Cap 6 - Amplificadores de estágio único em CI

Post on 21-Feb-2015

109 views 0 download

Transcript of Cap 6 - Amplificadores de estágio único em CI

26/1/2010

Amplificadores de Estágio Único emCircuitos Integrados

ELT 085 – Circuitos Eletrônicos Analógicos

Company

LOGO

2Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

3Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

7. Amplificadores FC (EC) com resistor fonte (emissor)

8. Seguidor de Fonte e Seguidor de Emissor

9. Associações de Transistores

10. Espelhos de Corrente Aprimorados

Company

LOGO

4Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

5Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificadores com Acoplamento capacitivo

1/26/2010

Restrições:

• Resistores de valores elevados• Grandes capacitores

Possibilidades:

• Fontes de corrente constante• Pequenos capacitores• Transistores casados

Company

LOGO

6Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Equações básicas do transistor MOS

)1()(21 2

A

DStGSoxnD V

vVvL

WCi +−= μ

ox

oxox t

C ε=

silício de óxido do dadepermissivi =oxε LVV AA'=

Company

LOGO

7Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Valôres típicos de Parâmetros de CMOS

1/26/2010

0,8μm 0,5μm 0.25μm 0.18μmParâmetro N P N P N P N P

tox(nm) 15 15 9 9 6 6 4 4

Cox(fF/μm2) 2,3 2,3 3,8 3,8 5,8 5,8 8,6 8,6

μ(cm2/Vs) 550 250 500 180 460 160 450 100

μCox(μA/V2) 127 58 190 68 267 93 387 86

Vto(V) 0,7 -0,7 0,7 -0,8 0,43 -0,62 0,48 -0,45

VDD(V) 5 5 3,3 3,3 2,5 2,5 1,8 1,8

V’A(V/μm) 25 20 20 10 5 6 5 6

Cov(fF/μm) 0,2 0,2 0,4 0,4 0,3 0,3 0,37 0,33

Company

LOGO

8Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Equações Básicas do BJT

T

BEVv

SC eIi =

Company

LOGO

9Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Equações Básicas do BJT

T

BEVv

pp enn 0)0( =

A

inES WN

nqDAI2

=

T

BEVv

SC eIi =

Company

LOGO

10Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Valôres típicos de Parâmetros de BJTs

1/26/2010

Processo Padrão Advanced Low VoltageParâmetro npn pnp lateral npn pnp lateral

AE (μm2) 500 900 2 2

IS (A) 5 x 10-15 2 x 10-15 6 x 10-18 6 x 10-18

βo (A/A) 200 50 100 50

VA (V) 130 50 35 30

VCEO (V) 50 60 8 18

τF (ns) 0,35 30 10 x 10-3 650 x 10-3

Cje0 (pF) 1 0,3 5 x 10-3 14 x 10-3

Cμ0 (pF) 0,3 1 5 x 10-3 15 x 10-3

rx (Ω) 200 300 400 200

Company

LOGO

11Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Table 6.3

Condições para operar na região ativa

V,aVvv ttGS 70 5,0 , =≥ VVVv BEonBEonBE 5,0 , ≈≥

OVtGS vVv +=

tGD Vv < VVVv BConBConBC 4,0 , ≅<

OVDS Vv ≥ V 3.02.0 −=OVV VvCE 3,0≥

1 - Criar o canal:

2 – Estrangular o canal no dreno:

1 – Polarizar diretamente B-E:

2 – Polarizar reversamente B-C:

ou:

Company

LOGO

12Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Característica i x v na região ativa

)1()(21 2

A

DStGSoxnD V

vVvL

WCi +−= μ

)1(21 2

A

DSOVoxnD V

vvL

WCi += μ

0=Gi

)1(A

CESC V

veIi TVBEv

+=

βC

Bii =

Company

LOGO

13Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Table 6.3

Modelos em Baixas frequências

Company

LOGO

14Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Transcondutância

2OVV

Dm

Ig =

OVoxnm VL

WCg ))((μ=

Doxnm IL

WCg ⎟⎠⎞

⎜⎝⎛= )(2 μ

T

Cm V

Ig =

Company

LOGO

15Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Resistências de entrada e saída

D

A

D

Ao I

LVIVr

'

==C

Ao I

Vr =

Resistência de saída:

Resistência de entrada:

mgr βπ =

Company

LOGO

16Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Ganho intrínseco

20

OVVAVA =

OV

A

VLVA

'

02

=

D

oxnA

IWLCV

Aμ2'

0 =

T

A

VVA =0

Company

LOGO

17Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Table 6.3

Modelos em Altas frequências

Company

LOGO

21Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

22Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.4 Circuit for a basic MOSFET constant-current source.

