Projeto CHUVA - SOSCHUVAchuvaproject.cptec.inpe.br/portal/en/pdf/CHUVA-Project...Medições de...

Post on 22-Jul-2019

216 views 0 download

Transcript of Projeto CHUVA - SOSCHUVAchuvaproject.cptec.inpe.br/portal/en/pdf/CHUVA-Project...Medições de...

6

Projeto CHUVA

Luiz.Machado@cptec.inpe.br

Desempenho de algoritmos estimadores de

precipitação

Frederico Angelis

Medições de precipitação podem ser realizadas por: Pluviômetro (báscula ou totalizador), radar ou satélite.

Pluviômetro a melhor medida local, mas depende do vento e de pássaros, insetos, calibração, etc...difícil extrapolar no espaço medidas pontuais.

Radar – ótima cobertura e alta resolução temporal, somente em torno de 100 km do radar – problemas – altura do feixe com a distância, abertura do feixe, precisa saber a distribuição de gotas, atenuação . Z AR

Z= N(D)D6dD

Satélite – medida global, baixa resolução temporal – IR – relação indireta altura do topo – precipitação, MW sobre o oceano medida direta, sobre o continente espessura da camada de gelo e precipitação. Problema, não vê chuva de nuvens quentes e relações variam em função do ciclo de vida. Modelo – Precisa melhorar a previsão de precipitação – não se conhece direito a microfísica e os modelos não descrevem as distribuições

b

Por outro lado a precipitação é a variável de maior interesse da meteorologia. Saber quanto choveu é algo que depende da resolução espacial e temporal .

Precipitação é a variável meteorológica de maior variabilidade espacial e temporal

Rainfall Signatures from MW

Nimbostratus

Cumulonimbus

0 C

0 C

0 C

0 C

Emission – freq’s <40 GHz Scattering – freq’s >40 GHz

the increase of the ice phase as

the cloud evolves to the mature

stage.

the ice content increases as

well the precipitation.

Motivação

Sensitivity to the Cloud Properties

=> High sensitivity to the cloud, especially its ice phase

Sensitivity to the ice content

Sensitivity to the particle size

Microfísica das Nuvens

GV - Physical Approach – Field Campaign

WORKING GROUP – 1

CHARACTERISTICS OF THE PRECIPITATING SYSTEMS AS FUNCTION OF THE REGION AND LIFE

STAGE

Responsible : Luiz Machado

WORKING GROUP – 2

PRECIPITATION ESTIMATION – DEVELOPMENT AND VALIDATION ALGORITHM

Responsible : Carlos Angelis

WORKING GROUP – 3

ELETRIFICATION PROCESS: MOVING FROM CLOUDS TO THUNDERSTORMS

Responsible: Carlos Morales

WORKING GROUP – 4

CHARACTERISTICS OF THE BOUNDARY LAYER FOR DIFFERENT CLOUD PROCESSES AND

PRECIPITATION REGIMES

Responsible: Gilberto Fisch

WORKING GROUP – 5

MODEL IMPROVEMENTS AND VALIDATION, WITH FOCUS IN CLOUD MICROPHYSICS AND AEROSOL

INTERACTIONS, FOR SATELLITE PRECIPITATION ESTIMATES IN BRAZIL

Responsible: Maria Assunção Dias

NASA Precipitation Measurement Missions Science Team -26-29 October 2009 - Salt Lake City

