Marca Instituição Ensino PROESSOS DE CONFORMAÇÃO - UV Prof.: M.Sc. Antonio Fernando de Carvalho...

Post on 22-Apr-2015

105 views 0 download

Transcript of Marca Instituição Ensino PROESSOS DE CONFORMAÇÃO - UV Prof.: M.Sc. Antonio Fernando de Carvalho...

MarcaInstituição

Ensino

PROESSOS DE CONFORMAÇÃO - UV

Prof.: M.Sc. Antonio Fernando de Carvalho Mota

Bibliografia Básica• DIETER, G.E. Metalurgia Mecânica. Rio de Janeiro: Guanabara

Dois, 1981.• HELMAN H. e CETLIN P. R., Fundamentos da Conformação

Mecânica dos Metais, Ed. Guanabara Dois.• Ferreira, Ricardo Artur Sanguinetti.Fundamentos Metalúrgicos e

Mecânicos.Recife: Editora Universitária UFPE.• BRESCIANI FILHO, E. Conformação Plástica dos Metais. Volumes

1 e 2. Campinas: UNICAMP.

2

Cap.1 – Tensões e Deformações

Fig. 1,1 Solicitação e resposta do metal na laminação

• 1.1 Conformações mecânicos são operações onde se aplicam solicitações mecânicas em metais, que respondem com uma mudança permanente de dimensões.

Cap.1 – Tensões e Deformações

• Além da mudança de dimensões ocorre também alterações das

propriedades do metal.• A conformação mecânica tem sido estudada de duas formas:• Estudo do equipamento Visitas, estágios etc.• Estudo da deformação do metal.

• Deformação dos Metais = Def. Elástica + Def, Plástica

(pequena e reversível) (mais importante)

LR

Estudo da Def. Plástica de Metais:

• Comportamento da Estrutura Cristalina (qualitativa) – Metalurgia Física

• Obs.: Supondo que o metal é contínuo e sem investigar os mecanismos de deformação.

• Avaliações quantitativas das relações

Solicitação – Resposta• SOLICITAÇÃO MECÂNICA DO CONTÍNUO RESPOSTA

FÍSICA DOS SÓLIDOS

Considerando os corpos (metais) como isótropos (isotrópicos), homogêneos e contínuos.

ISOTRÓPICO- Que possui valores idênticos de uma propriedade em todas direções cristalográficas.

ANISOTROPIA: As propriedades físicas dos monocristais metálicos dependem da direção cristalográfica na qual as medidas são feitas.

1.2 CONCEITO DE TENSÃO EM UM PONTO

• Binômio Solicitação – Resposta

A1 A2 – Solicitação em (a) maior

fig.1.2 Corpos de diferentes seções transversais submetidos ao mesmo esforço

1.2 CONCEITO DE TENSÃO EM UM PONTO

• Define-se a Tensão média como: T = F/A• No caso mais geral

• Fig.1.3 Corpo submetido a esforços. O ponto P pertence ao corpo.

1.2 CONCEITO DE TENSÃO EM UM PONTO

• Consideremos uma pequena área A em torno de P e seja F a resultante das forças agindo em todos os pontos de A.

• Define-se a tensão média agindo em A como: T = F/A

Fig.1.4 Procedimento para determinação da tensão no ponto P

1.2 CONCEITO DE TENSÃO EM UM PONTO

• Define-se tensão normal como a componente de T agindo segundo o eixo n (fig. 1.5) e de módulo:

• = F cos/A

• Define-se a tensão de cisalhamento como a componente de T que age segundo a reta de interseção do plano de corte e do plano definido por T e o eixo n:

• = Fsen/A

Fig. 1.5 Decomposição da tensão T segundo eixos cartesianos

EXERCÍCIO• Ex. Para a situação da Fig. 1.5 age em P uma força F = 1.500kg,

aplicada uniformemente em uma área de 2cm2. O ângulo = 30º.

• Calcular e .