Espelho de corrente

21

'1 )()(

21

tGSnD VvL

WkI −=

RVVII GSDD

REFD−

==1

1

2

)()(

LW

LW

REF

O

II

=

22

'2 )()(

21

tGSnD VvL

WkI −=

Company

LOGO

23Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.5 Basic MOSFET current mirror.

Limite de operação

tGSo VVV −≥

Company

LOGO

24Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.6 Output characteristic of the current source in Fig. 6.4 and the current mirror of Fig. 6.5 for the case Q2 is matched to Q1.

Efeito da resistência de saída

⎟⎟⎠

⎞⎜⎜⎝

⎛ −+=

21

2 1)()(

A

GSoREF

LW

LW

o VVVII

Company

LOGO

25Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.7 A current-steering circuit.

Divisão de corrente

Company

LOGO

26Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.8 The basic BJT current mirror.

Espelho de corrente a BJT

1

2

1

2

Q de JBE da áreaQ de JBE da área

==S

S

REF

o

II

II

Company

LOGO

27Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.9 Analysis of the current mirror taking into account the finite β of the BJTs.

Dependência de β

β11

, Se 12 ++== m

mIImIIREF

oSS

β21

1

+=

REF

o

II

Company

LOGO

28Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Projeto do Espelho de corrente

1/26/2010

Figure 6.10 A simple BJT current source.

RVVI BECC

REF−

=

)1(21 A

BEoREFo V

VVII −+

+=

β

Company

LOGO

29Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Divisão de Corrente

1/26/2010

Figure 6.11 Generation of a number of constant currents of various magnitudes.

Company

LOGO

31Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

Company

LOGO

32Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificadores com Acoplamento capacitivo

1/26/2010

Restrições:

• Resistores de valores elevados• Grandes capacitores

Possibilidades:

• Fontes de corrente constante• Pequenos capacitores• Transistores casados

Company

LOGO

33Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificadores com acoplamento direto

1/26/2010

Figure 6.12 Frequency response of a direct-coupled (dc) amplifier. Observe that the gain does not fall off at low frequencies, and the midband gain AM extends down to zero frequency.

Company

LOGO

34Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Função de Transferência

1/26/2010

)()( sFAsA HM=

)1)...(1)(1()1)...(1)(1(

)(21

21

PnPP

ZnZZ

ws

ws

ws

ws

ws

ws

H sF++++++

=

11

1)(pw

sH sF+

Pólo dominante: Um polo dominante existe se o pólo demais baixa frequência está a pelo menos duas oitavas dopólo ou zero mais próximo.

1PH ww ≅

Company

LOGO

35Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Cálculo Aproximado de fH

1/26/2010

⎟⎟⎠

⎞⎜⎜⎝

⎛++−⎟⎟

⎞⎜⎜⎝

⎛++

...112...11

1

22

21

22

21 ZZPP

H

wwww

w

Exemplo 6.5

)1)(1()1(

)(44

5

10x410

10ss

s

H sF++

+=

A resposta em altas frequências de um amplificador é caracterizada por:

Determine a freqüência de -3dB

Company

LOGO

36Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Exemplo 6.5

1/26/2010

Figure 6.13 Normalized high-frequency response of the amplifier in Example 6.5.

Company

LOGO

37Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Método das constantes de tempo

1/26/2010

nn

nn

H sbsbsbsasasasF

++++++++

=...1...1)( 2

21

221

pnpp wwwb 1...11

211 +++=

∑=

=n

iioi RCb

11

11

1

pwb ≅ ∑

=≅

iioi

H RCbw 11

1

(exato)

Rio = resistência vista dos terminais de Ci com todos os outros capacitores iguais a zero e fontes de sinal anuladas.

Company

LOGO

38Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Exemplo

1/26/2010

Exemplo 6.6

Determine AM e fH para o amplificador, onde Rsig = 100 kΩ, Rin = 420 kΩ, Cgs = Cgd= 1pF, gm = 4mA/V e RL = 3,33kΩ.

Company

LOGO

39Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.14 Circuits for Example 6.6: (a) high-frequency equivalent circuit of a MOSFET amplifier; (b) the equivalent circuit at midband frequencies; (c) circuit for determining the resistance seen by Cgs; and (d) circuit for determining the resistance seen by Cgd.

Exemplo 6.6

Company

LOGO

40Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Teorema de Miller

1/26/2010

Figure 6.15 The Miller equivalent circuit.