CHUVA Project

CHUVA Field Campaign Schedule

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEZ

2010 ALCANTARA

2011 CHUVA

WORKSHOP#1

FORTALEZA FORTALEZA BELÉM BELEM SAO LUIZ PARAITINGA

SAO LUIZ PARAITINGA

2012 CHUVA -

WORKSHOP#2

FOZ DO

IGUAÇU

FOZ DO

IGUAÇU

FOZ DO

IGUAÇU

2013 FOZ DO

IGUAÇU

BRASÍLIA BRASÍLIA

2014 MANAUS MANAUS MANAUS MANAUS

The Pre-CHUVA Experiment and the CHUVA Project

Transportation from São Luiz to Alcântara

4 - Delta Village

3 - Airport

THIES Disdrom

eter

2 NASA Rain

Gauges

INPE Rain

Gauge

Parsivel Disdrom

eter

JOSS Disdrom

eter

THIES Disdrom

eter

2 INPE Rain

Gauges

Measurement Scheme

for the Main line

300 meters

300 meters

300 meters

300 meters

GPS

30º

90º

ADMIRARI

MP3000A LIDAR

300 meters

2.00 km

7.50 km

1.80 km

3.90 km

$

2 - INPE

INPE Rain

Gauge

THIES Disdrome

ter

JOSS Disdrome

ter 5 – Anem.

Tower

GPS

Parsivel Disdrome

ter

2 NASA Rain

Gauge

1 - RADAR

INPE Rain

Gauge

Volumetric

and RHI RADAR

90º

$

Radiosonde RS92

INPE SITE

Instrumentation

RADAR site X Band dual polarization

Meteorological Radar

INPE Rain Gauge

Meteorological Wheather

Station

Radiosonde RS92

Instrumentation

INPE site

GPS

INPE Rain Gauge

2 NASA Rain Gauges

THIES Disdromet

er

JOSS Disdrometer

Parsivel Disdromet

er

Instrumentation

Airport Site

THIES Disdrometer

2 NASA Rain Gauges

INPE Rain Gauge

Parsivel Disdromet

er

MP3000A Radiometer

JOSS Disdrometer

Soil Moisture

GPS

LIDAR

Instrumentation

Delta Village Site

ADMIRARI THIES

Disdrometer

2 INPE Rain Gauges

Instrumentation

UECE Airplane

OAP200X - Hydrometeors

30-450um

FSSP – Raindrops Distribution

2-47um

Equipments Installation

cold

warm

Ice cloud warm

cold

warm

DSD (Joss)

0

50

100

150

200

250

radar vila2 inpe aero vila1 slz

Accumulated Rain Gauge (mm)

0

2

4

6

8

10

12

14

radar vila2 inpe aero vila1 slz

Rain Gauge No. Of Days With Rain

Warm Events

March 21th

MP3000

ADMIRARI

Thies Disdrometers (inpe and Village sites)

Fortaleza Campaign

Main Target Study: Warm Clouds and MCSs organized by Easterly Waves

From 21 March to 29 April 2011 – The GPM Planning Meeting and the CEOS –

PC will be held during this period in Fortaleza

Additional Data: Aircraft for microphysical measurements (if the airplane will be OK) and S

and X Band radar.

Fundação Cearense de Meteorologia e Recursos Hídricos Secretaria de Ciência, Tecnologia e Ensino Superior Governo do Estado do Ceará

Radar de Fortaleza (Banda X)

Radar de Quixeramobim (Banda S)

Sítios Experimentais da Região Metropolitana de Fortaleza Lidar

Container de química

Radiômetro de microondas

Estação meteorológica

Equipamentos de fluxos

Disdrômetros (Joss e Parsivel)

Pluviômetros

GPS

Micro- radar

Radar móvel

GPS

Pluviômetro

Disdrômetros (Thies)

Disdrometro (Parsivel)

Pluviômetro NASA

Radiossondagem Disdrômetro (Parsivel)

Pluviômetro NASA

Central na FUNCEME com

conexão internet, bancada

para trabalho e dois PCs.