• Solução:

= F cos/A = 1.500kg x cos30º/2cm2 = 1.500kg x 0,866/2cm2

= 649,5kg/cm2

= Fsen/A = 1.500kg x sen30º/2cm2 = 1.500kg x 0,5/2cm2

= 375kg/cm2

1.3 VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE

• Um dos problemas a serem considerados na avaliação da tensão em um ponto é sua variação com o plano de corte.

Fig. 1.6 Variação de T com o plano de corte

Para todos os pontos da seção A1, tem-se: T1 = F/A1

1.3 VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE• O caso mais geral de corte no cilindro é caracterizado pelo ângulo .

• No caso de A1, tem-se:

• = 0, 1 = T1

• 1 = 0

• Considerando A, a força a ser considerada ainda é F, mas a área sobre a qual age não mais é A1

• T = F/A

= F cos= F cos = F cos2

A A1/cos A1

= 1cos2 = 1( 1 + cos2) (eq. 1.8)

2

Demonstrar que A = A1/cos (Exercício 1.2)

Da TrigonometriaCos2 = Cos2 + 1 2

1.3 VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE

= F sen= F sen = F sen.cos

A A1/cos A1

= 1.sen.cos = ½.1 .sen2 (eq. 1.9)

• As equações (1.8) e (1.9) são as equações paramétricas de um círculo, como demonstrado nos exercícios 1.3 e 1.4.

• O significado físico do parâmetro está no exercício 1.5. O círculo em discussão é conhecido como círculo de Mohr.

Fig. 1.7 Tensões em diferentes planos de corte na tração de um cilindro

Círculo de Mohr

Da trigonometriaSen(2)= 2Sen.Cos

Tensões em diferentes planos de corte

1.3 VARIAÇÃO DA TENSÃO COM O PLANO DE CORTE• Considere-se agora uma analise das equações 1.8 e 1.9

= 1cos2 = 1( 1 + cos2) (eq. 1.8)

2

• = 1.sen.cos = 1 .sen2 (eq. 1.9)

• 2

• A tensão é máxima para = 0º, e = 1;

• Neste plano, = 0; ainda é nulo para = 90º, onde é mínimo ( = 0).

• Os planos onde é nulo são ortogonais.

• A tensão é máxima para = 45º, ou seja,com o plano em um plano fazendo 45º com o plano onde age a máx. Além disso máx. = 1/2. isto pode ser claramente visto na figura do problema 1.5 (pontos A e B).

• A analise completa das variações das tensões com o plano de corte pode ser feita de forma matematicamente mais rigorosa através do cálculo tensorial.

Fig. do problema 1.5

Tensor de Tensões

1.4 TENSÕES PRINCIPAIS• Considerando o caso do ensaio de tração, notou-se que é possível achar

planos de corte do corpo de prova onde a tensão de cisalhamento é nula, e que nestes planos a tensão normal é máxima ou mínima; estes planos são ortogonais entre si.

• A partir da Fig. 1.6, pode-se encontrar três planos passando por P, mutuamente ortogonais e onde é nulo. Nestes planos agem somente tensões normais.

• Por convenção se indica: 123

Fig. 1.8 Planos passando pelo ponto P, onde = 0

Fig. 1.6 Variação de T com o plano de corte

1.4 TENSÕES PRINCIPAIS

• Do ponto de vista da resposta do material, interessam de fato estas tensões extremas.

• A variação de e com a posição do plano de corte poderá ser mais bem visualizada através de métodos gráficos.

• Os planos onde = 0 recebem o nome de “Planos Principais”, e as tensões 1, 2 e 3 recebem o nome de “Tensões Principais”.

Fig. 1.8 Planos passando pelo ponto P, onde = 0

1.5 CÍRCULOS DE MOHR• Uma maneira bastante cômoda de representar a variação da tensão com o

plano de corte.

• Inicialmente para um corpo de duas dimensões (uma chapa fina), demonstra-se que, para cada ponto deste corpo, é sempre possível achar dois planos de corte, perpendiculares entre si, onde age somente . Estes são os planos principais.

• O terceiro plano principal será o plano da chapa onde é nulo.