Company

LOGO

41Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Exemplo

1/26/2010

Figure 6.16 Circuit for Example 6.7.

Exemplo 6.7

Determine o circuito equivalente de Miller para Z = R = 1MΩ e Z = C = 1pF. Em cada caso, determine Vo/Vsig.

Company

LOGO

42Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Exemplo 6.7

Company

LOGO

44Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

45Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3

1/26/2010

Definições:

Resistência de entrada sem carga:

Resistência de entrada:

Ganho de tensão em malha aberta:

∞=

≡LRi

ii i

vR

i

iin i

vR ≡

∞=

≡LRi

ovo v

vA

Company

LOGO

46Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3

1/26/2010

Definições:

Ganho de tensão:

Ganho de corrente em curto circuito:

Ganho de corrente:

0=

≡LRi

ois i

iA

i

oi i

iA ≡

i

ov v

vA ≡

Company

LOGO

47Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3

1/26/2010

Definições:

Transcondutância em curto circuito:

Ganho de tensão total:

Ganho de tensão total em circuito aberto:

0=

≡LRi

om v

iG

sig

ov v

vG ≡

∞=

≡LRsig

ovo v

vG

Company

LOGO

48Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3

1/26/2010

Definições:

Resistência de saída própria:

Resistência de saída:

0=

≡ivx

xo i

vR

0=

≡sigvx

xout i

vR

Company

LOGO

49Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3 – Circuitos Equivalentes

1/26/2010

sigin

in

sig

i

RRR

vv

+=

oL

Lvov RR

RAA+

=

oL

Lvo

sigin

inv RR

RARR

RG++

=

Company

LOGO

50Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3 – Circuitos Equivalentes

1/26/2010

omvo RGA =

Company

LOGO

51Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Tabela 4.3 – Circuitos Equivalentes

1/26/2010

vosigi

ivo A

RRRG+

=outL

Lvov RR

RGG+

=

Company

LOGO

52Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador FC com Carga Ativa

1/26/2010

Figure 6.17 (a) Active-loaded common-source amplifier. (b) Small-signal analysis of the amplifier in (a), performed both directly on the circuit diagram and using the small-signal model explicitly.

∞=iR omvo rgA −= oo rR =

Company

LOGO

53Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Carga ativa CMOS

1/26/2010

Figure 6.18 The CMOS common-source amplifier; (a) circuit; (b) i–v characteristic of the active-load Q2; (c) graphical construction to determine the transfer characteristic; and (d) transfer characteristic.

)//( 211 oomv rrgA −=

Company

LOGO

54Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Carga ativa CMOS

1/26/2010

Figure 6.18 The CMOS common-source amplifier; (a) circuit; (b) i–v characteristic of the active-load Q2; (c) graphical construction to determine the transfer characteristic; and (d) transfer characteristic.

Company

LOGO

55Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Carga ativa CMOS

1/26/2010

Figure 6.18 The CMOS common-source amplifier; (a) circuit; (b) i–v characteristic of the active-load Q2; (c) graphical construction to determine the transfer characteristic; and (d) transfer characteristic.

Company

LOGO

56Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador EC com Carga Ativa

1/26/2010

Figure 6.19 (a) Active-loaded common-emitter amplifier. (b) Small-signal analysis of the amplifier in (a), performed both directly on the circuit and using the hybrid-π model explicitly.

πrRi = omvo rgA −= oo rR =

Company

LOGO

57Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Resposta em frequência do FC e EC com carga ativa

1/26/2010

Figure 6.20 High-frequency equivalent-circuit model of the common-source amplifier. For the common-emitter amplifier, the values of Vsig and Rsig are modified to include the effects of rπ and rx; Cgs is replaced by Cπ, Vgs by Vπ, and Cgd by Cμ.

• Vsig e Rsig representam o equivalente de Thevenin da fonte de sinal e

resistências do circuito de entrada.

• RL representa a carga e o resistor da fonte de corrente constante de

saída.

• CL representa as capacitâncias de carga na saída.

Company

LOGO

58Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Análise pelo Teorema de Miller

1/26/2010

Figure 6.21 Approximate equivalent circuit obtained by applying Miller’s theorem while neglecting CL and the load current component supplied by Cgd. This model works reasonably well when Rsig is large and the amplifier high-frequency response is dominated by the pole formed by Rsig and Cin.

H

M

sig

o

ws

AVV

+≅

1

'LmM RgA −=

sigLmgdgsH RRgCC

f)]1([2

1'++

Company

LOGO

59Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Método das Constantes de tempo

1/26/2010

Figure 6.22 Application of the open-circuit time-constants method to the CS equivalent circuit of Fig. 6.20.