Disdrômetro (Thies)

Disdrometro (Thies)

Pluviômetro

Estação meteorológica

Radar banda X

Sítios Experimentais Mossoró Quixeramobim Fortaleza

Guarda Municipal/Defesa Civil

INMET

Belem Campaign

Main Target Study: Tropical Squall Lines and Local Convection

From 30 May to 9 July 2011

Additional Data: S Band Radar

Controlled Meteorological balloons are small

altitude-controlled platforms with bi-directional satellite

communication and long-duration flight capability _ Voss and Fitzgerald collaboration

Belem Squall Lines Climatology : 2000 to 2006

Classification : CCL: Costal Convective Line ( Propagation < 170 km) SL1: Squall Line Type 1 ( 170 Km < Propagation < 400 km) SL2: Squall Line Type 2 ( Propagation > 400 km) SL2 – STM – Moved around Santarem = 56%

Locais do Experimento de Belém

21 km

24 km 5.5 km

8 km

Equipamentos dos sitos:

Sitio#1 – UFPA:

Radar X-POL, Field Mill (USP), GPS

Sítio#2 – UT-Outeiro (DTCEA-BE)

Radiômetro de microondas, Lidar, Micro Radar,

2 disdrômetros Joss e Parsivel, GPS, 2 pluviômetros,

estação de fluxo, field mil, sensor de umidade do solo.

Sítio#3 – UT-Benevides (DTCEA-BE)

Disdrômetros Parsivel, GPS (UEA), 2 pluviômetros, field Mill (USP), GPS.

Sítio#4 - DTCEA-BE – aeroporto:

Estação de Radiosondagem - Disdrômetros Parsivel, GPS (UEA),

2 pluviômetros, field Mill (USP) e Micro Radar (USP)

Sítio#5 – INMET - GPS (UEA), pluviômetro, field Mill (USP)/

GPS Meteorology in CHUVA Belem (L. Sapucci, D. Adams, R. Fernandes, L. Tanaka)

Our Principal Aims in

CHUVA Belem

Identify wv convergence

timescales and propagation of

convection/squall lines in GPS

PWV

Estimate wv convergence in a

limited region in conjunction

with sondes/radiometers, etc)

Test maximum temporal

resolution of the GPS PWV

technique (comparing GIPSY

with GAMIT)

Employ 3D/4D techniques for

estimating mesoscale wv fields.

Install 7 to 10 GPS within 70km of SIPAM Belem (See Map for Sample

Configuration of 8 probable sites). Ultimate configuration depends on siting of

radiosondes, etc.

Sítios em Belém

São Luiz do Paraitinga Campaign

Main Target Study: Warm Clouds, Cold Fronts, MCSs, SACZ and Local

Convection

From 31 October to 22 December 2011

Additional Data: S Band Radar and “Lightning Mapping Array” (LMA) – NOAA and NASA

– Steve Goodman

Posição do Radar e sitios.

39

Richard Blakeslee / NASA Marshall Space Fight Center

Larry Carey / University of Alabama in Huntsville

Jeff Bailey / University of Alabama in Huntsville

National Space Science and Technology Center (NSSTC)

Geostationary Lightning Mapper (GLM) Science Team Meeting, NSSTC, Huntsville, Alabama

2 December 2010

Lightning Mapping Array (LMA) Observations in CHUVA:

Overview of Plans

1Steven Goodman Program Senior Scientist

NOAA/NESDIS/ GOES-R Program Office http://www.goes-r.gov

2Richard Blakeslee, 2William Koshak, 2Walter Petersen, 3Larry Carey, 3Douglas Mach, 3Dennis Buechler, 4Monte Bateman,

4Eugene McCaul, 5Eric Bruning, 5Rachel Albrecht, 6Donald MacGorman

1GOES-R Program, NOAA/NESDIS, Greenbelt, MD2NASA Marshall Space Flight Center, Huntsville, AL,3UAHuntsville, Huntsville, AL,4Universities Space Research Association,5University of Maryland, College Park, MD,6NOAA/National Severe Storms Laboratory, Norman, OK

Fall AGU Meeting of the Committee on Atmospheric and Space Electricity 14 December 2010

GOES-R Geostationary Lightning Mapper (GLM): Pre-Launch Algorithm Validation-CHUVA Campaign Report