• A Fig, 1.9 mostra um quadrado de metal, extraído de uma chapa de uma chapa de tal forma que seus lados sejam os planos principais 1 e 2 .

• Deseja-se agora determinar as tensões e no plano genérico A, fazendo o ângulo com o plano onde age 1.

Fig, 1.9 Análise de tensões em duas dimensões

1.5 CÍRCULOS DE MOHR

Fig, 1.9 Análise de tensões em duas dimensões

1.5 CÍRCULOS DE MOHR• Fazendo-se cálculos semelhantes ao da seção 1.3 para o caso da tração

pura, chega-se a (Exercício 1.6)

= ½ (1 + 2) + ½ (1 - 2) cos2 = ½ (1 - 2) sen2 (eq.s 1.11)

Fig. 1.10 Representação geométrica das eq.s (1.11) (Círculo de Mohr)

Exercício 1.6

• Demonstrar as equações (1.11) = ½ (1 + 2) + ½ (1 - 2) cos2

• = ½ (1 - 2) sen2

• tomando o equilíbrio do triangulo abaixo.• Notar que: AC= AB Cos• CB = AB Sen• Lembrar que: Cos2 = Cos2 + 1 e Sen2 = 1 – Cos2• 2 2

sen 2α = 2 sen α.cos α

x

y

CÍRCULOS DE MOHR• Planos que fazem 90º entre si na Fig. 1.9 apresentam tensões de cisalhamento

iguais e de sinais opostos. Exemplos pontos A e E na Fig. 1.10. Conversão 1 2

Fig. 1.10 Representação geométrica das eq.s (1.11) Fig, 1.9 Análise de tensões em duas dimensões

Ponto A Plano genérico APonto 1 Plano 1, onde = 0 e = 0

Ponto 2 Plano 2, onde = 90º, 2 = 180º e = 0

Ponto D Plano onde máx. = 2 = 90º e = 45º.

• OB = 0C + CB = ½ (1 + 2) + ½ (1 - 2) cos2

• AB = ½ (1 - 2) sen2 (Eq.s 1.2)

= ½ (1 + 2) + ½ (1 - 2) cos2 = ½ (1 - 2) sen2 (Eq.s 1.11)

• Comparando-se as eq.s (1.11) e (1.12), conclui-se que: OB = • AB = • Para estabelecer a correspondência entre planos na Fig. 1.10, deve-se lembrar:• Os ângulos e 2 são contados no mesmo sentido.• Se é positivo, provoca “giro” do plano A em torno de 0 (Fig. 1.9) no sentido horário.

Fig, 1.9 Análise de tensões em duas dimensões

Círculo de Mohr para três dimensões

Uma vez analisado o círculo de Mohr em duas dimensões, pode-se generalizar a situação para três dimensões. Considerando que, na Fig. 1.11a, os planos 1,2 e 3 são planos principais passando pelo ponto “P”.

A tensão em qualquer plano perpendicular ao plano 3 não é afetado por 3

(lembrar de tração pura para = 90º = = 0), nestes planos, a tensão depende somente de 1 e 2.

Os pontos do círculo que passa por 1 e 2 (Fig. 1.11b) correspondem a planos perpendiculares ao plano 3.

(a) (b)

Fig. 1.11 Extensão de círculos de Mohr a três dimensões

Círculo de Mohr para três dimensões

• De forma análoga, o círculo 2 3 representará os planos perpendiculares ao plano 1, e o círculo 1 2, os planos perpendiculares ao plano 2.

• É possível demonstrar que os valores de e para um plano com inclinação qualquer passando por “P” corresponderão sempre a pontos dentro da região hachurada na Fig. 1.11b.

• A tensão máxima de cisalhamento (máx.) está mostrada na Fig. 1.11b, e seu valor é dado pela (eq. 1.14).