''' ])1([ LLLLmsiggdsiggsH RCRRgRCRC ++++=τ

HHf

πτ21

Company

LOGO

60Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Análise exata

1/26/2010

Figure 6.23 Analysis of the CS high-frequency equivalent circuit.

'2''

'

])[(})()]1({[1)]/(1[

LsiggdLgsgdLLgdLsigLmgdgs

mgdLm

sig

o

RRCCCCCsRCCRRgCCsgCsRg

VV

++++++++

−−=

Company

LOGO

61Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Análise exata

1/26/2010

21

2

2121

)11(1)1)(1()(pppppp ww

sww

sw

swssD +++=++=

21

2

1

1)(ppp ww

swssD ++≅

''1 )()]1([1

LgdLsigLmgdgsp RCCRRgCC

w++++

=

12 se pp ww >>

Company

LOGO

63Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.25 (a) High-frequency equivalent circuit of the common-emitter amplifier. (b) Equivalent circuit obtained after the Thévenin theorem is employed to simplify the resistive circuit at the input.

Análise para o emissor comum

Company

LOGO

64Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.26 (a) High-frequency equivalent circuit of a CS amplifier fed with a signal source having a very low (effectively zero) resistance. (b) The circuit with Vsig reduced to zero. (c) Bode plot for the gain of the circuit in (a).

'

'

)(1)]/(1[

LgdL

mgdLm

sig

o

RCCsgCsRg

VV

++

−−=

Caso com Rsig = 0

')(21

LgdLH RCC

f+

Company

LOGO

65Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Caso com Rsig = 0

Figure 6.26 (a) High-frequency equivalent circuit of a CS amplifier fed with a signal source having a very low (effectively zero) resistance. (b) The circuit with Vsig reduced to zero. (c) Bode plot for the gain of the circuit in (a).

''

)(21||

LgdLLmHMt RCC

RgfAf+

==π

Company

LOGO

66Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

67Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.27 (a) Active-loaded common-gate amplifier. (b) MOSFET equivalent circuit for the CG case in which the body and gate terminals are connected to ground. (c) Small-signal analysis performed directly on the circuit diagram with the T model of (b) used implicitly. (d) Operation with the output open-circuited.

Gate comum com Carga Ativa

mmb gg χ=

2,0 a 1,0=χ

Efeito body (substrato)

Company

LOGO

68Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Gate comum com Carga Ativa – Resistência de entrada

roimbmi ivggi ++= )(

o

Lii

o

oiro r

Rivr

vvi −=

−=

ombm

Lo

i

iin rgg

RrivR

)(1 +++

==

Company

LOGO

69Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Gate comum com Carga Ativa - RL=∞

∞=→∞= iL RR Se

iiombmioo vvrggvirv ++=+= )(

ombmi

ov rgg

vvA )(10 ++==

0

1AR

ggARrR L

mbmvo

Loin +

+≅

+=

ombmvosig

ov rggA

vvG )(10 ++===

Company

LOGO

70Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Gate comum com Carga Ativa – Ganho de Tensão

oL

Lvo

in

L

i

ov rR

RARR

vvA

+===

LiLoo RiRiv ==inii Riv =

SvooL

Lvo

inS

L

sig

ov RArR

RARR

RvvG

++=

+==

)( inSisig RRiv +=

LiLoo RiRiv ==

Company

LOGO

71Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.28 (a) The output resistance Ro is found by setting vi 5 0. (b) The output resistance Rout is obtained by setting vsig 5 0.

Gate comum com Carga Ativa – Resistência de saída

SxRiv =

vrvggiv ombmxx +++= ])([

SvooSombmoout RArRrggrR +=+++= ])(1[

Company

LOGO

72Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.29 The impedance transformation property of the CG configuration.

Buffer de corrente

oSmbmSSombmoout rRggRRrggrR ])(1[])(1[ +++=+++=

oSmoSmbmout rRgrRggR )1(])(1[ +≈++≅

Company

LOGO

74Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Resposta em frequencia do GC

1/26/2010

Figure 6.31 (a) The common-gate amplifier with the transistor internal capacitances shown. A load capacitance CL is also included. (b)Equivalent circuit for the case in which ro is neglected.

)1||( 2

11

mbmSgs

p

ggRC

f

+

LL2 )RC( 2

1+

=gd

p Cf

π

Company

LOGO

75Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Resposta em frequencia do GC

1/26/2010

Figure 6.32 Circuits for determining Rgs and Rgd.