EUM/ Issue <No.> <Date>

Jochen Grandell, Hartmut Höller, Rolf Stuhlmann

EUMETSAT Contribution

to the CHUVA Campaign

Slid

e:

41

EUM/MTG/VWG/10/0567 AGU Fall meeting 2010

100 km 50 km

40 km radius 30 km

radius

LMA - Lightning Mapping Array

o The LMA system:

o locates the peak source of impulsive VHF radio

signals from lightning

o uses unused television channel by measuring the

time-of-arrival of the magnetic peak signals at

different receiving stations in successive 80 ms

intervals

o hundreds of sources per flash can be detected in

space and time (GPS), allowing a three-

dimensional (3-D) lightning map to be constructed

Foz do Iguaçu Campaign

Main Target Study: MCC and Cold Fronts

From 9 November to 13 January 2012

Additional Data: La Plata Basin Campaign

Goal: Measure MCCs to accomplish the GPM and La Plata Basin Regional Hydroclimate

Project (LPB) goals.

Foz do Iguaçu is located on the border of three countries: Brazil, Argentina and Paraguay, where MCSs

produce a large impact. More than the 80% of the precipitation is explained by those systems

Brazil

Argentina

Paraguay

Hailstorm climo derived from AMSR-E

Paraitinga

Foz do Iguacu

CHUVA - Foz do Iguacu (Nov

2012 - Jan 2013) is along edge

of the region with possibly the

world’s most frequent severe

thunderstorms

Rachel Albrecht

Foz do Iguaçu Campaign

Percentage of surface rain from 2A25 explained by MCSs over La Plata Basin

Partiticipation: Zipser, Houze, Ceci, Palio,......

This experiment will focus on these set of questions:

What are the main surface and boundary layer processes in the formation and maintenance of large and long live MCS?

How cloud microphysics and electrification processes evolves during the cloud life cycle?

What is the contribution of the aerosol in the process of formation of MCC precipitation?

How to improve both space and time precipitation estimation of rainfall over the continent for the GPM constellation over

the region?

How to improve quantitative precipitation forecast over MCS?

How models do represents the evolution of the PBL and the microphysics of these complex convective systems?

The deployment of a dual frequency and

polarization radar like NASA's N-Pol would

contribute with other observations to better

understand the microphysics processes and

their evolution associated with MCS. Also

airplane measurements will be facilitate by

the geographical position.

Results from Paola Salio

Manaus Campaign

Main Target Study: Organized and Local Convection from Warm and Ice Clouds

From 6 January to 4 April 2014.

Additional Data: The ARM Climate Research Facility in the Amazon Basin (Scot Martin –

Havard University and several partners)

S Band Radar (SIPAM)

Manaus Campaign

Cloud-Aerosol-Precipitation Interactions

Aerosol effects on scattered cumulus clouds, especially the

aerosol radiative effect and with a special focus on the impact

of biomass burning aerosols;

Aerosol effects on deep convective clouds, precipitation, and

lightning under different aerosol and synoptic regimes,

including the roles of aerosols in changing regional climate and

atmospheric circulation; and

Improvement on parameterizations of aerosol-cloud

interactions in the climate models

The ARM Aerial Facility in Brazil

CHUVA – Basic Set of Equipments

Doppler X band dual polarization -

METEOR 50DX - Selex

Radiometrics MP 3000 - Brightness temperature

from 35 channels (22-30 and 51-59 Ghz)

X-POL Mobile Radar

CHUVA – Basic Set of Equipments

LIDAR – backscaterring coefficient.