• máx. = 1 - 3 (eq. 1.14)

• 2

(a) (b)

Fig. 1.11 Extensão de círculos de Mohr a três dimensões

(a) (b)

Fig. 1.11 Extensão de círculos de Mohr a três dimensões

1

2

1

2

(a)

(b)

3

1

2

3

1

2

(c)

(d)

12 =3=0

máx

A adição de 2 não altera a máx.(a resistência a deformação plástica fica inalterada)

Já a adição de uma tração 3 decompressão aumenta drasticamente máx.

13=0

máx

2

Tração pura

máx

1

3

A adição de 3 diminui a máx.

1

2

3

máx

• Fig. 1.13 Exemplos de círculo de Mohr para diferentes estados de tensão

2

• Fig. 1.13 Exemplos de círculo de Mohr para diferentes estados de tensão

Tração pura

A adição de 2 não altera a máx.(a resistência a deformação plásticafica inalterada)

A adição de 3 diminui a máx.

Já a adição de uma tração 3 decompressão aumenta drasticamente máx.

1.6 APLICAÇÕES DOS CÍRCULOS DE MOHR

• 1.6.1 O ensaio de tração

• Durante o ensaio de tração é válido o círculo de Mohr da Fig. 1.13a.

• A medida que a tensão aplicada vai crescendo (pontos A, B, C e D da Fig. 1.14a). A partir deste ponto ocorre uma estricção no corpo de prova, e o estado de tensões não é o de tração pura.

Fig. 1.14 Círculos de Mohr para um ensaio de tração

1.6.2 Trefilação de arames• Quando se deseja alongar uma barra cilíndrica, é possível traciona-la, como no ensaio de tração. No entanto, se a deformação desejada

exigir uma aplicação de tensão acima de 1D (Fig. 1.14), a barra sofrerá estricção e o produto obtido não mais será satisfatório.

• Nestes casos, é possível impor a deformação desejada através da trefilação. No caso a tensão necessária para trefilar o material ( tref.) deve estar abaixo do limite de escoamento da barra que já passou pela fieira, para que esta não seja simplesmente tracionada.

Fig. 1.14 Círculos de Mohr para um ensaio de tração

Trefilação de arames• Observa-se (Fig. 1.15) que a fieira muda o estado de tensões no arame em

relação a tração pura, pela imposição de tensões de compressão.

• A consequência disso é um aumento de máx. sem necessidade de aumento de

1 (Fig. 1.15 c), que levaria a um aumento de tref.

• Esta observação está de acordo com o que foi observado na Fig. 1.13d.• A deformação plástica ocorrerá com mais facilidade dentro da ferramenta

cônica e não haverá perigo de ocorrer deformação plástica ou estricção e fratura na barra já trefilada, devido a valores excessivos de tref.

Fig. 1.15 Estado aproximado de tensões e círculo de Mohr correspondente para o caso da trefilação

1

2

3

máx

Fig. 1.13 Exemplos de círculo de Mohr para

diferentes estados de tensão

3

1

2

(d)

EXERCÍCIOS

• 1.1 Para a situação da Fig. 1.5 age em P uma força F = 1.500kg, aplicada uniformemente em uma área de 2cm2. O ângulo = 30º.

• 1.2 Para o caso da Fig. 1.7, demonstrar que A = A1/cos . (Lembrar que A é a área de uma elipse cujo eixo menor é o diâmetro do cilindro.)

• 1.3 Tracionando um cilindro de área transversal unitária e seção circular. A força aplicada é um instante é 20.000kg. Calcular e em planos que fazem ângulos 10º, 20º, 30º, 40, 45º, 50º, 60º, 70º, 80º e 90º com a seção transversal.

• 1.4 Considerando um sistema de eixos cartesianos , ( na abscissa e na ordenada), usando a mesma escala para e nos dois eixos, fazer uma curva de x para os pontos obtidos no exercício 1.3; completar o exercício para até 360º.

EXERCÍCIOS – CONT.• 1.5 Considerando o desenho abaixo, demonstrar que as coordenadas do ponto “P” são dadas pelas equações (1.8) e (1.9). Notar que 2 é marcado no mesmo sentido que o ângulo no

corpo.