])RC([C 21

gdLgs ++=

gdgsH CR

inSgs RRR ||=

outLgd RRR ||=

Company

LOGO

76Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Base Comum

1/26/2010

Figure 6.33 (a) Active-loaded common-base amplifier. (b) Small-signal analysis performed directly on the circuit diagram with the BJT T model used implicitly. (c) Small-signal analysis with the output open-circuited.

e

L

e

o

Loin

rR

rr

RrR

)1(1

+++

+=

β

Company

LOGO

77Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Base Comum

1/26/2010

Figure 6.33 (a) Active-loaded common-base amplifier. (b) Small-signal analysis performed directly on the circuit diagram with the BJT T model used implicitly. (c) Small-signal analysis with the output open-circuited.

011 ArgvvA om

Ri

ovo

L

+=+==∞→

πrRi =

voei

i

Rsig

ovo A

RRR

vvG

L+

==∞→

Company

LOGO

78Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Base Comum

1/26/2010

Figure 6.34 Analysis of the CB circuit to determine Rout. Observe that the current ix that enters the transistor must equal the sum of the two currents v/rπ and v/Re that leave the transistor, that is; ix 5 v/rπ 1 v/Re.

oo rR =

oeme

eomoout

rRgRRrgrR)1(

)1(''

'

++=++=

πrRR ee || :onde ' =

Company

LOGO

79Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Buffer de Corrente

1/26/2010

Figure 6.35 Input and output resistances of the CB amplifier.

Company

LOGO

80Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

1. Comparação do MOSFET e BJT

2. Espelhos de Corrente

3. Resposta em Altas Frequências

4. Amplificadores FC e EC com Carga Ativa

5. Amplificadores GC e BC com Carga Ativa

6. Amplificador Cascode

Company

LOGO

81Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode

1/26/2010

Figure 6.36 (a) The MOS cascode amplifier. (b) The circuit prepared for small-signal analysis with various input and output resistances indicated. (c) The cascode with the output open-circuited.

2222

1

vo

L

mbmin A

Rgg

R ++

=

2222 )(1 ombmvo rggA ++=

10122 oovooout rArArR ≈+=

Company

LOGO

82Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode

1/26/2010

Figure 6.36 (a) The MOS cascode amplifier. (b) The circuit prepared for small-signal analysis with various input and output resistances indicated. (c) The cascode with the output open-circuited.

2222 )(1 ombmvo rggA ++=

iomvoovoo vrgAvAv )( 11212 −==

2)( omRi

ovo rg

vvA

L

−≈=∞→

Company

LOGO

83Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode

1/26/2010

Figure 6.37 (a and b) Two equivalent circuits for the output of the cascode amplifier. Either circuit can be used to determine the gain Av 5vo/vi, which is equal to Gv because Rin 5 ∞ and thus vi 5 vsig. (c) Equivalent circuit for determining the voltage gain of the CS stage, Q1.

oL

Lv rAR

RAA0

20 +

−=

)]1(||[0

1

AR

grg

vv L

mom

i

o +−=

Company

LOGO

84Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode

1/26/2010

oL

Lv rAR

RAA0

20 +

−=

)]1(||[0

1

AR

grg

vv L

mom

i

o +−=

oL rAR 0 com =

212

0AAv −=

01

21

2Arg

vv om

i

o −=−=

oL rR = com

0AAv −=

21 −=i

o

vv

Company

LOGO

85Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Resposta em Frequencia do Cascode MOS

1/26/2010

Figure 6.38 The cascode circuit with the various transistor capacitances indicated.

)||)(()(])1[(

2121

11111

outLgdLdgsdb

dsigdmgdsiggsH

RRCCRCCRRRgCRC

++++=+++=τ

Company

LOGO

86Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Rsig = 0 e RL=A0ro

Comparação FC x Cascode

Company

LOGO

87Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode a BJT

1/26/2010

Figure 6.40 (a) The BJT cascode amplifier. (b) The circuit prepared for small-signal analysis with various input and output resistances indicated. Note that rx is neglected. (c) The cascode with the output open-circuited.

oemout rRgR )1( '+=

πrRR ee ||' =

22222 )1( oomout rrrgR βπ ≈+=

(6.118)

Company

LOGO

88Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode a BJT

1/26/2010

Figure 6.40 (a) The BJT cascode amplifier. (b) The circuit prepared for small-signal analysis with various input and output resistances indicated. Note that rx is neglected. (c) The cascode with the output open-circuited.