Lidar Raman System 2 channels: 532nm and 607nm

GPS - A dual-frequency receiver - IWV

CHUVA – Basic Set of Equipments

3 Ott Inc. PARSIVEL Optical Laser Disdrometer.

1 Joss Waldvogel Acoustic Impact Disdrometer. (NASA)

5 Raingauge (NASA)

CHUVA – Basic Set of Equipments

Radiosonde RS92

Soil Mositure - EnviroSCAN Probe

Soil moisture profile (up to 0.5 m)

continous measurements

HFP01 – soil heat plates (2) for the soil heat flux measurement

STP01 – soil temperature profile (5 sensors 2,5,10,20,50 cm)

CHUVA – Basic Set of Equipments

Vertical pointing micro Doppler rain radar

Keplel – 24.1 Ghz

CS110 - Electric Field Sensor

Measuring the local electric field

CHUVA – Basic Set of Equipments

Values of air temperature, humidity, atmospheric

pressure, windspeed and direction, radiation

measurements

Surface Weather Measurements

EC150 open path gas analyser and the sonic

(CSAT3) coupled for the surface momentum,

energy, water vapour and CO2 fluxes

Radiation components: solar (shortwave) and

terrestrial (longwave) radiation upward and downward

fluxes

Classificação de Hidrometeoros:

mudança de fase diferencial Coeficiente de correlação transversal

Alan Calheiros

A physically-based identification of Vertical Profile of Reflectivity

Goal: use radar measurements to retrieve a physically-based representation of the Vertical Profile of Reflectrivity and characterize links between physical processes of rainfall at ground and aloft.

altitude

distance

Liquid phase

Melting phase

Solid zone

41/52 Pierre Emmanuel Kirstetter

sol

h

Distribution N(D,h) (gamma)

Zo

Zm

Dg

Phase & Composition ( « matrice-inclusion »

scheme)

Vertical profile of

Reflectivity

Diffusion model (Mie)

h h

Zo est fixé

Physically-based model

Nt Do

)(Z(h)h)Z,N(D,Z

Z

Z

DgZ

M

H

S

Z/Zo

Nts

Ntm

Dos

Dom

43/52 Pierre Emmanuel Kirstetter

High resolution - BRAMS 1 km.

BRAMS 1 km : NX, NY = 500, 500 300 processos –> 2 ½ h de processamento 24 horas de previsão.

BRAMS 1 km mm

Modelo – Radar – Satélite : Banco de Dados

Microfísicos

Modelo c/

microfísica

Satélite IR

Microondas Radar e a

técnica VPR

Modelo

radiativo

Radar

X-POL

Disdro

metros

Simulações com BRAMS e RTTOV

1. Simulação com BRAMS:

Entrada Processamento

Estudos de casos BRAMS

RTTOV Temp. Brilho

2. Simulação com RTTOVS:

Saída

3. Avaliação das Simulações:

Temp. de Brilho do RTTOV

Temp. de Brilho do Satélite

Profiles: Rain, Snow, Graupel,

Aggregates, Cloud-Water,

Cloud-Ice

INPUT DATA

Profiles: Rain, Snow, Graupel,

Aggregates, Cloud-Water,

Cloud-Ice

Simulações – Modelo de alta resolução e Modelo

radiativo – Base de Dados

Resultados do Renato Galante

3. Avaliação das Simulações: Sensor TMI/TRMM

Temperatura de Brilho Simulada

Temperatura de Brilho Observada

CHUVA WEB

Curso – Processos Físicos da Nuvens – 28/3 a 1/4

Segunda Terça Quarta Quinta Sexta

Micrometeorologi

a conceitos

básicos

(Gilberto)

Microfísica da

nuvens

(Morales)

Modelagem de

nuvens – interação

aerosol-nuvens

(Assunção)

Radar Princípios

básicos

(Frederico)

Estimativa de

precipitação

satélite e radar

(Frederico)

Modelagem em

alta resolução –

conceitos básicos

(Assunção)

Micrometeorologi

a e a formação de

nuvens

(Gilberto)

Satélites e

Modelagem

Radiativa

(Luiz)

Ferramentas para

Previsão imediata

(Luiz)

Eletrificação das

nuvens

(Morales)

6

Obrigado

Todos que desejarem participar do CHUVA

São Bem vindos.