácido fênico) Nitrato de potássio anidro Hidróxido de amônio ou Hidróxido de sódio

Preparo dos reagentes:

Ácido fenildissulfônico:

Medir 200mL de ácido sulfúrico concentrado e juntar 30g de fenol puro;Conservar a mistura em água fervente durante 6 horas em balão de fundo chato vedado com Parafilm.

Solução padrão de Nitrato:

Dissolver 0,7218g de Nitrato de potássio anidro (seco a 105º) em água destilada e diluir para 1000mL em balão volumétrico;Realizar as diluições:

1. 1mL da solução padrão (100mg/L) diluído para 100mL (1mg/L);2. Tomar 10 mL da solução 1mg/L e evaporar (0,1mg/L);3. Tomar 20 mL da solução 1mg/L e evaporar (0,2mg/L);4. Tomar 40 mL da solução 1mg/L e evaporar (0,4mg/L);5. Fazer a curva padrão evaporando 10, 20 e 40mL da solução 10mg/L e,

após isso, seguir o procedimento aplicando as amostras, com adição dos reagentes, diluição e leitura;

6. Refazer a curva a cada preparo de novos reagentes.

Hidróxido de Sódio 12N:

Dissolver 480g de hidróxido de sódio em água destilada;Diluir para 1000mL em balão volumétrico.

Procedimento:

1. Evaporar 100mL de amostra filtrada em erlenmeyer de 125mL;2. Ao resíduo colocar 2mL de ácido fenoldissulfônico e esperar alguns minutos;3. Adicionar um pouco de água destilada e colocar 12mL de hidróxido de amônio

concentrado ou 6mL de hidróxido de sódio 12N;4. Transferir para proveta e completar, com água destilada, para 100mL;5. Fazer a leitura no espectrofotômetro a 410nm.

12

Page 13: Analise Fisico-quimica Da Agua

ÁCIDOS GRAXOS VOLÁTEIS (AGV)

Material Necessário:

Ácido Sulfúrico 0,02NPeagâmetroElemeyer de 125 mL Bureta de 50 mL

Procedimento

Primeira etapa:1. Colocar ácido sulfúrico 0,02 N na bureta;2. Posicionar o peagâmetro junto ao local de titulação;3. colocar 50 mL da amostra no elemeyer.

Segunda etapa:1. Colocar o leitor do peagâmetro dentro do elemeyer;2. Começar a titular a amostra até o pH desta chegar a 5,0, anotar o volumer de ácido

gasto (V5); 3. após o pH chegar a 5,00 dar continuidade a titulação até o pH chegar a 4,3 e anotar

o volume de ácido gasto (V4,3);4. Após o pH chegar a 4,30 dar continuidade a titulação até o pH chegar a 4,0 e anotar

o volume de ácido gasto (V4,0).

Tendo obtido os três valores titulados (V5, V4,3 e V4) finaliza-se os procedimentos de bancada obtendo uma tabela semelhante a abaixo:

Amostra Volume gasto de ÁcidoV5 (mL) V4,3 (mL) V4 (mL)

Ponto 1Ponto 2

Para se encontrar a concentração de AGV, utilizam-se os seguintes cálculos:

AT = V4,3 (mL) x 50.000 x 0,02 -------------------------------

volume da amostra

AGV = [(131.340) x (0,02) x (V4 - V5)] - (0,0616 x AT) – 10,9 ---------------------------------------- volume da amostr

13

Page 14: Analise Fisico-quimica Da Agua

SÓLIDOS EM SUSPENSÃO

1. Preparo dos Filtros a serem Usados

Calcionar os filtros na mufla a 480° C por 01 hora em cápsula de porcelana; Após a calcinação retirar as cápsulas com os filtros e colocar no dessecador

para esfriar; Pesar os filtros e anotar em um caderno, o n° de cada um e o peso

correspondente (P0); Colocar os filtros em saquinhos de papel vegetal previamente anotado com

os n° dos filtros; Deixar no dessecador até o momento de serem usados.

2. Procedimento

Homogeneizar as amostras; Medir o volume a ser filtrado (anote no caderno);

Obs: para água 250 ml e esgoto 100 ml Filtrar em um conjunto da Millipore; Colocar os filtros em cápsulas de porcelana numerada na parte de baixo com

grafite (cada filtro em uma cápsula); Secar os filtros em estufa a 105°C por 2 horas e logo após retirar e colocar

pra esfriar no dessecador. Desta forma obtêm-se resultados de sólidos totais, incluindo a matéria orgânica e inorgânica;

Pesar os filtros e anotar os pesos (P1); Submeter os filtros a ignição em mufla a 480° C por 1 hora, assim obtém-se

resultados da matéria inorgânica que são as cinzas. Deixar os filtros no dessecador para esfriar; Fazer a pesagem final e anotar o peso (P2)