02AAvo β−=

ioimo vrrvgv βπ −≈−= )||( 2111

02222 1 ArgA omvo ≈+=

Company

LOGO

89Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode a BJT – Modelos Equivalentes

1/26/2010

Figure 6.41 (a) Equivalent circuit for the cascode amplifier in terms of the open-circuit voltage gain Avo 5 –βA0. (b) Equivalent circuit in terms of the overall short-circuit transconductance Gm . gm. (c) Equivalent circuit for determining the gain of the CE stage, Q1.

11 −=i

o

vv

oL rR <<

21 β

−=i

o

vv

oL rR β=

Company

LOGO

90Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Amplificador Cascode a BJT – Resposta em frequência

1/26/2010

Figure 6.42 Determining the frequency response of the BJT cascode amplifier. Note that in addition to the BJT capacitances Cπ and Cμ, the capacitance between the collector and the substrate Ccs for each transistor are also included.

Company

LOGO

91Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Fonte de Corrente Cascode

1/26/2010

Figure 6.43 A cascode current-source.

Transistor do espelho de corrente

Transistor em gate comum

122 )( oomL rrgR =

Company

LOGO

92Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Duplo cascode

1/26/2010

Figure 6.44 Double cascoding.

ooomomout rArrgrgR 20133223 ))(( ==

Company

LOGO

93Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Cascode dobrado

1/26/2010

Figure 6.45 The folded cascode.

21 II −

Company

LOGO

94Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Cascode BiCMOS

Rin infinita

Maior resistência de saída (βBJT>A0_FET e ro_BJT > ro_FET)

Efeito Miller reduzido (Rin2_BJT<Rin2_FET)

1/26/2010

Figure 6.46 BiCMOS cascodes.

Company

LOGO

95Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Cascode BiCMOS

Maior resistência de saída com MOSFET Q3 pois com BJT ficaria limitada a βro

1/26/2010

Figure 6.46 BiCMOS cascodes.

Company

LOGO

96Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

7. Amplificadores FC (EC) com resistor fonte (emissor)

8. Seguidor de Fonte e Seguidor de Emissor

9. Associações de Transistores

10. Espelhos de Corrente Aprimorados

Company

LOGO

97Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Fonte comum com resistor de fonte

1/26/2010

Figure 6.47 (a) A CS amplifier with a source-degeneration resistance Rs. (b) Circuit for small-signal analysis. (c) Circuit with the output open to determine Avo. (d) Output equivalent circuit. (e) Another output equivalent circuit in terms of Gm.

xsmo

xsxx iRg

riRvi −

−=

])(1[

)(

Smbmo

SombmSoout

Rggr

RrggRrR

++≈

+++=

Rout aumenta com o aumento de RS

Company

LOGO

98Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Fonte comum com resistor de fonte

1/26/2010

Figure 6.47 (a) A CS amplifier with a source-degeneration resistance Rs. (b) Circuit for small-signal analysis. (c) Circuit with the output open to determine Avo. (d) Output equivalent circuit. (e) Another output equivalent circuit in terms of Gm.

oimo rvgv −=

0ArgA omvo −=−=

RS não afeta o ganho Avo

Company

LOGO

99Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Fonte comum com resistor de fonte

1/26/2010

Figure 6.47 (a) A CS amplifier with a source-degeneration resistance Rs. (b) Circuit for small-signal analysis. (c) Circuit with the output open to determine Avo. (d) Output equivalent circuit. (e) Another output equivalent circuit in terms of Gm.

Smbm

m

out

vom Rgg

gRAG

)(1||

++==

outL

Lvov RR

RAA+

−=

O ganho Av cai com o aumento de RS

Company

LOGO

100Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

FC com resistor de fonte – Resposta em frequência

1/26/2010

Figure 6.48 (a) The CS amplifier circuit, with a source resistance Rs, prepared for frequency-response analysis. (b) Determining the resistance Rgd seen by the capacitance Cgd.

Company

LOGO

101Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

FC com resistor de fonte – Resposta em frequência

1/26/2010

Figure 6.48 (a) The CS amplifier circuit, with a source resistance Rs, prepared for frequency-response analysis. (b) Determining the resistance Rgd seen by the capacitance Cgd.

Company

LOGO

102Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

FC com resistor de fonte – Resposta em frequência

Melhora a linearidade do amplificador – realimentação negativa - vgs é apenas uma parcela de vi

Aumenta a faixa de passagem do amplificador

1/26/2010

Company

LOGO

103Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Emissor Comum com resistor de emissor

1/26/2010

Figure 6.49 A CE amplifier with emitter degeneration: (a) circuit; (b) analysis to determine Rin; and (c) analysis to determine Avo.

