Microeletrônica - Escola Politécnicamoraes/microel/microel_slides_05.pdf1 In 2 In3 Out1 f Mp M e...

Post on 19-Sep-2020

0 views 0 download

Transcript of Microeletrônica - Escola Politécnicamoraes/microel/microel_slides_05.pdf1 In 2 In3 Out1 f Mp M e...

Microeletrônica

q Professor: Fernando Gehm Moraesq Livro texto:

Digital Integrated Circuits a Design Perspective - RabaeyC MOS VLSI Design - Weste

Revisão das lâminas: 22/setembro/2020

Aula #5 à Portas lógicas dinâmicas

Lógica Combinacional• Os sinais de saída de um circuito são resultados de

uma combinação lógica dos sinais de entrada atuais

Lógica Estática (portas CMOS)As saídas só mudam de valores a partir da mudança dos valores de entrada

Lógica DinâmicaAs saídas representam o resultado da combinação lógica durante um tempo pré-determinado

2

Dynamic CMOS• In static circuits at every point in time (except

when switching) the output is connected to either GND or VDD via a low resistance path.• fan-in of n requires 2n (n N-type + n P-type) devices

• Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.• requires on n + 2 (n+1 N-type + 1 P-type) transistors

3

Lógica Dinâmica Combinacional

Mp

Me

VDD

PDN

f

In1In2In3

OutMe

Mp

VDD

PUN

f

In1In2In3

f

f

Out

CL

CL

fp networkfn network

2 phase operation:• Evaluation

• PrechargeOperacão em 2 fases: pré-carga / avaliação O valor de saída da porta lógica

fica armazenado na capacitância de saída (próxima porta)

Dá-se preferência por PND è mais rápido 4

Dynamic Gate

5

In1In2 PDNIn3

Me

Mp

Clk

ClkOut

CL

Out

Clk

Clk

A

BC

Mp

Me

Two phase operationPrecharge (Clk = 0)Evaluate (Clk = 1)

on

off

1off

on

((AB)+C)

Resposta a transientes

0.00e+00 2.00e-09 4.00e-09 6.00e-09t (nsec)

0.0

2.0

4.0

6.0Vo

ut (V

olt)

f Vout

PRECHARGEEVALUATION

6

Lógica CombinacionalPorta NAND Dinâmica de 4 Entradas

In1In2In3In4

Out

VDD

GNDf

7

Observação quanto às transições de entrada

• Once the output of a dynamic gate is discharged, it cannotbe charged again until the next precharge operation.

• Inputs to the gate can make at most one transition during evaluation.

8

Out

Clk

Clk

A

BC

q Por exemplo: no início da avaliação temos ABC=001, descarregando a saída (Out=0)

q Se C passar para 0 durante a avaliação, a saída não irá para 1

Observação quanto à saída• Output can be in the high impedance state during the

evaluation (PDN off), state is stored on CL

9

Out

Clk

Clk

A

BC

q Por exemplo: na pré-carga a saída é carregada com 1 (Out=1)

q Se na avaliação tivermos ABC=000 a saída fica em alta-impedância, mas mantém o 1 da pré-carga na capacitância de saída

Properties of Dynamic Gates• Logic function is implemented by the PDN only

• number of transistors is N + 2 (versus 2N for static complementary CMOS)

• Full swing outputs (VOL = GND and VOH = VDD)• Faster switching speeds

• reduced load capacitance due to lower input capacitance (Cin)• reduced load capacitance due to smaller output loading (Cout)

Ou seja: (1) menores capacitâncias de entrada devido ao menor número

de transistores(2) o tempo de subida (mais lento) não existe, devido à pré-

carga10

Issues in Dynamic Design 1: Charge Leakage

11

CL

Clk

ClkOut

A

Mp

Me

Leakage sources

CLK

VOut

Precharge

Evaluate

O valor armazenado na saída tem “fuga”, devido ao fato que o gate não é completamente isolado

Solution to Charge Leakage

12

CL

Clk

Clk

Me

Mp

A

B

Out

Mkp

• O keeper é de fato um circuito de memória. • Se a saída da célula for 1 (situação de perda de sinal por leakege), a

saída do inversor é 0, fazendo o keeper conduzir, forçando um 1 na entrada do inversor.