= 1cos2 = 1( 1 + cos2) (eq. 1.8)

2

= 1.sen.cos = 1 .sen2 (eq. 1.9)

2

Exercício 1.6

• Demonstrar as equações (1.11) = ½ (1 + 2) + ½ (1 - 2) cos2

• = ½ (1 - 2) sen2

• tomando o equilíbrio do triangulo abaixo.• Notar que: AC= AB Cos• CB = AB Sen• Lembrar que: Cos2 = Cos2 + 1 e Sen2 = 1 – Cos2• 2 2 sen 2α = 2 sen α.cos α

• •

x

y

EXERCÍCIOS – CONT.

• 1.7 Dado um quadrado onde agem 1 = 20kgf/mm2 2 = 4kgf/mm2, calcular 1 e 2 em planos cuja normal fazem 30º, 45º e 80º com a direção de 1.

• 1.8 Para o estado de tensão abaixo, calcular 1, 2 , máx. e o ângulo que o plano onde atua 1 faz com 0x, através de círculos de Mohr.

x = 1.000psi

y = 4.000psi

= 2.000psi

EXERCÍCIOS – CONT.• 1.9 Calcular máx. para os estados de tensões a seguir

• a) 1 = 10.000psi 2 = 4.000psi 3 = 1.000psi

• b) 1 = 10kg/mm2 2 = 2kg/mm2 3 = -8kg/mm2

• c) 1 = -80MPa 2 = -150MPa 3 = -200MPa

• 1.10 Para cada caso a seguir, desenhar círculos de Mohr, achar máx. e no plano onde atua máx. (Tensões não dadas são nulas).

• a) 1 = 20MPa; 3 = -60MPa

• b) 3 = -60psi

• c) 1 = 10kg/mm2; 3 = -50kg/mm2 ; 2 = -10kg/mm2

• 1.11 um arame de comprimento inicial 200,0mm é estirado de 20mm; após esta operação, sofre outro estiramento adicional de 50mm, obtendo-se um valor total de 70mm. Calcular e e para cada etapa de deformação, sua soma, e comparar esta soma com valores obtidos para a deformação total.

CÍRCULOS DE MOHR - APLICAÇÃO

Estado Plano de Tensões

Estado Plano de Deformação

Anexos Anexos

OPERAÇÕES TÍPICAS DE CONFORMAÇÃO

PROCESSOS INDUSTRIAIS EMPREGADOS NACONSTRUÇÃO DE ELEMENTOS DE MÁQUINAS

PROCESSOS INDUSTRIAIS EMPREGADOS NACONSTRUÇÃO DE ELEMENTOS DE MÁQUINAS

Ensaio de Tração Real

Fig. 4

Considerando o volume constante

Deformação Linear

e= l .100(%) l0

e‘= 2l .100(%) l0

Seria mais preciso dizer que a sua deformação total é dada por:

e= l + l l0 l0 + l

Indo mais longe, pode-se considerar que l é a soma de infinitésimos dl:

= dl + dl + dl + ... + dl = dl = dl = ln lf = ln (l0 + l) = ln(1+e) l0 l0+dl l0 +2dl lf-dl l l l0 l0

e= l l0

l o

l fl f

l o

Deformação Real - Aplicação

Fonte:

TENSÃO E DEFORMAÇÃO REAL

70

lo

DEVER DE CASA - QUEBRA DO NAVIO

• CONSTRUÇÃO DE NAVIOS:• Desempeno e estreitamento;• Marcação e cortes;• Conformação;• Soldagem;• Proteção.

Pesquise os processos de Conformação de Chapas (Curvatura de Chapas) Realizados na construção de navios.Justificativa: A conformação sendo um trabalho de forte viés prático, feito de maneira bastante empírica, também enriquecida na medida do possível por conceitos acadêmicos.

Dicas:

Um navio-tanque com duplo casco oito tanques em cada bordo.

A tabela apresenta o cálculo das propriedades de área da seção mestra de uma embarcação.

1.6.3 O ensaio de Torção