Company

LOGO

104Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Emissor Comum com resistor de emissor

1/26/2010

Figure 6.49 A CE amplifier with emitter degeneration: (a) circuit; (b) analysis to determine Rin; and (c) analysis to determine Avo.

Company

LOGO

105Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

7. Amplificadores FC (EC) com resistor fonte (emissor)

8. Seguidor de Fonte e Seguidor de Emissor

9. Associações de Transistores

10. Espelhos de Corrente Aprimorados

7. Amplificadores FC (EC) com resistor fonte (emissor)

9. Associações de Transistores

Company

LOGO

106Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de Fonte

1/26/2010

Figure 6.50 (a) An IC source follower. (b) Small-signal equivalent-circuit model of the source follower. (c) A simplified version of the equivalent circuit. (d) Determining the output resistance of the source follower.

'L

Rvgv gsmo =

oigs vvv −=

'

'

1 Lm

Lm

i

ov Rg

RgvvA

+==

χ+=

+≅

++=

11

)(1 mbm

m

ombm

omvo gg

grgg

rgA

Company

LOGO

107Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de Fonte

1/26/2010

Figure 6.50 (a) An IC source follower. (b) Small-signal equivalent-circuit model of the source follower. (c) A simplified version of the equivalent circuit. (d) Determining the output resistance of the source follower.

ombm

o rgg

R ||1+

=

Company

LOGO

108Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de Fonte – Resposta em frequência

1/26/2010

Figure 6.51 Analysis of the high-frequency response of the source follower: (a) Equivalent circuit; (b) simplified equivalent circuit; and (c)determining the resistance Rgs seen by Cgs.

siggd RR =

oLgd RRR ||=

Company

LOGO

109Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de Fonte – Resposta em frequência

1/26/2010

Figure 6.51 Analysis of the high-frequency response of the source follower: (a) Equivalent circuit; (b) simplified equivalent circuit; and (c)determining the resistance Rgs seen by Cgs.

'

'

1 Lm

Lsiggs Rg

RRR

+

+=

Company

LOGO

110Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de emissor - Resposta em frequência

1/26/2010

Figure 6.52 (a) Emitter follower. (b) High-frequency equivalent circuit. (c) Simplified equivalent circuit.

Company

LOGO

111Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Seguidor de emissor - Resposta em frequência

1/26/2010

Figure 6.52 (a) Emitter follower. (b) High-frequency equivalent circuit. (c) Simplified equivalent circuit.

])1([|| ''Lsig RrRR ++= βπμ

e

Lsig

Lsig

rR

rR

RRR

''

''

1 ++

+=

π

π

Company

LOGO

112Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

7. Amplificadores FC (EC) com resistor fonte (emissor)

8. Seguidor de Fonte e Seguidor de Emissor

9. Associações de Transistores

10. Espelhos de Corrente Aprimorados

Company

LOGO

113Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

DC-FC, CC-EC e DC-EC

1/26/2010

Figure 6.53 (a) CD–CS amplifier. (b) CC–CE amplifier. (c) CD–CE amplifier.

• Larga faixa de passagem

• Alta resistência de entrada

Company

LOGO

114Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.54 Circuits for Example 6.13: (a) The CC–CE circuit prepared for low-frequency small-signal analysis; (b) the circuit at high frequencies, with Vsig set to zero to enable determination of the open-circuit time constants; and (c) a CE amplifier for comparison.

Company

LOGO

115Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

Configuração Darlington

1/26/2010

Figure 6.55 (a) The Darlington configuration; (b) voltage follower using the Darlington configuration; and (c) the Darlington follower with a bias current I applied to Q1 to ensure that its β remains high.

Company

LOGO

116Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

CC-BC e DC-GC

1/26/2010

Figure 6.56 (a) A CC–CB amplifier. (b) Another version of the CC–CB circuit with Q2 implemented using a pnp transistor. (c) The MOSFET version of the circuit in (a).

Company

LOGO

117Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.

CC-BC e DC-GC - Resposta em frequência

1/26/2010

Figure 6.57 (a) Equivalent circuit for the amplifier in Fig. 6.56(a). (b) Simplified equivalent circuit. Note that the equivalent circuits in (a) and (b) also apply to the circuit shown in Fig. 6.56(b). In addition, they can be easily adapted for the MOSFET circuit in Fig. 6.56(c), with 2rπeliminated, Cπ replaced with Cgs, Cμ replaced with Cgd, and Vπ replaced with Vgs.