Keeper

Issues in Dynamic Design 2: Charge Sharing

13

CL

Clk

Clk

CA

CB

B=0

AOut

Mp

Me

Charge stored originally on CL is redistributed (shared) over CL and CA leading to reduced robustness

Charge Sharing Example

14

CL=50fF

Clk

Clk

A A

B B B !B

CC

Out

Ca=15fF

Cc=15fF

Cb=15fF

Cd=10fF

Solution to Charge Redistribution

15

Clk

Clk

Me

Mp

A

B

OutMkp Clk

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Como conectar portas dinâmicas

16

Clk

Clk

Out1In

Mp

Me

Mp

Me

Clk

Clk

Out2

V

t

Clk

In

Out1

Out2 DV

VTn

Only 0 ® 1 transitions allowed at inputs!

Dois inversores em cascata è espera-se que out2 seja igual a In• out1 demora um pouco para descer, e este pequeno tempo faz out2 começar a

descer também• No momento que out1 chegou a zero, out2 para de descer e fica em estado

indefinido

Transições de ‘1’ para ‘0’podem levar a estadosindeterminados na porta seguinte

Simulação

17

Pré-carga

Avaliação

o1 e o2 começam a descarregar juntos

1 ® 0 não pode pois NÃO tem pull-up

Lógica Dinâmica - Dominó

Mp

Me

VDD

PDN

f

In1In2In3

Out1

f

Mp

Me

VDD

PDN

f

In4

f

Out2

Mr

VDD

Static Inverterwith Level Restorer

1 ® 11 ® 0

0 ® 00 ® 1

O circuito é pré-carreado, e depois pode tanto fazer transição para ‘1’ quanto para ‘0’ – modo normal de lógica dinâmica

Na pré-carga, a saída do inversor é 0. Logo só haverá transição de subida (para descarga) 18

19

Clk

Clko3

In

Clk

Clk

o5

Simulação

o4 o6

Pré-carga

0 à 1Saída em 0

Avaliação

Saída em 0Saída correta (=Vin)

Características:

Lógica Dinâmica - Dominó

• Lógica não-invertida

• Muita rápida

• A adição de um regenerador de nível de sinal reduz as correntes de fuga e os problemas de distribuição de cargas

20

Solução alternativa: np-CMOS

21

In1In2 PDNIn3

Me

Mp

Clk

Clk Out1

In4 PUNIn5

Me

MpClk

Clk

Out2(to PDN)

1 ® 11 ® 0

0 ® 00 ® 1

Only 0 ® 1 transitions allowed at inputs of PDN Only 1 ® 0 transitions allowed at inputs of PUN

22

In1In2 PDNIn3

Me

Mp

Clk

Clk Out1

In4 PUNIn5

Me

MpClk

Clk

Out2(to PDN)

1 ® 11 ® 0

0 ® 00 ® 1

to otherPDN’s

to otherPUN’s

Famílias CMOS (Weste – Cap 9)

23

Chapter 9 Combinational Circuit Design350

pass-transistor circuits are essentially equivalent ways to draw the fundamental logic struc-tures we have explored before. An independent evaluation finds that for most general-purpose logic, static CMOS is superior in speed, power, and area [Zimmermann97].

For the purpose of comparison, Figure 9.47 shows a 2-input multiplexer constructedin a wide variety of pass-transistor circuit families along with static CMOS, pseudo-nMOS, CVSL, and single- and dual-rail domino. Some of the circuit families are dual-rail, producing both true and complementary outputs, while others are single-rail and mayrequire an additional inversion if the other polarity of output is needed. U XOR V can be

Static CMOS

CMOSTG

CPL EEPL DCVSPG

SRPL

LEAP

Pseudo-nMOS CVSL

Domino Dual-Rail Domino

A

B

S

S

S

Y

SY

A B

S

S S

BA

Y

A B

SS S

B A

YS

BA

Y

A B

SS

!Y

! Y_hY_l

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

AY

Y

B

S

S

S

A

B

A

Y

Y

S

B

S

SA

Y

S

BS

S

S

A

B

A

PPL

A

B

S

S

S

Y

S

S

A

B

Y

DPL

HH H

L

L

L

L

L

L

SS

S

B A

S

BA

SS

Y

Y

Y

Y

Y

Y

L

FIGURE 9.47 Comparison of circuit families for 2-input multiplexers

Chapter 9 Combinational Circuit Design350

pass-transistor circuits are essentially equivalent ways to draw the fundamental logic struc-tures we have explored before. An independent evaluation finds that for most general-purpose logic, static CMOS is superior in speed, power, and area [Zimmermann97].