Obs: Os filtros são colocados com a parte lisa para baixo e porosa para cima

3. Cálculos

Sólidos Totais (SST mg/l) = (P1-P0) x1000 Va

Sólidos Fixos – Matéria inorgânica( SSF mg/l) = (P2-P0) x 1000 Va

Matéria orgânica (SSV mg/l) = SST-SSFP0 = peso do filtro preparado em gP1 = peso do filtro + amostraP2 = peso do filtro + amostra após a muflaVa = volume da amostra filtrada

14

Page 15: Analise Fisico-quimica Da Agua

DETERMINAÇÃO DE SÓLIDOS SEDIMENTÁVEIS

Princípio do Método

Baseia-se na determinação de sólidos em suspensão por ação da gravidade.

Condições Gerais

Materiais e Equipamentos: Cone de Imhoff Vidrarias: Bastão de Vidro Diversos: Suporte para cone de Imhoff; Relógio Despertador.

Procedimentos

Após a coleta homogeneizar a amostra;

Despejar 1000 mL desta amostra em um cone de deixar sedimentar durante 45 min;

Passar vagarosamente um bastão de vidro junto a parede interna do cone, para que os sólidos a ela aderidos sedimentem;

Alternativamente, girar, cuidadosamente, com as mãos, o cone em torno do eixo vertical, de forma a deslocar os sólidos aderidos a parede;

Deixar decantar por mais 15 min. Efetuar a leitura da quantidade de

sólidos sedimentáveis em mililitros por litro(mL/L).

15

Page 16: Analise Fisico-quimica Da Agua

DEMANDA QUÍMICA DE OXIGÊNIO-DQOMétodo da Refluxação Fechada ou da Digestão de Pequenas Amostras

1-OBJETIVO 

Esta norma prescreve o método de determinação da DQO de águas brutas em geral (de rios, represas e mananciais), águas poluídas, efluentes industriais, efluentes domésticos e lodos. 

2-CAMPO DE APLICAÇÃO 

Esta norma aplica-se a determinação do valor da demanda Química de Oxigênio de águas brutas em geral (de rios, represas e mananciais), águas poluídas, efluentes industriais, efluentes domésticos e lodos, de acordo com a Resolução do CONAMA  nº357 de 17 de março de 2005. 

3-DEFINIÇÕES/SIGLAS 

Demanda Química de Oxigênio –DQO. É a quantidade de oxigênio necessária para oxidar quimicamente a matéria orgânica oxidável na água. 

4-PRINCÍPIO DO MÉTODO 

A maioria dos tipos de matéria orgânica são oxidadas por uma quantidade conhecida de um agente oxidante forte, o dicromato de potássio em meio ácido (ac. Sulfúrico) por 2 horas em uma determinada temperatura (150°C), na presença de um catalisador (sulfato de prata).

O excesso de dicromato de potássio é titulado com sulfato ferroso amoniacal (sal de Morh), usando ferroin como indicador. A quantidade de matéria oxidável expressa como equivalente em oxigênio, é proporcional à quantidade de dicromato de potássio consumida. 

5-EQUIPAMENTOS 

Bloco de aquecimento (digestor). 

16

Page 17: Analise Fisico-quimica Da Agua

6- VIDRARIA E MATERIAIS 

Bureta de 50 mL

Tubos de ensaio

Erlenmeyer de 125 mL

Pipetas

Provetas

Balão volumétrico

Bastão de vidro

Espátulas

Suporte com garra. 

7-REAGENTES 

7.1 Solução Digestora.0,01667 M 

Pesar 4,903g de dicromato de potássio (K2Cr2O7) seco a 150°C por 2 horas, dissolva em 500 mL de água destilada, acrescentando 167 mL de H2SO4 e 33,3g de sulfato de mercúrio(HgSO4) deixe a solução esfriar e dilua para 1000 mL de água destilada. 

7.2 Sal de Mohr (Solução de sulfato ferroso amoniacal) ± 0,10M 

O Sulfato ferroso amoniacal é um cristal verde e é chamado de sal de Mohr. Dissolver 39,2g de Fe(NH4)2(SO4)2.6H2O (sulfato ferroso amoniacal) em água destilada , adiciona-se 20 mL  de ácido sulfúrico concentrado (H2SO4) e dilui a 1000 mL em balão volumétrico.  