Company

LOGO

118Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Sumário

7. Amplificadores FC (EC) com resistor fonte (emissor)

8. Seguidor de Fonte e Seguidor de Emissor

9. Associações de Transistores

10. Espelhos de Corrente Aprimorados

Company

LOGO

119Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.58 A cascode MOS current mirror.

Espelho Cascode MOS

23333 ])(1[ oombmoo rrggrR +++=

Company

LOGO

120Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.59 A current mirror with base-current compensation.

Espelho com compensação da corrente de base

22 /211

)/(211

βββ +≈

++=

REF

o

II

Company

LOGO

121Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.60 The Wilson bipolar current mirror: (a) circuit showing analysis to determine the current transfer ratio; and (b) determining the output resistance. Note that the current ix that enters Q3 must equal the sum of the currents that leave it, 2i.

Fonte de Wilson

2/211β+

≈REF

o

II

Company

LOGO

122Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.60 The Wilson bipolar current mirror: (a) circuit showing analysis to determine the current transfer ratio; and (b) determining the output resistance. Note that the current ix that enters Q3 must equal the sum of the currents that leave it, 2i.

Fonte de Wilson

2o

orR β

=

Company

LOGO

123Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.61 The Wilson MOS mirror: (a) circuit; (b) analysis to determine output resistance; and (c) modified circuit.

Fonte de Wilson MOS

233233 )2( oomomoo rrgrgrR ≈+≅

Company

LOGO

124Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.61 The Wilson MOS mirror: (a) circuit; (b) analysis to determine output resistance; and (c) modified circuit.

Fonte de Wilson MOS

Company

LOGO

125Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.62 The Widlar current source.

Fonte de Corrente Widlar

T

BEv

v

SREF eII1

=

T

BEv

v

SO eII2

=

T

BEBEv

vv

So

REF eII

I 21−

=

EoBEBE RIVV += 21

⎟⎟⎠

⎞⎜⎜⎝

⎛=

o

REFTEo I

IVRI ln

Company

LOGO

126Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.63 Circuits for Example 6.14.

Exemplo 6.14

Projetar as fontes de corrente para Io = 10 μA. Fazer Iref = 1mA na Fonte Widlar.

Company

LOGO

127Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.64 Capture schematic of the CS amplifier in Example 6.15.

Company

LOGO

128Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.65 Transistor equivalency.

Company

LOGO

129Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.66 (a) Voltage transfer characteristic of the CS amplifier in Example 6.15.

Company

LOGO

130Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.66 (Continued) (b) Expanded view of the transfer characteristic in the high-gain region. Also shown are the transfer characteristics where process variations cause the width of transistor M1 to change by +15% and –15% from its nominal value of W1 = 12.5 μm.

Company

LOGO

131Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.67 Capture schematic of the CS amplifier in Example 6.16.

Company

LOGO

132Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.68 Frequency response of (a) the CS amplifier and (b) the folded-cascode amplifier in Example 6.16, with Rsig = 100 Ω and Rsig = 1 μΩ.

Company

LOGO

133Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure 6.69 Capture schematic of the folded-cascode amplifier in Example 6.16.

Company

LOGO

134Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.9

6.9 Determine a resistência incremental de cada diodo da figura abaixo.Assuma I = 0,1 mA. Para o Mosfet μnCox = 200 μA/V2 e W/L = 10.

Company

LOGO

135Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.25

6.25 Determine Io em função de IREF e (W/L) dos dispositivos.

Company

LOGO

136Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.26

Company

LOGO

137Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.28

Company

LOGO

138Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.33

Company

LOGO

139Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.34

Company

LOGO

140Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.35

Company

LOGO

141Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.37

Company

LOGO

142Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.46

Company

LOGO

143Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.54

Company

LOGO

144Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.57

Company

LOGO

145Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.61

Company

LOGO

146Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.63

Company

LOGO

147Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.65

Company

LOGO

148Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.72

Company

LOGO

149Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.73

Company

LOGO

150Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.75

Company

LOGO

151Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.76

Company

LOGO

152Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.83

Company

LOGO

153Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.84

Company

LOGO

154Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.85

Company

LOGO

155Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.93

Company

LOGO

156Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.96

Company

LOGO

157Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.98

Company

LOGO

158Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.99

Company

LOGO

159Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.107

Company

LOGO

160Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.121

Company

LOGO

161Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.122

Company

LOGO

162Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.123

Company

LOGO

163Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.124

Company

LOGO

164Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.127

Company

LOGO

165Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.130

Company

LOGO

166Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.134

Company

LOGO

167Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.143

Company

LOGO

168Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.144

Company

LOGO

169Microelectronic Circuits - Fifth Edition Sedra/Smith Copyright 2004 by Oxford University Press, Inc.1/26/2010

Figure P6.145