For the purpose of comparison, Figure 9.47 shows a 2-input multiplexer constructedin a wide variety of pass-transistor circuit families along with static CMOS, pseudo-nMOS, CVSL, and single- and dual-rail domino. Some of the circuit families are dual-rail, producing both true and complementary outputs, while others are single-rail and mayrequire an additional inversion if the other polarity of output is needed. U XOR V can be

Static CMOS

CMOSTG

CPL EEPL DCVSPG

SRPL

LEAP

Pseudo-nMOS CVSL

Domino Dual-Rail Domino

A

B

S

S

S

Y

SY

A B

S

S S

BA

Y

A B

SS S

B A

YS

BA

Y

A B

SS

!Y

! Y_hY_l

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

AY

Y

B

S

S

S

A

B

A

Y

Y

S

B

S

SA

Y

S

BS

S

S

A

B

A

PPL

A

B

S

S

S

Y

S

S

A

B

Y

DPL

HH H

L

L

L

L

L

L

SS

S

B A

S

BA

SS

Y

Y

Y

Y

Y

Y

L

FIGURE 9.47 Comparison of circuit families for 2-input multiplexers

CVSL - Cascode Voltage Switch Logic

10: Circuit Families24

CPLqComplementary Pass-transistor Logic

§ Dual-rail form of pass transistor logic§ Avoids need for ratioed feedback§ Optional cross-coupling for rail-to-rail swing

Chapter 9 Combinational Circuit Design350

pass-transistor circuits are essentially equivalent ways to draw the fundamental logic struc-tures we have explored before. An independent evaluation finds that for most general-purpose logic, static CMOS is superior in speed, power, and area [Zimmermann97].

For the purpose of comparison, Figure 9.47 shows a 2-input multiplexer constructedin a wide variety of pass-transistor circuit families along with static CMOS, pseudo-nMOS, CVSL, and single- and dual-rail domino. Some of the circuit families are dual-rail, producing both true and complementary outputs, while others are single-rail and mayrequire an additional inversion if the other polarity of output is needed. U XOR V can be

Static CMOS

CMOSTG

CPL EEPL DCVSPG

SRPL

LEAP

Pseudo-nMOS CVSL

Domino Dual-Rail Domino

A

B

S

S

S

Y

SY

A B

S

S S

BA

Y

A B

SS S

B A

YS

BA

Y

A B

SS

!Y

! Y_hY_l

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

AY

Y

B

S

S

S

A

B

A

Y

Y

S

B

S

SA

Y

S

BS

S

S

A

B

A

PPL

A

B

S

S

S

Y

S

S

A

B

Y

DPL

HH H

L

L

L

L

L

L

SS

S

B A

S

BA

SS

Y

Y

Y

Y

Y

Y

L

FIGURE 9.47 Comparison of circuit families for 2-input multiplexers

Alternative CPL

25

9.2 Circuit Families 353

include the inverters from the previous stage that drives the diffusion input, but to excludethe output inverters. Figure 9.53(c) shows the mux drawn at the transistor level. Observethat this is identical to the CVSL gate from Figure 9.47 except that the internal node ofthe stack can be pulled up through the weak pMOS transistors in the inverters.

When the gate switches, one side pulls down well through its nMOS transistors. Theother side pulls up. CPL can be constructed without cross-coupled pMOS transistors, butthe outputs would only rise to VDD – Vt (or slightly lower because the nMOS transistorsexperience the body effect). This costs static power because the output inverter will beturned slightly ON. Adding weak cross-coupled devices helps bring the rising output tothe supply rail while only slightly slowing the falling output. The output inverters can beLO-skewed to reduce sensitivity to the slowly rising output.