17

Page 18: Analise Fisico-quimica Da Agua

 7.2.1- Padronização do sal de Mohr 

Pipete 5 mL da solução digestora e coloque em um béquer pequeno. Adicione 10 mL de água destilada. Deixe chegar a temperatura ambiente. Adicione 1 ou 2 gotas do indicador ferroin e titule com o sal de Mohr.( sulfato ferroso amoniacal  Fe(NH4)2(SO4)2.6H2O) 

Molaridade=   mL   K 2Cr2O7  0,01667 M   X 0,1000 

                      mL Fe(NH4)2(SO4)2.6H2O      

ou M =                                    5                                     x 0,1000

            Vol gasto do sal de Mohr     

7.3- Solução Indicadora de Ferroin 

Dissolver 1,485g de 1-10 fenantrolina monoidratada, juntamente com 0,695g de FeSO4. 7H2O em água destilada  e dilua para  100 mL 

7.4- Solução catalítica  ou (ácido sulfúrico reagente) 

Adicionar 5,5g de sulfato de prata AgSO4 a 1000 mL de ácido sulfúrico conc H2SO4 .(deixar em repouso 1 ou 2 dias antes de usar esta solução)   8- INTERFERENTES 

O sal de Mohr tem que ser constantemente padronizado de preferência, antes de ser usado, pois se a solução não estiver padronizada irá interferir no resultado final da análise. 

9 - EXECUÇAO DO ENSAIO

9.1- Coleta Das Amostras

9.1.2 -As amostras para determinação da demanda química de oxigênio-DQO podem ser coletadas em um vidro tipo pyrex  e o volume necessário é de 20 mL.

9.1.3- Amostras não analisadas imediatamente devem ser acidificadas com   H2SO4 conc para pH < 2

18

Page 19: Analise Fisico-quimica Da Agua

9.2- Procedimento

9.2.1 Antes Da Digestão

Adicione a um tubo de ensaio 2,5 mL da amostra, 1,5 mL da solução digestora e 3,5 solução catalisadora, tampe o tubo e coloque esse tubo em um tubo maior. Ligue o bloco digestor a uma temperatura de 150°C (2 horas). Passado esse tempo retire as amostras do bloco digestor agite o tubo (não misture por inversão) e deixe esfriar. Faça uma prova em branco utilizando o mesmo procedimento com água destilada.

 9.2.3- Após A Digestão 

Em um erlenmeyer de 125 mL coloque a amostra digerida, lave os tubos com água destilada para obter um volume final de 25 mL, adicione 1 ou 2 gotas da solução indicadora(ferroin). Na bureta coloque o sal de Mohr e titule até a mudança de coloração (ponto de viragem), a coloração verde-azul passa para castanho. Anote o volume gasto. 

10-INTERPRETAÇÃO DOS RESULTADOS 

10.1-Expressão do resultado 

DQO (mg/L O2) = (Vb-VaT) x 8000 x   M

                               Va

Onde:

Vat = volume da amostra titulada

Vb = volume do branco

M= Molaridade do sal de Mohr

8 = miliequivalente do oxigênio

1000 = é o número de mL em um litro   

19

Page 20: Analise Fisico-quimica Da Agua

Sólidos Totais

Assunto: Sólidos Totais

Experimento: Determinação dos sólidos totais

Objetivo: Determinação dos Sólidos Totais no afluente e no efluente do sistema de tratamento.

Tempo previsto: 100 minutos

Materiais e equipamentos:

Duas cápsulas de porcelana de capacidade 100 mL; cilindro graduado de 100 mL;

estufa de até 110º ; dessecador ; balança analítica de precisão ; banho-maria ; mufla de até

600 º C.

Metodologia Experimental:

A determinação dos sólidos totais no afluente e no efluente do sistema de tratamento

dará a quantidade de sólidos removidos pelo tratamento.

Procedimentos:

1. aqueça a cápsula a 100º C;

2. esfrie no dessecador;

3. pese, exemplo P1=32,5018g;

4. introduza 100ml de amostra;

5. leve ao banho –maria até secar;

6. leve à estufa a 100º C;

7. esfrie no dessecador;

8. pese (peso2=P2),exemplo: P2=32,5578;

20

Page 21: Analise Fisico-quimica Da Agua

Cálculo dos sólidos totais:

( P2-P1) x 10.000=mg/l de sólidos totais

Exemplo: (32,5578-32,5018) x 10.000= 560mg/l

9. Calcine a 600º C a cápsula;

10. Esfrie no dessecador;

11. Pese ( peso3=P3),exemplo:P3=32,5202;

Cálculo dos sólidos fixos:

( P3-P1 )x10.000=mg/l de sólidos totais fixos

Exemplo:

(32,5202-32,5018) x 10.000= 184 mg/l

Cálculo dos sólidos totais voláteis:

(P2-P3)x10.000=mg/l de sólidos totais voláteis

Exemplo:

(32,5578-32,5202) x 10.000=376 mg/l

Resultados e Discussão:

O teor de sólidos totais fixos (cinzas) no lodo digerido indicará a qualidade do lodo. De maneira bastante aproximada, os sólidos voláteis dão uma idéia do teor de sólidos orgânicos existentes nos esgotos, assim como os sólidos fixos indicam aproximadamente o teor de sólidos minerais.

  

21

Page 22: Analise Fisico-quimica Da Agua

  

 

22