9.2.5.3 Lean Integration with Pass Transistors (LEAP) Like CPL, LEAP6 [Yano96]builds logic networks using only fast nMOS transistors, as shown in Figure 9.47. It is asingle-ended logic family in that the complementary network is not required, thus savingarea and power. The output is buffered with an inverter, which can be LO-skewed to favorthe asymmetric response of an nMOS transistor. The nMOS network only pulls up toVDD – Vt so a pMOS feedback transistor is necessary to pull the internal node fully high,avoiding power consumption in the output inverter. The pMOS width is a trade-offbetween fighting falling transitions and assisting the last part of a rising transition; it gen-erally should be quite weak and the circuit will fail if it is too strong. LEAP can be a goodway to build wide 1-of-N hot multiplexers with many of the advantages of pseudo-nMOSbut without the static power consumption. It was originally proposed for use in a passtransistor logic synthesis system because the cells are compact.

Unlike most circuit families that can operate down to VDD v max(Vtn, |Vtp|), LEAP islimited to operating at VDD v 2Vt because the inverter must flip even when receiving aninput degraded by a threshold voltage.

9.2.5.4 Other Pass Transistor Families There have been a host of pass transistor familiesproposed in the literature, including Differential Pass Transistor Logic (DPTL)[Pasternak87, Pasternak91], Double Pass Transistor Logic (DPL) [Suzuki93], Energy Econ-omized Pass Transistor Logic (EEPL) [Song96], Push-Pull Pass Transistor Logic (PPL)[Paik96], Swing-Restored Pass Transistor Logic (SRPL) [Parameswar96], and DifferentialCascode Voltage Switch with Pass Gate Logic (DCVSPG) [Lai97]. All of these are dual-railfamilies like CPL, as contrasted with the single-rail CMOSTG and LEAP.

6The LEAP topology was reinvented under the name Single Ended Swing Restoring Pass Transistor Logic[Pihl98].

S

BA

Y

S

B A

Y

SS

S

B A

S

BA

SSL L

(a) (c)

S

B A

YS

BA

YSS

L L L L

Y Y

(b)

FIGURE 9.53 Alternate representations of CPL

26

LEAPqLEAn integration with Pass transistorsq Get rid of pMOS transistors

§ Use weak pMOS feedback to pull fully high§ Ratio constraint

Chapter 9 Combinational Circuit Design350

pass-transistor circuits are essentially equivalent ways to draw the fundamental logic struc-tures we have explored before. An independent evaluation finds that for most general-purpose logic, static CMOS is superior in speed, power, and area [Zimmermann97].

For the purpose of comparison, Figure 9.47 shows a 2-input multiplexer constructedin a wide variety of pass-transistor circuit families along with static CMOS, pseudo-nMOS, CVSL, and single- and dual-rail domino. Some of the circuit families are dual-rail, producing both true and complementary outputs, while others are single-rail and mayrequire an additional inversion if the other polarity of output is needed. U XOR V can be

Static CMOS

CMOSTG

CPL EEPL DCVSPG

SRPL

LEAP

Pseudo-nMOS CVSL

Domino Dual-Rail Domino

A

B

S

S

S

Y

SY

A B

S

S S

BA

Y

A B

SS S

B A

YS

BA

Y

A B

SS

!Y

! Y_hY_l

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

A

B

S

S

S

S

A

B

AY

Y

B

S

S

S

A

B

A

Y

Y

S

B

S

SA

Y

S

BS

S

S

A

B

A

PPL

A

B

S

S

S

Y

S

S

A

B

Y

DPL

HH H

L

L

L

L

L

L

SS

S

B A

S

BA

SS

Y

Y

Y

Y

Y

Y

L

FIGURE 9.47 Comparison of circuit families for 2-input multiplexers

Outras Famílias com TGs

27

• DPTL (Differential Pass Transistor Logic)

• DPL (Double Pass Transistor Logic)

• EEPL (Energy Economized Pass Transistor Logic)

• PPL (Push-Pull Pass Transistor Logic)

• SRPL (Swing Restored Pass Transistor Logic)

• DCVSPG (Differential Cascode Voltage Switch

with Pass Gate Logic